/* General list operations. */ { lib }: let inherit (lib.strings) toInt; inherit (lib.trivial) compare min id; inherit (lib.attrsets) mapAttrs; inherit (lib.lists) sort; in rec { inherit (builtins) head tail length isList elemAt concatLists filter elem genList map; /* Create a list consisting of a single element. `singleton x` is sometimes more convenient with respect to indentation than `[x]` when x spans multiple lines. Type: singleton :: a -> [a] Example: singleton "foo" => [ "foo" ] */ singleton = x: [x]; /* Apply the function to each element in the list. Same as `map`, but arguments flipped. Type: forEach :: [a] -> (a -> b) -> [b] Example: forEach [ 1 2 ] (x: toString x ) => [ "1" "2" ] */ forEach = xs: f: map f xs; /* “right fold” a binary function `op` between successive elements of `list` with `nul` as the starting value, i.e., `foldr op nul [x_1 x_2 ... x_n] == op x_1 (op x_2 ... (op x_n nul))`. Type: foldr :: (a -> b -> b) -> b -> [a] -> b Example: concat = foldr (a: b: a + b) "z" concat [ "a" "b" "c" ] => "abcz" # different types strange = foldr (int: str: toString (int + 1) + str) "a" strange [ 1 2 3 4 ] => "2345a" */ foldr = op: nul: list: let len = length list; fold' = n: if n == len then nul else op (elemAt list n) (fold' (n + 1)); in fold' 0; /* `fold` is an alias of `foldr` for historic reasons */ # FIXME(Profpatsch): deprecate? fold = foldr; /* “left fold”, like `foldr`, but from the left: `foldl op nul [x_1 x_2 ... x_n] == op (... (op (op nul x_1) x_2) ... x_n)`. Type: foldl :: (b -> a -> b) -> b -> [a] -> b Example: lconcat = foldl (a: b: a + b) "z" lconcat [ "a" "b" "c" ] => "zabc" # different types lstrange = foldl (str: int: str + toString (int + 1)) "a" lstrange [ 1 2 3 4 ] => "a2345" */ foldl = op: nul: list: let foldl' = n: if n == -1 then nul else op (foldl' (n - 1)) (elemAt list n); in foldl' (length list - 1); /* Reduce a list by applying a binary operator from left to right, starting with an initial accumulator. Before each application of the operator, the accumulator value is evaluated. This behavior makes this function stricter than [`foldl`](#function-library-lib.lists.foldl). Unlike [`builtins.foldl'`](https://nixos.org/manual/nix/unstable/language/builtins.html#builtins-foldl'), the initial accumulator argument is evaluated before the first iteration. A call like ```nix foldl' op acc₀ [ x₀ x₁ x₂ ... xₙ₋₁ xₙ ] ``` is (denotationally) equivalent to the following, but with the added benefit that `foldl'` itself will never overflow the stack. ```nix let acc₁ = builtins.seq acc₀ (op acc₀ x₀ ); acc₂ = builtins.seq acc₁ (op acc₁ x₁ ); acc₃ = builtins.seq acc₂ (op acc₂ x₂ ); ... accₙ = builtins.seq accₙ₋₁ (op accₙ₋₁ xₙ₋₁); accₙ₊₁ = builtins.seq accₙ (op accₙ xₙ ); in accₙ₊₁ # Or ignoring builtins.seq op (op (... (op (op (op acc₀ x₀) x₁) x₂) ...) xₙ₋₁) xₙ ``` Type: foldl' :: (acc -> x -> acc) -> acc -> [x] -> acc Example: foldl' (acc: x: acc + x) 0 [1 2 3] => 6 */ foldl' = /* The binary operation to run, where the two arguments are: 1. `acc`: The current accumulator value: Either the initial one for the first iteration, or the result of the previous iteration 2. `x`: The corresponding list element for this iteration */ op: # The initial accumulator value acc: # The list to fold list: # The builtin `foldl'` is a bit lazier than one might expect. # See https://github.com/NixOS/nix/pull/7158. # In particular, the initial accumulator value is not forced before the first iteration starts. builtins.seq acc (builtins.foldl' op acc list); /* Map with index starting from 0 Type: imap0 :: (int -> a -> b) -> [a] -> [b] Example: