mirror of
https://github.com/ilyakooo0/nixpkgs.git
synced 2024-12-28 06:14:26 +03:00
28b6fb61e6
This is done for the sake of Yosemite, which does not have gcc, and yet this change is also compatible with Linux.
298 lines
9.9 KiB
Nix
298 lines
9.9 KiB
Nix
# This file constructs the standard build environment for the
|
|
# Linux/i686 platform. It's completely pure; that is, it relies on no
|
|
# external (non-Nix) tools, such as /usr/bin/gcc, and it contains a C
|
|
# compiler and linker that do not search in default locations,
|
|
# ensuring purity of components produced by it.
|
|
|
|
# The function defaults are for easy testing.
|
|
{ system ? builtins.currentSystem
|
|
, allPackages ? import ../../top-level/all-packages.nix
|
|
, platform ? null, config ? {}, lib ? (import ../../../lib) }:
|
|
|
|
rec {
|
|
|
|
bootstrapFiles =
|
|
if system == "i686-linux" then import ./bootstrap/i686.nix
|
|
else if system == "x86_64-linux" then import ./bootstrap/x86_64.nix
|
|
else if system == "armv5tel-linux" then import ./bootstrap/armv5tel.nix
|
|
else if system == "armv6l-linux" then import ./bootstrap/armv6l.nix
|
|
else if system == "armv7l-linux" then import ./bootstrap/armv6l.nix
|
|
else if system == "mips64el-linux" then import ./bootstrap/loongson2f.nix
|
|
else abort "unsupported platform for the pure Linux stdenv";
|
|
|
|
|
|
commonPreHook =
|
|
''
|
|
export NIX_ENFORCE_PURITY=1
|
|
${if system == "x86_64-linux" then "NIX_LIB64_IN_SELF_RPATH=1" else ""}
|
|
${if system == "mips64el-linux" then "NIX_LIB32_IN_SELF_RPATH=1" else ""}
|
|
'';
|
|
|
|
|
|
# The bootstrap process proceeds in several steps.
|
|
|
|
|
|
# Create a standard environment by downloading pre-built binaries of
|
|
# coreutils, GCC, etc.
|
|
|
|
|
|
# Download and unpack the bootstrap tools (coreutils, GCC, Glibc, ...).
|
|
bootstrapTools = derivation {
|
|
name = "bootstrap-tools";
|
|
|
|
builder = bootstrapFiles.busybox;
|
|
|
|
args =
|
|
if system == "armv5tel-linux" || system == "armv6l-linux"
|
|
|| system == "armv7l-linux"
|
|
then [ ./scripts/unpack-bootstrap-tools-arm.sh ]
|
|
else [ "ash" "-e" ./scripts/unpack-bootstrap-tools.sh ];
|
|
|
|
tarball = bootstrapFiles.bootstrapTools;
|
|
|
|
inherit system;
|
|
|
|
# Needed by the GCC wrapper.
|
|
langC = true;
|
|
langCC = true;
|
|
};
|
|
|
|
|
|
# This function builds the various standard environments used during
|
|
# the bootstrap. In all stages, we build an stdenv and the package
|
|
# set that can be built with that stdenv.
|
|
stageFun =
|
|
{gccPlain, glibc, binutils, coreutils, name, overrides ? (pkgs: {}), extraBuildInputs ? []}:
|
|
|
|
let
|
|
|
|
thisStdenv = import ../generic {
|
|
inherit system config extraBuildInputs;
|
|
name = "stdenv-linux-boot";
|
|
preHook =
|
|
''
|
|
# Don't patch #!/interpreter because it leads to retained
|
|
# dependencies on the bootstrapTools in the final stdenv.
|
|
dontPatchShebangs=1
|
|
${commonPreHook}
|
|
'';
|
|
shell = "${bootstrapTools}/bin/sh";
|
|
initialPath = [bootstrapTools];
|
|
fetchurlBoot = import ../../build-support/fetchurl {
|
|
stdenv = stage0.stdenv;
|
|
curl = bootstrapTools;
|
|
};
|
|
|
|
cc = if isNull gccPlain
|
|
then "/no-such-path"
|
|
else lib.makeOverridable (import ../../build-support/gcc-wrapper) {
|
|
nativeTools = false;
|
|
nativeLibc = false;
|
|
gcc = gccPlain;
|
|
libc = glibc;
|
|
inherit binutils coreutils;
|
|
name = name;
|
|
stdenv = stage0.stdenv;
|
|
};
