mirror of
https://github.com/ilyakooo0/nixpkgs.git
synced 2025-01-07 22:11:45 +03:00
adaa110a72
Since at least d7bddc27b2
, we've had a
situation where one should depend on:
- `stdenv.cc.bintools`: for executables at build time
- `libbfd` or `libiberty`: for those libraries
- `targetPackages.cc.bintools`: for exectuables at *run* time
- `binutils`: only for specifically GNU Binutils's executables,
regardless of the host platform, at run time.
and that commit cleaned up this usage to reflect that. This PR flips the
switch so that:
- `binutils` is indeed unconditionally GNU Binutils
- `binutils-raw`, which previously served that role, is gone.
so that the correct usage will be enforced going forward and everything
is simple.
N.B. In a few cases `binutils-unwrapped` (which before and now was
unconditionally actual GNU binutils), rather than `binutils` was used to
replace old `binutils-raw` as it is friendly towards some cross
compilation usage by avoiding a reference to the next bootstrapping
change.
384 lines
14 KiB
Nix
384 lines
14 KiB
Nix
# This file constructs the standard build environment for the
|
|
# Linux/i686 platform. It's completely pure; that is, it relies on no
|
|
# external (non-Nix) tools, such as /usr/bin/gcc, and it contains a C
|
|
# compiler and linker that do not search in default locations,
|
|
# ensuring purity of components produced by it.
|
|
{ lib
|
|
, localSystem, crossSystem, config, overlays
|
|
|
|
, bootstrapFiles ?
|
|
let table = {
|
|
"glibc" = {
|
|
"i686-linux" = import ./bootstrap-files/i686.nix;
|
|
"x86_64-linux" = import ./bootstrap-files/x86_64.nix;
|
|
"armv5tel-linux" = import ./bootstrap-files/armv5tel.nix;
|
|
"armv6l-linux" = import ./bootstrap-files/armv6l.nix;
|
|
"armv7l-linux" = import ./bootstrap-files/armv7l.nix;
|
|
"aarch64-linux" = import ./bootstrap-files/aarch64.nix;
|
|
"mipsel-linux" = import ./bootstrap-files/loongson2f.nix;
|
|
};
|
|
"musl" = {
|
|
"aarch64-linux" = import ./bootstrap-files/aarch64-musl.nix;
|
|
"armv6l-linux" = import ./bootstrap-files/armv6l-musl.nix;
|
|
"x86_64-linux" = import ./bootstrap-files/x86_64-musl.nix;
|
|
};
|
|
};
|
|
archLookupTable = table.${localSystem.libc}
|
|
or (abort "unsupported libc for the pure Linux stdenv");
|
|
files = archLookupTable.${localSystem.system}
|
|
or (abort "unsupported platform for the pure Linux stdenv");
|
|
in files
|
|
}:
|
|
|
|
assert crossSystem == null;
|
|
|
|
let
|
|
inherit (localSystem) system platform;
|
|
|
|
commonPreHook =
|
|
''
|
|
export NIX_ENFORCE_PURITY="''${NIX_ENFORCE_PURITY-1}"
|
|
export NIX_ENFORCE_NO_NATIVE="''${NIX_ENFORCE_NO_NATIVE-1}"
|
|
${if system == "x86_64-linux" then "NIX_LIB64_IN_SELF_RPATH=1" else ""}
|
|
${if system == "mipsel-linux" then "NIX_LIB32_IN_SELF_RPATH=1" else ""}
|
|
'';
|
|
|
|
|
|
# The bootstrap process proceeds in several steps.
|
|
|
|
|
|
# Create a standard environment by downloading pre-built binaries of
|
|
# coreutils, GCC, etc.
|
|
|
|
|
|
# Download and unpack the bootstrap tools (coreutils, GCC, Glibc, ...).
|
|
bootstrapTools = import (if localSystem.libc == "musl" then ./bootstrap-tools-musl else ./bootstrap-tools) { inherit system bootstrapFiles; };
|
|
|
|
getLibc = stage: stage.${localSystem.libc};
|
|
|
|
|
|
# This function builds the various standard environments used during
|
|
# the bootstrap. In all stages, we build an stdenv and the package
|
|
# set that can be built with that stdenv.
|
|
stageFun = prevStage:
|
|
{ name, overrides ? (self: super: {}), extraNativeBuildInputs ? [] }:
|
|
|
|
let
|
|
|
|
thisStdenv = import ../generic {
|
|
name = "${name}-stdenv-linux";
|
|
buildPlatform = localSystem;
|
|
hostPlatform = localSystem;
|
|
targetPlatform = localSystem;
|
|
inherit config extraNativeBuildInputs;
|
|
preHook =
|
|
''