imap0 (i: v: "${v}-${toString i}") ["a" "b"] => [ "a-0" "b-1" ] */ imap0 = f: list: genList (n: f n (elemAt list n)) (length list); /* Map with index starting from 1 Type: imap1 :: (int -> a -> b) -> [a] -> [b] Example: imap1 (i: v: "${v}-${toString i}") ["a" "b"] => [ "a-1" "b-2" ] */ imap1 = f: list: genList (n: f (n + 1) (elemAt list n)) (length list); /* Map and concatenate the result. Type: concatMap :: (a -> [b]) -> [a] -> [b] Example: concatMap (x: [x] ++ ["z"]) ["a" "b"] => [ "a" "z" "b" "z" ] */ concatMap = builtins.concatMap or (f: list: concatLists (map f list)); /* Flatten the argument into a single list; that is, nested lists are spliced into the top-level lists. Example: flatten [1 [2 [3] 4] 5] => [1 2 3 4 5] flatten 1 => [1] */ flatten = x: if isList x then concatMap (y: flatten y) x else [x]; /* Remove elements equal to 'e' from a list. Useful for buildInputs. Type: remove :: a -> [a] -> [a] Example: remove 3 [ 1 3 4 3 ] => [ 1 4 ] */ remove = # Element to remove from the list e: filter (x: x != e); /* Find the sole element in the list matching the specified predicate, returns `default` if no such element exists, or `multiple` if there are multiple matching elements. Type: findSingle :: (a -> bool) -> a -> a -> [a] -> a Example: findSingle (x: x == 3) "none" "multiple" [ 1 3 3 ] => "multiple" findSingle (x: x == 3) "none" "multiple" [ 1 3 ] => 3 findSingle (x: x == 3) "none" "multiple" [ 1 9 ] => "none" */ findSingle = # Predicate pred: # Default value to return if element was not found. default: # Default value to return if more than one element was found multiple: # Input list list: let found = filter pred list; len = length found; in if len == 0 then default else if len != 1 then multiple else head found; /* Find the first index in the list matching the specified predicate or return `default` if no such element exists. Type: findFirstIndex :: (a -> Bool) -> b -> [a] -> (Int | b) Example: findFirstIndex (x: x > 3) null [ 0 6 4 ] => 1 findFirstIndex (x: x > 9) null [ 0 6 4 ] => null */ findFirstIndex = # Predicate pred: # Default value to return default: # Input list list: let # A naive recursive implementation would be much simpler, but # would also overflow the evaluator stack. We use `foldl'` as a workaround # because it reuses the same stack space, evaluating the function for one # element after another. We can't return early, so this means that we # sacrifice early cutoff, but that appears to be an acceptable cost. A # clever scheme with "exponential search" is possible, but appears over- # engineered for now. See https://github.com/NixOS/nixpkgs/pull/235267 # Invariant: # - if index < 0 then el == elemAt list (- index - 1) and all elements before el didn't satisfy pred # - if index >= 0 then pred (elemAt list index) and all elements before (elemAt list index) didn't satisfy pred # # We start with index -1 and the 0'th element of the list, which satisfies the invariant resultIndex = foldl' (index: el: if index < 0 then # No match yet before the current index, we need to check the element if pred el then # We have a match! Turn it into the actual index to prevent future iterations from modifying it - index - 1 else # Still no match, update the index to the next element (we're counting down, so minus one) index - 1 else # There's already a match, propagate the index without evaluating anything index ) (-1) list; in if resultIndex < 0 then default else resultIndex; /* Find the first element in the list matching the specified predicate or return `default` if no such element exists. Type: findFirst :: (a -> bool) -> a -> [a] -> a