mirror of
https://github.com/ilyakooo0/nixpkgs.git
synced 2024-11-13 21:32:23 +03:00
pythonPackages.bayespy: 0.5.22 -> 0.5.26
This commit is contained in:
parent
f91ee3065d
commit
d2ad81b088
@ -4,7 +4,7 @@
|
||||
|
||||
buildPythonPackage rec {
|
||||
pname = "bayespy";
|
||||
version = "0.5.22";
|
||||
version = "0.5.26";
|
||||
|
||||
# Python 2 not supported and not some old Python 3 because MPL doesn't support
|
||||
# them properly.
|
||||
@ -12,23 +12,9 @@ buildPythonPackage rec {
|
||||
|
||||
src = fetchPypi {
|
||||
inherit pname version;
|
||||
sha256 = "ed0057dc22bd392df4b3bba23536117e1b2866e3201b12c5a37428d23421a5ba";
|
||||
sha256 = "sha256-NOvuqPKioRIqScd2jC7nakonDEovTo9qKp/uTk9z1BE=";
|
||||
};
|
||||
|
||||
patches = [
|
||||
# Change from scipy to locally defined epsilon
|
||||
# https://github.com/bayespy/bayespy/pull/126
|
||||
(fetchpatch {
|
||||
name = "locally-defined-epsilon.patch";
|
||||
url = "https://github.com/bayespy/bayespy/commit/9be53bada763e19c2b6086731a6aa542ad33aad0.patch";
|
||||
hash = "sha256-KYt/0GcaNWR9K9/uS2OXgK7g1Z+Bayx9+IQGU75Mpuo=";
|
||||
})
|
||||
|
||||
# Fix deprecated numpy types
|
||||
# https://sources.debian.org/src/python-bayespy/0.5.22-5/debian/patches/pr127-Fix-deprecated-numpy-types.patch/
|
||||
./pr127-Fix-deprecated-numpy-types.patch
|
||||
];
|
||||
|
||||
nativeCheckInputs = [ pytestCheckHook nose glibcLocales ];
|
||||
|
||||
propagatedBuildInputs = [ numpy scipy matplotlib h5py ];
|
||||
|
@ -1,129 +0,0 @@
|
||||
Description: Fix deprecated numpy types
|
||||
From: Antti Mäkinen <antti.makinen@danfoss.com>
|
||||
Bug: https://github.com/bayespy/bayespy/pull/127
|
||||
Bug-Debian: https://bugs.debian.org/1027220
|
||||
|
||||
--- a/bayespy/inference/vmp/nodes/categorical_markov_chain.py
|
||||
+++ b/bayespy/inference/vmp/nodes/categorical_markov_chain.py
|
||||
@@ -171,7 +171,7 @@ class CategoricalMarkovChainDistribution
|
||||
# Explicit broadcasting
|
||||
P = P * np.ones(plates)[...,None,None,None]
|
||||
# Allocate memory
|
||||
- Z = np.zeros(plates + (self.N,), dtype=np.int)
|
||||
+ Z = np.zeros(plates + (self.N,), dtype=np.int64)
|
||||
# Draw initial state
|
||||
Z[...,0] = random.categorical(p0, size=plates)
|
||||
# Create [0,1,2,...,len(plate_axis)] indices for each plate axis and
|
||||
--- a/bayespy/inference/vmp/nodes/concatenate.py
|
||||
+++ b/bayespy/inference/vmp/nodes/concatenate.py
|
||||
@@ -70,7 +70,7 @@ class Concatenate(Deterministic):
|
||||
)
|
||||
|
||||
# Compute start indices for each parent on the concatenated plate axis
|
||||
- self._indices = np.zeros(len(nodes)+1, dtype=np.int)
|
||||
+ self._indices = np.zeros(len(nodes)+1, dtype=np.int64)
|
||||
self._indices[1:] = np.cumsum([int(parent.plates[axis])
|
||||
for parent in self.parents])
|
||||
self._lengths = [parent.plates[axis] for parent in self.parents]
|
||||
--- a/bayespy/inference/vmp/nodes/tests/test_binomial.py
|
||||
+++ b/bayespy/inference/vmp/nodes/tests/test_binomial.py
|
||||
@@ -43,7 +43,7 @@ class TestBinomial(TestCase):
|
||||
X = Binomial(10, 0.7*np.ones((4,3)))
|
||||
self.assertEqual(X.plates,
|
||||
(4,3))
|
||||
- n = np.ones((4,3), dtype=np.int)
|
||||
+ n = np.ones((4,3), dtype=np.int64)