|
|
# Don't patch #!/interpreter because it leads to retained
|
|
# dependencies on the bootstrapTools in the final stdenv.
|
|
dontPatchShebangs=1
|
|
${commonPreHook}
|
|
'';
|
|
shell = "${bootstrapTools}/bin/bash";
|
|
initialPath = [bootstrapTools];
|
|
|
|
fetchurlBoot = import ../../build-support/fetchurl/boot.nix {
|
|
inherit system;
|
|
};
|
|
|
|
cc = if isNull prevStage.gcc-unwrapped
|
|
then null
|
|
else lib.makeOverridable (import ../../build-support/cc-wrapper) {
|
|
name = "${name}-gcc-wrapper";
|
|
nativeTools = false;
|
|
propagateDoc = false;
|
|
nativeLibc = false;
|
|
buildPackages = lib.optionalAttrs (prevStage ? stdenv) {
|
|
inherit (prevStage) stdenv;
|
|
};
|
|
cc = prevStage.gcc-unwrapped;
|
|
bintools = prevStage.binutils;
|
|
isGNU = true;
|
|
libc = getLibc prevStage;
|
|
inherit (prevStage) coreutils gnugrep;
|
|
stdenvNoCC = prevStage.ccWrapperStdenv;
|
|
};
|
|
|
|
extraAttrs = {
|
|
# Having the proper 'platform' in all the stdenvs allows getting proper
|
|
# linuxHeaders for example.
|
|
inherit platform;
|
|
|
|
# stdenv.glibc is used by GCC build to figure out the system-level
|
|
# /usr/include directory.
|
|
# TODO: Remove this!
|
|
inherit (prevStage) glibc;
|
|
};
|
|
overrides = self: super: (overrides self super) // { fetchurl = thisStdenv.fetchurlBoot; };
|
|
};
|
|
|
|
in {
|
|
inherit config overlays;
|
|
stdenv = thisStdenv;
|
|
};
|
|
|
|
in
|
|
|
|
[
|
|
|
|
({}: {
|
|
__raw = true;
|
|
|
|
gcc-unwrapped = null;
|
|
glibc = assert false; null;
|
|
musl = assert false; null;
|
|
binutils = null;
|
|
coreutils = null;
|
|
gnugrep = null;
|
|
})
|
|
|
|
# Build a dummy stdenv with no GCC or working fetchurl. This is
|
|
# because we need a stdenv to build the GCC wrapper and fetchurl.
|
|
(prevStage: stageFun prevStage {
|
|
name = "bootstrap-stage0";
|
|
|
|
overrides = self: super: {
|
|
# We thread stage0's stdenv through under this name so downstream stages
|
|
# can use it for wrapping gcc too. This way, downstream stages don't need
|
|
# to refer to this stage directly, which violates the principle that each
|
|
# stage should only access the stage that came before it.
|
|
ccWrapperStdenv = self.stdenv;
|
|
# The Glibc include directory cannot have the same prefix as the
|
|
# GCC include directory, since GCC gets confused otherwise (it
|
|
# will search the Glibc headers before the GCC headers). So
|
|
# create a dummy Glibc here, which will be used in the stdenv of
|
|
# stage1.
|
|
${localSystem.libc} = self.stdenv.mkDerivation {
|
|
name = "bootstrap-stage0-${localSystem.libc}";
|
|
buildCommand = ''
|
|
mkdir -p $out
|
|
ln -s ${bootstrapTools}/lib $out/lib
|
|
'' + lib.optionalString (localSystem.libc == "glibc") ''
|
|
ln -s ${bootstrapTools}/include-glibc $out/include
|
|
'' + lib.optionalString (localSystem.libc == "musl") ''
|
|
ln -s ${bootstrapTools}/include-libc $out/include
|
|
'';
|
|
};
|
|
gcc-unwrapped = bootstrapTools;
|
|
binutils = import ../../build-support/bintools-wrapper {
|
|
name = "bootstrap-stage0-binutils-wrapper";
|
|
nativeTools = false;
|
|
nativeLibc = false;
|
|
buildPackages = { };
|
|
libc = getLibc self;
|
|
inherit (self) stdenvNoCC coreutils gnugrep;
|
|
bintools = bootstrapTools;
|
|
};
|
|
coreutils = bootstrapTools;
|
|
gnugrep = bootstrapTools;
|
|
};
|
|
})