Example: findFirst (x: x > 3) 7 [ 1 6 4 ] => 6 findFirst (x: x > 9) 7 [ 1 6 4 ] => 7 */ findFirst = # Predicate pred: # Default value to return default: # Input list list: let index = findFirstIndex pred null list; in if index == null then default else elemAt list index; /* Return true if function `pred` returns true for at least one element of `list`. Type: any :: (a -> bool) -> [a] -> bool Example: any isString [ 1 "a" { } ] => true any isString [ 1 { } ] => false */ any = builtins.any or (pred: foldr (x: y: if pred x then true else y) false); /* Return true if function `pred` returns true for all elements of `list`. Type: all :: (a -> bool) -> [a] -> bool Example: all (x: x < 3) [ 1 2 ] => true all (x: x < 3) [ 1 2 3 ] => false */ all = builtins.all or (pred: foldr (x: y: if pred x then y else false) true); /* Count how many elements of `list` match the supplied predicate function. Type: count :: (a -> bool) -> [a] -> int Example: count (x: x == 3) [ 3 2 3 4 6 ] => 2 */ count = # Predicate pred: foldl' (c: x: if pred x then c + 1 else c) 0; /* Return a singleton list or an empty list, depending on a boolean value. Useful when building lists with optional elements (e.g. `++ optional (system == "i686-linux") firefox`). Type: optional :: bool -> a -> [a] Example: optional true "foo" => [ "foo" ] optional false "foo" => [ ] */ optional = cond: elem: if cond then [elem] else []; /* Return a list or an empty list, depending on a boolean value. Type: optionals :: bool -> [a] -> [a] Example: optionals true [ 2 3 ] => [ 2 3 ] optionals false [ 2 3 ] => [ ] */ optionals = # Condition cond: # List to return if condition is true elems: if cond then elems else []; /* If argument is a list, return it; else, wrap it in a singleton list. If you're using this, you should almost certainly reconsider if there isn't a more "well-typed" approach. Example: toList [ 1 2 ] => [ 1 2 ] toList "hi" => [ "hi "] */ toList = x: if isList x then x else [x]; /* Return a list of integers from `first` up to and including `last`. Type: range :: int -> int -> [int] Example: range 2 4 => [ 2 3 4 ] range 3 2 => [ ] */ range = # First integer in the range first: # Last integer in the range last: if first > last then [] else genList (n: first + n) (last - first + 1); /* Return a list with `n` copies of an element. Type: replicate :: int -> a -> [a] Example: replicate 3 "a" => [ "a" "a" "a" ] replicate 2 true => [ true true ] */ replicate = n: elem: genList (_: elem) n; /* Splits the elements of a list in two lists, `right` and `wrong`, depending on the evaluation of a predicate. Type: (a -> bool) -> [a] -> { right :: [a]; wrong :: [a]; } Example: partition (x: x > 2) [ 5 1 2 3 4 ] => { right = [ 5 3 4 ]; wrong = [ 1 2 ]; } */ partition = builtins.partition or (pred: foldr (h: t: if pred h then { right = [h] ++ t.right; wrong = t.wrong; } else { right = t.right; wrong = [h] ++ t.wrong; } ) { right = []; wrong = []; }); /* Splits the elements of a list into many lists, using the return value of a predicate. Predicate should return a string which becomes keys of attrset `groupBy` returns. `groupBy'` allows to customise the combining function and initial value Example: groupBy (x: boolToString (x > 2)) [ 5 1 2 3 4 ] => { true = [ 5 3 4 ]; false = [ 1 2 ]; } groupBy (x: x.name) [ {name = "icewm"; script = "icewm &";} {name = "xfce"; script = "xfce4-session &";} {name = "icewm"; script = "icewmbg &";} {name = "mate"; script = "gnome-session &";} ] => { icewm = [ { name = "icewm"; script = "icewm &"; } { name = "icewm"; script = "icewmbg &"; } ]; mate = [ { name = "mate"; script = "gnome-session &"; } ]; xfce = [ { name = "xfce"; script = "xfce4-session &"; } ]; } groupBy' builtins.add 0 (x: boolToString (x > 2)) [ 5 1 2 3 4 ] => { true = 12; false = 3; } */ groupBy' = op: nul: pred: lst: mapAttrs (name: foldl op nul) (groupBy pred lst); groupBy = builtins.groupBy or ( pred: foldl' (r: e: let key = pred e; in r // { ${key} = (r.