## Adding a new CUDA release {#adding-a-new-cuda-release}
> **WARNING**
>
> This section of the docs is still very much in progress. Feedback is welcome in GitHub Issues tagging @NixOS/cuda-maintainers or on [Matrix](https://matrix.to/#/#cuda:nixos.org).
The CUDA Toolkit is a suite of CUDA libraries and software meant to provide a development environment for CUDA-accelerated applications. Until the release of CUDA 11.4, NVIDIA had only made the CUDA Toolkit available as a multi-gigabyte runfile installer, which we provide through the [`cudaPackages.cudatoolkit`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages.cudatoolkit) attribute. From CUDA 11.4 and onwards, NVIDIA has also provided CUDA redistributables (“CUDA-redist”): individually packaged CUDA Toolkit components meant to facilitate redistribution and inclusion in downstream projects. These packages are available in the [`cudaPackages`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages) package set.
All new projects should use the CUDA redistributables available in [`cudaPackages`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages) in place of [`cudaPackages.cudatoolkit`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages.cudatoolkit), as they are much easier to maintain and update.
### Updating CUDA redistributables {#updating-cuda-redistributables}
1. Go to NVIDIA's index of CUDA redistributables: <https://developer.download.nvidia.com/compute/cuda/redist/>
1. Update `nvcc-compatibilities.nix` in `pkgs/development/cuda-modules/` to include the newest release of NVCC, as well as any newly supported host compilers.
2. Update `gpus.nix` in `pkgs/development/cuda-modules/` to include any new GPUs supported by the new release of CUDA.
### Updating the CUDA Toolkit runfile installer {#updating-the-cuda-toolkit}
> **WARNING**
>
> While the CUDA Toolkit runfile installer is still available in Nixpkgs as the [`cudaPackages.cudatoolkit`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages.cudatoolkit) attribute, its use is not recommended and should it be considered deprecated. Please migrate to the CUDA redistributables provided by the [`cudaPackages`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages) package set.
>
> To ensure packages relying on the CUDA Toolkit runfile installer continue to build, it will continue to be updated until a migration path is available.
1. Go to NVIDIA's CUDA Toolkit runfile installer download page: <https://developer.nvidia.com/cuda-downloads>
2. Select the appropriate OS, architecture, distribution, and version, and installer type.
- For example: Linux, x86_64, Ubuntu, 22.04, runfile (local)
- NOTE: Typically, we use the Ubuntu runfile. It is unclear if the runfile for other distributions will work.
3. Take the link provided by the installer instructions on the webpage after selecting the installer type and get its hash by running:
2. Successfully build the closure of the new package set, updating `pkgs/development/cuda-modules/cuda/overrides.nix` as needed. Below are some common failures:
| Unable to ... | During ... | Reason | Solution | Note |
| --- | --- | --- | --- | --- |
| Find headers | `configurePhase` or `buildPhase` | Missing dependency on a `dev` output | Add the missing dependency | The `dev` output typically contain the headers |
| Find libraries | `configurePhase` | Missing dependency on a `dev` output | Add the missing dependency | The `dev` output typically contain CMake configuration files |
| Find libraries | `buildPhase` or `patchelf` | Missing dependency on a `lib` or `static` output | Add the missing dependency | The `lib` or `static` output typically contain the libraries |
In the scenario you are unable to run the resulting binary: this is arguably the most complicated as it could be any combination of the previous reasons. This type of failure typically occurs when a library attempts to load or open a library it depends on that it does not declare in its `DT_NEEDED` section. As a first step, ensure that dependencies are patched with [`cudaPackages.autoAddOpenGLRunpath`](https://search.nixos.org/packages?channel=unstable&type=packages&query=cudaPackages.autoAddOpenGLRunpath). Failing that, try running the application with [`nixGL`](https://github.com/guibou/nixGL) or a similar wrapper tool. If that works, it likely means that the application is attempting to load a library that is not in the `RPATH` or `RUNPATH` of the binary.