|
|
|
|
|
|
# Create the first "real" standard environment. This one consists
|
|
# of bootstrap tools only, and a minimal Glibc to keep the GCC
|
|
# configure script happy.
|
|
#
|
|
# For clarity, we only use the previous stage when specifying these
|
|
# stages. So stageN should only ever have references for stage{N-1}.
|
|
#
|
|
# If we ever need to use a package from more than one stage back, we
|
|
# simply re-export those packages in the middle stage(s) using the
|
|
# overrides attribute and the inherit syntax.
|
|
(prevStage: stageFun prevStage {
|
|
name = "bootstrap-stage1";
|
|
|
|
# Rebuild binutils to use from stage2 onwards.
|
|
overrides = self: super: {
|
|
binutils = super.binutils_nogold;
|
|
inherit (prevStage)
|
|
ccWrapperStdenv
|
|
gcc-unwrapped coreutils gnugrep;
|
|
|
|
${localSystem.libc} = getLibc prevStage;
|
|
|
|
# A threaded perl build needs glibc/libpthread_nonshared.a,
|
|
# which is not included in bootstrapTools, so disable threading.
|
|
# This is not an issue for the final stdenv, because this perl
|
|
# won't be included in the final stdenv and won't be exported to
|
|
# top-level pkgs as an override either.
|
|
perl = super.perl.override { enableThreading = false; };
|
|
};
|
|
})
|
|
|
|
|
|
# 2nd stdenv that contains our own rebuilt binutils and is used for
|
|
# compiling our own Glibc.
|
|
(prevStage: stageFun prevStage {
|
|
name = "bootstrap-stage2";
|
|
|
|
overrides = self: super: {
|
|
inherit (prevStage)
|
|
ccWrapperStdenv
|
|
gcc-unwrapped coreutils gnugrep
|
|
perl paxctl gnum4 bison;
|
|
# This also contains the full, dynamically linked, final Glibc.
|
|
binutils = prevStage.binutils.override {
|
|
# Rewrap the binutils with the new glibc, so both the next
|
|
# stage's wrappers use it.
|
|
libc = getLibc self;
|
|
};
|
|
};
|
|
})
|
|
|
|
|
|
# Construct a third stdenv identical to the 2nd, except that this
|
|
# one uses the rebuilt Glibc from stage2. It still uses the recent
|
|
# binutils and rest of the bootstrap tools, including GCC.
|
|
(prevStage: stageFun prevStage {
|
|
name = "bootstrap-stage3";
|
|
|
|
overrides = self: super: rec {
|
|
inherit (prevStage)
|
|
ccWrapperStdenv
|
|
binutils coreutils gnugrep
|
|
perl patchelf linuxHeaders gnum4 bison;
|
|
${localSystem.libc} = getLibc prevStage;
|
|
# Link GCC statically against GMP etc. This makes sense because
|
|
# these builds of the libraries are only used by GCC, so it
|
|
# reduces the size of the stdenv closure.
|
|
gmp = super.gmp.override { stdenv = self.makeStaticLibraries self.stdenv; };
|
|
mpfr = super.mpfr.override { stdenv = self.makeStaticLibraries self.stdenv; };
|
|
libmpc = super.libmpc.override { stdenv = self.makeStaticLibraries self.stdenv; };
|
|
isl_0_17 = super.isl_0_17.override { stdenv = self.makeStaticLibraries self.stdenv; };
|
|
gcc-unwrapped = super.gcc-unwrapped.override {
|
|
isl = isl_0_17;
|
|
};
|
|
};
|
|
extraNativeBuildInputs = [ prevStage.patchelf prevStage.paxctl ] ++
|
|
# Many tarballs come with obsolete config.sub/config.guess that don't recognize aarch64.
|
|
lib.optional localSystem.isAarch64 prevStage.updateAutotoolsGnuConfigScriptsHook;
|
|
})
|
|
|
|
|
|
# Construct a fourth stdenv that uses the new GCC. But coreutils is
|
|
# still from the bootstrap tools.
|
|
(prevStage: stageFun prevStage {
|
|
name = "bootstrap-stage4";