|
||||
X = Binomial(n, 0.7)
|
||||
self.assertEqual(X.plates,
|
||||
(4,3))
|
||||
--- a/bayespy/inference/vmp/nodes/tests/test_multinomial.py
|
||||
+++ b/bayespy/inference/vmp/nodes/tests/test_multinomial.py
|
||||
@@ -43,7 +43,7 @@ class TestMultinomial(TestCase):
|
||||
X = Multinomial(10, 0.25*np.ones((2,3,4)))
|
||||
self.assertEqual(X.plates,
|
||||
(2,3))
|
||||
- n = 10 * np.ones((3,4), dtype=np.int)
|
||||
+ n = 10 * np.ones((3,4), dtype=np.int64)
|
||||
X = Multinomial(n, [0.1, 0.3, 0.6])
|
||||
self.assertEqual(X.plates,
|
||||
(3,4))
|
||||
--- a/bayespy/inference/vmp/nodes/tests/test_take.py
|
||||
+++ b/bayespy/inference/vmp/nodes/tests/test_take.py
|
||||
@@ -89,7 +89,7 @@ class TestTake(TestCase):
|
||||
|
||||
# Test matrix indices, no shape
|
||||
X = GaussianARD(1, 1, plates=(3,), shape=(2,))
|
||||
- Y = Take(X, np.ones((4, 5), dtype=np.int))
|
||||
+ Y = Take(X, np.ones((4, 5), dtype=np.int64))
|
||||
self.assertEqual(
|
||||
Y.plates,
|
||||
(4, 5),
|
||||
@@ -113,7 +113,7 @@ class TestTake(TestCase):
|
||||
|
||||
# Test vector indices with more plate axes
|
||||
X = GaussianARD(1, 1, plates=(4, 2), shape=())
|
||||
- Y = Take(X, np.ones(3, dtype=np.int))
|
||||
+ Y = Take(X, np.ones(3, dtype=np.int64))
|
||||
self.assertEqual(
|
||||
Y.plates,
|
||||
(4, 3),
|
||||
@@ -125,7 +125,7 @@ class TestTake(TestCase):
|
||||
|
||||
# Test take on other plate axis
|
||||
X = GaussianARD(1, 1, plates=(4, 2), shape=())
|
||||
- Y = Take(X, np.ones(3, dtype=np.int), plate_axis=-2)
|
||||
+ Y = Take(X, np.ones(3, dtype=np.int64), plate_axis=-2)
|
||||
self.assertEqual(
|
||||
Y.plates,
|
||||
(3, 2),
|
||||
@@ -141,7 +141,7 @@ class TestTake(TestCase):
|
||||
ValueError,
|
||||
Take,
|
||||
X,
|
||||
- np.ones(3, dtype=np.int),
|
||||
+ np.ones(3, dtype=np.int64),
|
||||
plate_axis=0,
|
||||
)
|
||||
|
||||
--- a/bayespy/utils/tests/test_linalg.py
|
||||
+++ b/bayespy/utils/tests/test_linalg.py
|
||||
@@ -126,7 +126,7 @@ class TestBandedSolve(misc.TestCase):
|
||||
# Random sizes of the blocks
|
||||
#D = np.random.randint(5, 10, size=N)
|
||||
# Fixed sizes of the blocks
|
||||
- D = 5*np.ones(N, dtype=np.int)
|
||||
+ D = 5*np.ones(N, dtype=np.int64)
|
||||
|
||||
# Some helpful variables to create the covariances
|
||||
W = [np.random.randn(D[i], 2*D[i])
|
||||
--- a/bayespy/utils/misc.py
|
||||
+++ b/bayespy/utils/misc.py
|
||||
@@ -355,7 +355,7 @@ class TestCase(unittest.TestCase):
|
||||
]
|
||||
)
|
||||
]
|
||||
- ).astype(np.int)
|
||||
+ ).astype(int)
|
||||
|
||||
def pack(x):
|
||||
return [
|
||||
--- a/bayespy/utils/random.py
|
||||
+++ b/bayespy/utils/random.py
|
||||
@@ -284,7 +284,7 @@ def categorical(p, size=None):
|
||||
for ind in inds:
|
||||
z[ind] = np.searchsorted(P[ind], x[ind])
|
||||
|
||||
- return z.astype(np.int)
|
||||
+ return z.astype(int)
|
||||
|
||||
|
||||
def multinomial(n, p, size=None):
|
||||
@@ -313,7 +313,7 @@ def multinomial(n, p, size=None):
|
||||
for i in misc.nested_iterator(size):
|
||||
x[i] = np.random.multinomial(n[i], p[i])
|
||||
|
||||
- return x.astype(np.int)
|
||||
+ return x.astype(int)
|
||||
|
||||
|
||||
def gamma(a, b, size=None):
|
Loading…
Reference in New Issue
Block a user