First, we need check against the host platform, not the build platform.
That's simple enough.
Second, we move away from exahustive finite case analysis (i.e.
exhaustively listing all platforms the package builds on). That only
work in a closed-world setting, where we know all platforms we might
build one. But with cross compilation, we may be building for arbitrary
platforms, So we need fancier filters. This is the closed world to open
world change.
The solution is instead of having a list of systems (strings in the form
"foo-bar"), we have a list of of systems or "patterns", i.e. attributes
that partially match the output of the parsers in `lib.systems.parse`.
The "check meta" logic treats the systems strings as an exact whitelist
just as before, but treats the patterns as a fuzzy whitelist,
intersecting the actual `hostPlatform` with the pattern and then
checking for equality. (This is done using `matchAttrs`).
The default convenience lists for `meta.platforms` are now changed to be
lists of patterns (usually a single pattern) in
`lib/systems/for-meta.nix` for maximum flexibility under this new
system.
Fixes#30902
Based on a request by @oxij:
“Can we also rename this file to `maintainers/maintainers-list.nix` while we at
this? Motivation: much saner `git log ./lib`.”
Based on https://github.com/NixOS/nixpkgs/pull/34842, the
nix-instantiate output was pretty-printed and the validity of the github handles
manually verified, by automatically checking whether the user handles exist on
github (https://github.com/userhandle, status 200 or 404).
Each handle under 5 characters was manually checked (because the collision
probability with non-maintainer accounts is high), each missing entry was
manually researched.
The script used is kept in `maintainers/scripts` as an example of how to work
with the mainainers list through nix’ JSON interface.
Among other things, this will allow *2nix tools to output plain data
while still being composable with the traditional
callPackage/.override interfaces.
This does break the API of being able to import any lib file and get
its libs, however I'm not sure people did this.
I made this while exploring being able to swap out docFn with a stub
in #2305, to avoid functor performance problems. I don't know if that
is going to move forward (or if it is a problem or not,) but after
doing all this work figured I'd put it up anyway :)
Two notable advantages to this approach:
1. when a lib inherits another lib's functions, it doesn't
automatically get put in to the scope of lib
2. when a lib implements a new obscure functions, it doesn't
automatically get put in to the scope of lib
Using the test script (later in this commit) I got the following diff
on the API:
+ diff master fixed-lib
11764a11765,11766
> .types.defaultFunctor
> .types.defaultTypeMerge
11774a11777,11778
> .types.isOptionType
> .types.isType
11781a11786
> .types.mkOptionType
11788a11794
> .types.setType
11795a11802
> .types.types
This means that this commit _adds_ to the API, however I can't find a
way to fix these last remaining discrepancies. At least none are
_removed_.
Test script (run with nix-repl in the PATH):
#!/bin/sh
set -eux
repl() {
suff=${1:-}
echo "(import ./lib)$suff" \
| nix-repl 2>&1
}
attrs_to_check() {
repl "${1:-}" \
| tr ';' $'\n' \
| grep "\.\.\." \
| cut -d' ' -f2 \
| sed -e "s/^/${1:-}./" \
| sort
}
summ() {
repl "${1:-}" \
| tr ' ' $'\n' \
| sort \
| uniq
}
deep_summ() {
suff="${1:-}"
depth="${2:-4}"
depth=$((depth - 1))
summ "$suff"
for attr in $(attrs_to_check "$suff" | grep -v "types.types"); do
if [ $depth -eq 0 ]; then
summ "$attr" | sed -e "s/^/$attr./"
else
deep_summ "$attr" "$depth" | sed -e "s/^/$attr./"
fi
done
}
(
cd nixpkgs
#git add .
#git commit -m "Auto-commit, sorry" || true
git checkout fixed-lib
deep_summ > ../fixed-lib
git checkout master
deep_summ > ../master
)
if diff master fixed-lib; then
echo "SHALLOW MATCH!"
fi
(
cd nixpkgs
git checkout fixed-lib
repl .types
)
Many configurations are INI-style files. Attribute sets can be mapped
rather painlessly to the INI format.
This adds a function toINI inside a new generators library section.
Also, unit tests for the default values are provided.
The major changes are:
* The evaluation is now driven by the declared options. In
particular, this fixes the long-standing problem with lack of
laziness of disabled option definitions. Thus, a configuration like
config = mkIf false {
environment.systemPackages = throw "bla";
};
will now evaluate without throwing an error. This also improves
performance since we're not evaluating unused option definitions.
* The implementation of properties is greatly simplified.
* There is a new type constructor "submodule" that replaces
"optionSet". Unlike "optionSet", "submodule" gets its option
declarations as an argument, making it more like "listOf" and other
type constructors. A typical use is:
foo = mkOption {
type = type.attrsOf (type.submodule (
{ config, ... }:
{ bar = mkOption { ... };
xyzzy = mkOption { ... };
}));
};
Existing uses of "optionSet" are automatically mapped to
"submodule".
* Modules are now checked for unsupported attributes: you get an error
if a module contains an attribute other than "config", "options" or
"imports".
* The new implementation is faster and uses much less memory.