|
|
|
|
extraAttrs = {
|
|
# Having the proper 'platform' in all the stdenvs allows getting proper
|
|
# linuxHeaders for example.
|
|
inherit platform;
|
|
|
|
# stdenv.glibc is used by GCC build to figure out the system-level
|
|
# /usr/include directory.
|
|
inherit glibc;
|
|
};
|
|
overrides = pkgs: (overrides pkgs) // { fetchurl = thisStdenv.fetchurlBoot; };
|
|
};
|
|
|
|
thisPkgs = allPackages {
|
|
inherit system platform;
|
|
bootStdenv = thisStdenv;
|
|
};
|
|
|
|
in { stdenv = thisStdenv; pkgs = thisPkgs; };
|
|
|
|
|
|
# Build a dummy stdenv with no GCC or working fetchurl. This is
|
|
# because we need a stdenv to build the GCC wrapper and fetchurl.
|
|
stage0 = stageFun {
|
|
gccPlain = null;
|
|
glibc = null;
|
|
binutils = null;
|
|
coreutils = null;
|
|
name = null;
|
|
|
|
overrides = pkgs: {
|
|
# The Glibc include directory cannot have the same prefix as the
|
|
# GCC include directory, since GCC gets confused otherwise (it
|
|
# will search the Glibc headers before the GCC headers). So
|
|
# create a dummy Glibc here, which will be used in the stdenv of
|
|
# stage1.
|
|
glibc = stage0.stdenv.mkDerivation {
|
|
name = "bootstrap-glibc";
|
|
buildCommand = ''
|
|
mkdir -p $out
|
|
ln -s ${bootstrapTools}/lib $out/lib
|
|
ln -s ${bootstrapTools}/include-glibc $out/include
|
|
'';
|
|
};
|
|
};
|
|
};
|
|
|
|
|
|
# Create the first "real" standard environment. This one consists
|
|
# of bootstrap tools only, and a minimal Glibc to keep the GCC
|
|
# configure script happy.
|
|
#
|
|
# For clarity, we only use the previous stage when specifying these
|
|
# stages. So stageN should only ever have references for stage{N-1}.
|
|
#
|
|
# If we ever need to use a package from more than one stage back, we
|
|
# simply re-export those packages in the middle stage(s) using the
|
|
# overrides attribute and the inherit syntax.
|
|
stage1 = stageFun {
|
|
gccPlain = bootstrapTools;
|
|
inherit (stage0.pkgs) glibc;
|
|
binutils = bootstrapTools;
|
|
coreutils = bootstrapTools;
|
|
name = "bootstrap-gcc-wrapper";
|
|
|
|
# Rebuild binutils to use from stage2 onwards.
|
|
overrides = pkgs: {
|
|
binutils = pkgs.binutils.override { gold = false; };
|
|
inherit (stage0.pkgs) glibc;
|
|
|
|
# A threaded perl build needs glibc/libpthread_nonshared.a,
|
|
# which is not included in bootstrapTools, so disable threading.
|
|
# This is not an issue for the final stdenv, because this perl
|
|
# won't be included in the final stdenv and won't be exported to
|
|
# top-level pkgs as an override either.
|
|
perl = pkgs.perl.override { enableThreading = false; };
|
|
};
|
|
};
|
|
|
|
|
|
# 2nd stdenv that contains our own rebuilt binutils and is used for
|
|
# compiling our own Glibc.
|
|
stage2 = stageFun {
|
|
gccPlain = bootstrapTools;
|
|
inherit (stage1.pkgs) glibc;
|
|
binutils = stage1.pkgs.binutils;
|
|
coreutils = bootstrapTools;
|
|
name = "bootstrap-gcc-wrapper";
|
|
|
|
overrides = pkgs: {
|
|
inherit (stage1.pkgs) perl binutils paxctl;
|
|
# This also contains the full, dynamically linked, final Glibc.
|
|
};
|
|
};
|
|
|
|
|
|
# Construct a third stdenv identical to the 2nd, except that this
|
|
# one uses the rebuilt Glibc from stage2. It still uses the recent
|
|
# binutils and rest of the bootstrap tools, including GCC.
|
|
stage3 = stageFun {
|
|
gccPlain = bootstrapTools;
|
|
inherit (stage2.pkgs) glibc binutils;
|
|
coreutils = bootstrapTools;
|
|
name = "bootstrap-gcc-wrapper";
|
|
|
|
overrides = pkgs: {
|
|
inherit (stage2.pkgs) binutils glibc perl patchelf linuxHeaders;