${key} or []) ++ [e]; } ) {}); /* Merges two lists of the same size together. If the sizes aren't the same the merging stops at the shortest. How both lists are merged is defined by the first argument. Type: zipListsWith :: (a -> b -> c) -> [a] -> [b] -> [c] Example: zipListsWith (a: b: a + b) ["h" "l"] ["e" "o"] => ["he" "lo"] */ zipListsWith = # Function to zip elements of both lists f: # First list fst: # Second list snd: genList (n: f (elemAt fst n) (elemAt snd n)) (min (length fst) (length snd)); /* Merges two lists of the same size together. If the sizes aren't the same the merging stops at the shortest. Type: zipLists :: [a] -> [b] -> [{ fst :: a; snd :: b; }] Example: zipLists [ 1 2 ] [ "a" "b" ] => [ { fst = 1; snd = "a"; } { fst = 2; snd = "b"; } ] */ zipLists = zipListsWith (fst: snd: { inherit fst snd; }); /* Reverse the order of the elements of a list. Type: reverseList :: [a] -> [a] Example: reverseList [ "b" "o" "j" ] => [ "j" "o" "b" ] */ reverseList = xs: let l = length xs; in genList (n: elemAt xs (l - n - 1)) l; /* Depth-First Search (DFS) for lists `list != []`. `before a b == true` means that `b` depends on `a` (there's an edge from `b` to `a`). Example: listDfs true hasPrefix [ "/home/user" "other" "/" "/home" ] == { minimal = "/"; # minimal element visited = [ "/home/user" ]; # seen elements (in reverse order) rest = [ "/home" "other" ]; # everything else } listDfs true hasPrefix [ "/home/user" "other" "/" "/home" "/" ] == { cycle = "/"; # cycle encountered at this element loops = [ "/" ]; # and continues to these elements visited = [ "/" "/home/user" ]; # elements leading to the cycle (in reverse order) rest = [ "/home" "other" ]; # everything else */ listDfs = stopOnCycles: before: list: let dfs' = us: visited: rest: let c = filter (x: before x us) visited; b = partition (x: before x us) rest; in if stopOnCycles && (length c > 0) then { cycle = us; loops = c; inherit visited rest; } else if length b.right == 0 then # nothing is before us { minimal = us; inherit visited rest; } else # grab the first one before us and continue dfs' (head b.right) ([ us ] ++ visited) (tail b.right ++ b.wrong); in dfs' (head list) [] (tail list); /* Sort a list based on a partial ordering using DFS. This implementation is O(N^2), if your ordering is linear, use `sort` instead. `before a b == true` means that `b` should be after `a` in the result. Example: toposort hasPrefix [ "/home/user" "other" "/" "/home" ] == { result = [ "/" "/home" "/home/user" "other" ]; } toposort hasPrefix [ "/home/user" "other" "/" "/home" "/" ] == { cycle = [ "/home/user" "/" "/" ]; # path leading to a cycle loops = [ "/" ]; } # loops back to these elements toposort hasPrefix [ "other" "/home/user" "/home" "/" ] == { result = [ "other" "/" "/home" "/home/user" ]; } toposort (a: b: a < b) [ 3 2 1 ] == { result = [ 1 2 3 ]; } */ toposort = before: list: let dfsthis = listDfs true before list; toporest = toposort before (dfsthis.visited ++ dfsthis.rest); in if length list < 2 then # finish { result = list; } else if dfsthis ? cycle then # there's a cycle, starting from the current vertex, return it { cycle = reverseList ([ dfsthis.cycle ] ++ dfsthis.visited); inherit (dfsthis) loops; } else if toporest ? cycle then # there's a