from pyspark.sql import Row, SparkSession from pyspark.sql import functions as F from pyspark.sql.functions import udf from pyspark.sql.types import * from pyspark.sql.functions import explode def explode_col(weight): return int(weight//10) * [10.0] + ([] if weight%10==0 else [weight%10]) spark = SparkSession.builder.getOrCreate() dataSchema = [ StructField("feature_1", FloatType()), StructField("feature_2", FloatType()), StructField("bias_weight", FloatType()) ] data = [ Row(0.1, 0.2, 10.32), Row(0.32, 1.43, 12.8), Row(1.28, 1.12, 0.23) ] df = spark.createDataFrame(spark.sparkContext.parallelize(data), StructType(dataSchema)) normalizing_constant = 100 sum_bias_weight = df.select(F.sum('bias_weight')).collect()[0][0] normalizing_factor = normalizing_constant / sum_bias_weight df = df.withColumn('normalized_bias_weight', df.bias_weight * normalizing_factor) df = df.drop('bias_weight') df = df.withColumnRenamed('normalized_bias_weight', 'bias_weight') my_udf = udf(lambda x: explode_col(x), ArrayType(FloatType())) df1 = df.withColumn('explode_val', my_udf(df.bias_weight)) df1 = df1.withColumn("explode_val_1", explode(df1.explode_val)).drop("explode_val") df1 = df1.drop('bias_weight').withColumnRenamed('explode_val_1', 'bias_weight') df1.show() assert(df1.count() == 12)