|
|
|
|
overrides = self: super: {
|
|
# Zlib has to be inherited and not rebuilt in this stage,
|
|
# because gcc (since JAR support) already depends on zlib, and
|
|
# then if we already have a zlib we want to use that for the
|
|
# other purposes (binutils and top-level pkgs) too.
|
|
inherit (prevStage) gettext gnum4 bison gmp perl zlib linuxHeaders;
|
|
${localSystem.libc} = getLibc prevStage;
|
|
binutils = super.binutils.override {
|
|
# Don't use stdenv's shell but our own
|
|
shell = self.bash + "/bin/bash";
|
|
# Build expand-response-params with last stage like below
|
|
buildPackages = {
|
|
inherit (prevStage) stdenv;
|
|
};
|
|
};
|
|
|
|
gcc = lib.makeOverridable (import ../../build-support/cc-wrapper) {
|
|
nativeTools = false;
|
|
nativeLibc = false;
|
|
isGNU = true;
|
|
buildPackages = {
|
|
inherit (prevStage) stdenv;
|
|
};
|
|
cc = prevStage.gcc-unwrapped;
|
|
bintools = self.binutils;
|
|
libc = getLibc self;
|
|
inherit (self) stdenvNoCC coreutils gnugrep;
|
|
shell = self.bash + "/bin/bash";
|
|
};
|
|
};
|
|
extraNativeBuildInputs = [ prevStage.patchelf prevStage.xz ] ++
|
|
# Many tarballs come with obsolete config.sub/config.guess that don't recognize aarch64.
|
|
lib.optional localSystem.isAarch64 prevStage.updateAutotoolsGnuConfigScriptsHook;
|
|
})
|
|
|
|
# Construct the final stdenv. It uses the Glibc and GCC, and adds
|
|
# in a new binutils that doesn't depend on bootstrap-tools, as well
|
|
# as dynamically linked versions of all other tools.
|
|
#
|
|
# When updating stdenvLinux, make sure that the result has no
|
|
# dependency (`nix-store -qR') on bootstrapTools or the first
|
|
# binutils built.
|
|
(prevStage: {
|
|
inherit config overlays;
|
|
stdenv = import ../generic rec {
|
|
name = "stdenv-linux";
|
|
|
|
buildPlatform = localSystem;
|
|
hostPlatform = localSystem;
|
|
targetPlatform = localSystem;
|
|
inherit config;
|
|
|
|
preHook = ''
|
|
# Make "strip" produce deterministic output, by setting
|
|
# timestamps etc. to a fixed value.
|
|
commonStripFlags="--enable-deterministic-archives"
|
|
${commonPreHook}
|
|
'';
|
|
|
|
initialPath =
|
|
((import ../common-path.nix) {pkgs = prevStage;});
|
|
|
|
extraNativeBuildInputs = [ prevStage.patchelf prevStage.paxctl ] ++
|
|
# Many tarballs come with obsolete config.sub/config.guess that don't recognize aarch64.
|
|
lib.optional localSystem.isAarch64 prevStage.updateAutotoolsGnuConfigScriptsHook;
|
|
|
|
cc = prevStage.gcc;
|
|
|
|
shell = cc.shell;
|
|
|
|
inherit (prevStage.stdenv) fetchurlBoot;
|
|
|
|
extraAttrs = {
|
|
# TODO: remove this!
|
|
inherit (prevStage) glibc;
|
|
|
|
inherit platform bootstrapTools;
|
|
shellPackage = prevStage.bash;
|
|
};
|
|
|
|
# Mainly avoid reference to bootstrap tools
|
|
allowedRequisites = with prevStage; with lib;
|
|
# Simple executable tools
|
|
concatMap (p: [ (getBin p) (getLib p) ])
|
|
[ gzip bzip2 xz bash binutils.bintools coreutils diffutils findutils
|
|
gawk gnumake gnused gnutar gnugrep gnupatch patchelf ed paxctl
|
|
]
|
|
# Library dependencies
|
|
++ map getLib (
|
|
[ attr acl zlib pcre ]
|
|
++ lib.optional (gawk.libsigsegv != null) gawk.libsigsegv
|
|
)
|
|
# More complicated cases
|
|
++ (map (x: getOutput x (getLibc prevStage)) [ "out" "dev" "bin" ] )
|
|
++ [ /*propagated from .dev*/ linuxHeaders
|
|
binutils gcc gcc.cc gcc.cc.lib gcc.expand-response-params
|
|
]
|
|
++ lib.optional (localSystem.libc == "musl") libiconv
|
|
++ lib.optionals localSystem.isAarch64
|
|
[ prevStage.updateAutotoolsGnuConfigScriptsHook prevStage.gnu-config ];
|
|
|
|
overrides = self: super: {
|
|
inherit (prevStage)
|
|
gzip bzip2 xz bash coreutils diffutils findutils gawk
|
|
gnumake gnused gnutar gnugrep gnupatch patchelf
|
|
attr acl paxctl zlib pcre;
|
|
${localSystem.libc} = getLibc prevStage;
|
|
} // lib.optionalAttrs (super.targetPlatform == localSystem) {
|
|
# Need to get rid of these when cross-compiling.
|
|
inherit (prevStage) binutils binutils-unwrapped;
|
|
gcc = cc;
|
|
};
|
|
};
|
|
})
|
|
|
|
]
|