cycle somewhere else in the graph, return it toporest # Slow, but short. Can be made a bit faster with an explicit stack. else # there are no cycles { result = [ dfsthis.minimal ] ++ toporest.result; }; /* Sort a list based on a comparator function which compares two elements and returns true if the first argument is strictly below the second argument. The returned list is sorted in an increasing order. The implementation does a quick-sort. See also [`sortOn`](#function-library-lib.lists.sortOn), which applies the default comparison on a function-derived property, and may be more efficient. Example: sort (p: q: p < q) [ 5 3 7 ] => [ 3 5 7 ] Type: sort :: (a -> a -> Bool) -> [a] -> [a] */ sort = builtins.sort or ( strictLess: list: let len = length list; first = head list; pivot' = n: acc@{ left, right }: let el = elemAt list n; next = pivot' (n + 1); in if n == len then acc else if strictLess first el then next { inherit left; right = [ el ] ++ right; } else next { left = [ el ] ++ left; inherit right; }; pivot = pivot' 1 { left = []; right = []; }; in if len < 2 then list else (sort strictLess pivot.left) ++ [ first ] ++ (sort strictLess pivot.right)); /* Sort a list based on the default comparison of a derived property `b`. The items are returned in `b`-increasing order. **Performance**: The passed function `f` is only evaluated once per item, unlike an unprepared [`sort`](#function-library-lib.lists.sort) using `f p < f q`. **Laws**: ```nix sortOn f == sort (p: q: f p < f q) ``` Example: sortOn stringLength [ "aa" "b" "cccc" ] => [ "b" "aa" "cccc" ] Type: sortOn :: (a -> b) -> [a] -> [a], for comparable b */ sortOn = f: list: let # Heterogenous list as pair may be ugly, but requires minimal allocations. pairs = map (x: [(f x) x]) list; in map (x: builtins.elemAt x 1) (sort # Compare the first element of the pairs # Do not factor out the `<`, to avoid calls in hot code; duplicate instead. (a: b: head a < head b) pairs); /* Compare two lists element-by-element. Example: compareLists compare [] [] => 0 compareLists compare [] [ "a" ] => -1 compareLists compare [ "a" ] [] => 1 compareLists compare [ "a" "b" ] [ "a" "c" ] => -1 */ compareLists = cmp: a: b: if a == [] then if b == [] then 0 else -1 else if b == [] then 1 else let rel = cmp (head a) (head b); in if rel == 0 then compareLists cmp (tail a) (tail b) else rel; /* Sort list using "Natural sorting". Numeric portions of strings are sorted in numeric order. Example: naturalSort ["disk11" "disk8" "disk100" "disk9"] => ["disk8" "disk9" "disk11" "disk100"] naturalSort ["10.46.133.149" "10.5.16.62" "10.54.16.25"] => ["10.5.16.62" "10.46.133.149" "10.54.16.25"] naturalSort ["v0.2" "v0.15" "v0.0.9"] => [ "v0.0.9" "v0.2" "v0.15" ] */ naturalSort = lst: let vectorise = s: map (x: if isList x then toInt (head x) else x) (builtins.split "(0|[1-9][0-9]*)" s); prepared = map (x: [ (vectorise x) x ]) lst; # remember vectorised version for O(n) regex splits less = a: b: (compareLists compare (head a) (head b)) < 0; in map (x: elemAt x 1) (sort less prepared); /* Return the first (at most) N elements of a list. Type: take :: int -> [a] -> [a] Example: take 2 [ "a" "b" "c" "d" ] => [ "a" "b" ] take 2 [ ] => [ ] */ take = # Number of elements to take count: sublist 0 count; /* Remove the first (at most) N elements of a list. Type: drop :: int -> [a] -> [a] Example: drop 2 [ "a" "b" "c" "d" ] => [ "c" "d" ] drop 2 [ ] => [ ] */ drop = # Number of elements to drop count: # Input list list: sublist count (length list) list; /* Whether the first list is a prefix of the second list. Type: hasPrefix :: [a] -> [a] -> bool