|
|
# Link GCC statically against GMP etc. This makes sense because
|
|
# these builds of the libraries are only used by GCC, so it
|
|
# reduces the size of the stdenv closure.
|
|
gmp = pkgs.gmp.override { stdenv = pkgs.makeStaticLibraries pkgs.stdenv; };
|
|
mpfr = pkgs.mpfr.override { stdenv = pkgs.makeStaticLibraries pkgs.stdenv; };
|
|
mpc = pkgs.mpc.override { stdenv = pkgs.makeStaticLibraries pkgs.stdenv; };
|
|
isl = pkgs.isl.override { stdenv = pkgs.makeStaticLibraries pkgs.stdenv; };
|
|
cloog = pkgs.cloog.override { stdenv = pkgs.makeStaticLibraries pkgs.stdenv; };
|
|
gccPlain = pkgs.gcc.gcc;
|
|
};
|
|
extraBuildInputs = [ stage2.pkgs.patchelf stage2.pkgs.paxctl ];
|
|
};
|
|
|
|
|
|
# Construct a fourth stdenv that uses the new GCC. But coreutils is
|
|
# still from the bootstrap tools.
|
|
stage4 = stageFun {
|
|
inherit (stage3.pkgs) gccPlain glibc binutils;
|
|
coreutils = bootstrapTools;
|
|
name = "";
|
|
|
|
overrides = pkgs: {
|
|
# Zlib has to be inherited and not rebuilt in this stage,
|
|
# because gcc (since JAR support) already depends on zlib, and
|
|
# then if we already have a zlib we want to use that for the
|
|
# other purposes (binutils and top-level pkgs) too.
|
|
inherit (stage3.pkgs) gettext gnum4 gmp perl glibc zlib linuxHeaders;
|
|
|
|
gcc = lib.makeOverridable (import ../../build-support/gcc-wrapper) {
|
|
nativeTools = false;
|
|
nativeLibc = false;
|
|
gcc = stage4.stdenv.cc.gcc;
|
|
libc = stage4.pkgs.glibc;
|
|
inherit (stage4.pkgs) binutils coreutils;
|
|
name = "";
|
|
stdenv = stage4.stdenv;
|
|
shell = stage4.pkgs.bash + "/bin/bash";
|
|
};
|
|
};
|
|
extraBuildInputs = [ stage3.pkgs.patchelf stage3.pkgs.xz ];
|
|
};
|
|
|
|
|
|
# Construct the final stdenv. It uses the Glibc and GCC, and adds
|
|
# in a new binutils that doesn't depend on bootstrap-tools, as well
|
|
# as dynamically linked versions of all other tools.
|
|
#
|
|
# When updating stdenvLinux, make sure that the result has no
|
|
# dependency (`nix-store -qR') on bootstrapTools or the first
|
|
# binutils built.
|
|
stdenvLinux = import ../generic rec {
|
|
inherit system config;
|
|
|
|
preHook =
|
|
''
|
|
# Make "strip" produce deterministic output, by setting
|
|
# timestamps etc. to a fixed value.
|
|
commonStripFlags="--enable-deterministic-archives"
|
|
${commonPreHook}
|
|
'';
|
|
|
|
initialPath =
|
|
((import ../common-path.nix) {pkgs = stage4.pkgs;});
|
|
|
|
extraBuildInputs = [ stage4.pkgs.patchelf stage4.pkgs.paxctl ];
|
|
|
|
cc = stage4.pkgs.gcc;
|
|
|
|
shell = cc.shell;
|
|
|
|
inherit (stage4.stdenv) fetchurlBoot;
|
|
|
|
extraAttrs = {
|
|
inherit (stage4.pkgs) glibc;
|
|
inherit platform bootstrapTools;
|
|
shellPackage = stage4.pkgs.bash;
|
|
};
|
|
|
|
allowedRequisites = with stage4.pkgs;
|
|
[ gzip bzip2 xz bash binutils coreutils diffutils findutils gawk
|
|
glibc gnumake gnused gnutar gnugrep gnupatch patchelf attr acl
|
|
paxctl zlib pcre linuxHeaders ed gcc gcc.gcc libsigsegv
|
|
];
|
|
|
|
overrides = pkgs: {
|
|
inherit cc;
|
|
inherit (stage4.pkgs)
|
|
gzip bzip2 xz bash binutils coreutils diffutils findutils gawk
|
|
glibc gnumake gnused gnutar gnugrep gnupatch patchelf
|
|
attr acl paxctl zlib pcre;
|
|
};
|
|
};
|
|
|
|
}
|