Example: hasPrefix [ 1 2 ] [ 1 2 3 4 ] => true hasPrefix [ 0 1 ] [ 1 2 3 4 ] => false */ hasPrefix = list1: list2: take (length list1) list2 == list1; /* Remove the first list as a prefix from the second list. Error if the first list isn't a prefix of the second list. Type: removePrefix :: [a] -> [a] -> [a] Example: removePrefix [ 1 2 ] [ 1 2 3 4 ] => [ 3 4 ] removePrefix [ 0 1 ] [ 1 2 3 4 ] => */ removePrefix = list1: list2: if hasPrefix list1 list2 then drop (length list1) list2 else throw "lib.lists.removePrefix: First argument is not a list prefix of the second argument"; /* Return a list consisting of at most `count` elements of `list`, starting at index `start`. Type: sublist :: int -> int -> [a] -> [a] Example: sublist 1 3 [ "a" "b" "c" "d" "e" ] => [ "b" "c" "d" ] sublist 1 3 [ ] => [ ] */ sublist = # Index at which to start the sublist start: # Number of elements to take count: # Input list list: let len = length list; in genList (n: elemAt list (n + start)) (if start >= len then 0 else if start + count > len then len - start else count); /* The common prefix of two lists. Type: commonPrefix :: [a] -> [a] -> [a] Example: commonPrefix [ 1 2 3 4 5 6 ] [ 1 2 4 8 ] => [ 1 2 ] commonPrefix [ 1 2 3 ] [ 1 2 3 4 5 ] => [ 1 2 3 ] commonPrefix [ 1 2 3 ] [ 4 5 6 ] => [ ] */ commonPrefix = list1: list2: let # Zip the lists together into a list of booleans whether each element matches matchings = zipListsWith (fst: snd: fst != snd) list1 list2; # Find the first index where the elements don't match, # which will then also be the length of the common prefix. # If all elements match, we fall back to the length of the zipped list, # which is the same as the length of the smaller list. commonPrefixLength = findFirstIndex id (length matchings) matchings; in take commonPrefixLength list1; /* Return the last element of a list. This function throws an error if the list is empty. Type: last :: [a] -> a Example: last [ 1 2 3 ] => 3 */ last = list: assert lib.assertMsg (list != []) "lists.last: list must not be empty!"; elemAt list (length list - 1); /* Return all elements but the last. This function throws an error if the list is empty. Type: init :: [a] -> [a] Example: init [ 1 2 3 ] => [ 1 2 ] */ init = list: assert lib.assertMsg (list != []) "lists.init: list must not be empty!"; take (length list - 1) list; /* Return the image of the cross product of some lists by a function. Example: crossLists (x:y: "${toString x}${toString y}") [[1 2] [3 4]] => [ "13" "14" "23" "24" ] */ crossLists = builtins.trace "lib.crossLists is deprecated, use lib.cartesianProductOfSets instead" (f: foldl (fs: args: concatMap (f: map f args) fs) [f]); /* Remove duplicate elements from the list. O(n^2) complexity. Type: unique :: [a] -> [a] Example: unique [ 3 2 3 4 ] => [ 3 2 4 ] */ unique = foldl' (acc: e: if elem e acc then acc else acc ++ [ e ]) []; /* Check if list contains only unique elements. O(n^2) complexity. Type: allUnique :: [a] -> bool Example: allUnique [ 3 2 3 4 ] => false allUnique [ 3 2 4 1 ] => true */ allUnique = list: (length (unique list) == length list); /* Intersects list 'e' and another list. O(nm) complexity. Example: intersectLists [ 1 2 3 ] [ 6 3 2 ] => [ 3 2 ] */ intersectLists = e: filter (x: elem x e); /* Subtracts list 'e' from another list. O(nm) complexity. Example: subtractLists [ 3 2 ] [ 1 2 3 4 5 3 ] => [ 1 4 5 ] */ subtractLists = e: filter (x: !(elem x e)); /* Test if two lists have no common element. It should be slightly more efficient than (intersectLists a b == []) */ mutuallyExclusive = a: b: length a == 0 || !(any (x: elem x a) b); }