urbit/lib/bip.hoon

764 lines
21 KiB
Plaintext
Raw Normal View History

:: bip32 implementation in hoon
:: temporarily includes supporting crypto, this should all go into stdlib
::
:: tmp useful links:
:: https://bitcoin.stackexchange.com/questions/61957/edge-cases-for-bip32
:: https://bitcoin.stackexchange.com/questions/21974/need-sample-compressed-and-uncompressed-public-private-key-pairs-for-bigintege
:: https://crypto.stackexchange.com/questions/41316/complete-set-of-test-vectors-for-ecdsa-secp256k1
:: https://github.com/scogliani/ecc-test-vectors/tree/master/ecc_pointmul_test_vectors
:: https://crypto.stackexchange.com/a/21206
::
|%
::
+= byts [wid=@ud dat=@] ::NOTE different from octs, those expect @t/lsb
::
::NOTE tested to be correct against
:: https://en.bitcoin.it/wiki/BIP_0032_TestVectors
++ bip
=, hmac
=, secp
=+ ecc=secp256k1
:: prv: private key
:: pub: public key
:: cad: chain code
:: dep: depth in chain
:: ind: index at depth
:: pif: parent fingerprint (4 bytes)
|_ [prv=@ pub=pont cad=@ dep=@ud ind=@ud pif=@]
::
+= keyc [key=@ cai=@] :: prv/pub key + chain code
::
:: elliptic curve operations and values
::
++ point priv-to-pub.ecc
::
++ ser-p point-compressed.ecc
::
++ n ^n:ecc
::
:: core initialization
::
++ from-seed
|= byts
^+ +>
=+ der=(hmac-sha512l [12 'dees nioctiB'] [wid dat])
=+ pri=(cut 3 [32 32] -)
+>.$(prv pri, pub (point pri), cad (cut 3 [0 32] der))
::
++ from-private
|= keyc
+>(prv key, pub (point key), cad cai)
::
++ from-public
|= keyc
+>(pub (decompress-point.ecc key), cad cai)
::
++ from-public-point
|= [pon=pont cai=@]
+>(pub pon, cad cai)
::
++ from-extended
|= t=tape
=+ x=(de-base58check 4 t)
=> |%
++ take
|= b=@ud
^- [v=@ x=@]
:- (end 3 b x)
(rsh 3 b x)
--
=^ k x (take 33)
=^ c x (take 32)
=^ i x (take 4)
=^ p x (take 4)
=^ d x (take 1)
?> =(0 x) :: sanity check
%. [d i p]
=< set-metadata
=+ v=(scag 4 t)
?: =("xprv" v) (from-private k c)
?: =("xpub" v) (from-public k c)
!!
::
++ set-metadata
|= [d=@ud i=@ud p=@]
+>(dep d, ind i, pif p)
::
:: derivation
::
++ derivation-path
;~ pfix
;~(pose (jest 'm/') (easy ~))
%+ most net
;~ pose
%+ cook
|=(i=@ (add i (bex 31)))
;~(sfix dem say)
::
dem
== ==
::
++ derive-path
|= t=tape
%- derive-sequence
(scan t derivation-path)
::
++ derive-sequence
|= j=(list @u)
?~ j +>
=. +> (derive i.j)
$(j t.j)
::
::
++ derive
?: =(0 prv)
derive-public
derive-private
::
++ derive-private
|= i=@u
^+ +>
:: we must have a private key to derive the next one
?: =(0 prv)
~| %know-no-private-key
!!
:: derive child at i
=+ ^- [left=@ right=@] ::TODO =/ w/o face
=- [(cut 3 [32 32] -) (cut 3 [0 32] -)]
%+ hmac-sha512l [32 cad]
:- 37
?: (gte i (bex 31))
:: hardened child
(can 3 ~[4^i 32^prv 1^0])
:: normal child
(can 3 ~[4^i 33^(ser-p (point prv))])
=+ key=(mod (add left prv) n)
:: rare exception, invalid key, go to the next one
?: |(=(0 key) (gte left n)) $(i +(i))
%_ +>.$
prv key
pub (point key)
cad right
dep +(dep)
ind i
pif fingerprint
==
::
++ derive-public
|= i=@u
^+ +>
:: public keys can't be hardened
?: (gte i (bex 31))
~| %cant-derive-hardened-public-key
!!
:: derive child at i
=+ ^- [left=@ right=@] ::TODO =/ w/o face
=- [(cut 3 [32 32] -) (cut 3 [0 32] -)]
%+ hmac-sha512l [32 cad]
37^(can 3 ~[4^i 33^(ser-p pub)])
:: rare exception, invalid key, go to the next one
?: (gte left n) $(i +(i)) ::TODO or child key is "point at infinity"
%_ +>.$
pub (jc-add.ecc (point left) pub)
cad right
dep +(dep)
ind i
pif fingerprint
==
::
:: rendering
::
++ private-key ?.(=(0 prv) prv ~|(%know-no-private-key !!))
++ public-key (ser-p pub)
++ chain-code cad
++ private-chain [private-key cad]
++ public-chain [public-key cad]
::
++ identity (hash160 public-key)
++ fingerprint (cut 3 [16 4] identity)
::
++ prv-extended
%+ en-b58c-bip32 0x488.ade4
(build-extended private-key)
::
++ pub-extended
%+ en-b58c-bip32 0x488.b21e
(build-extended public-key)
::
++ build-extended
|= key=@
%+ can 3
:~ 33^key
32^cad
4^ind
4^pif
1^dep
==
::
++ en-b58c-bip32
|= [v=@ k=@]
(en-base58check [4 v] [74 k])
::
:: stdlib
::
++ en-base58check
:: v: version bytes
:: vw: amount of version bytes
|= [[vw=@u v=@] [dw=@u d=@]]
%- en-base58
=+ p=[(add vw dw) (can 3 ~[dw^d vw^v])]
=- (can 3 ~[4^- p])
%^ rsh 3 28
(sha-256l:sha 32 (sha-256l:sha p))
::
++ de-base58check
:: vw: amount of version bytes
|= [vw=@u t=tape]
=+ x=(de-base58 t)
=+ hash=(sha-256l:sha 32 (sha-256:sha (rsh 3 4 x)))
?> =((end 3 4 x) (rsh 3 28 hash))
(cut 3 [vw (sub (met 3 x) (add 4 vw))] x)
::
++ en-base58
|= a=@
=/ cha
'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
%- flop
|- ^- tape
?: =(0 a) ~
:- (cut 3 [(mod a 58) 1] cha)
$(a (div a 58))
::
++ de-base58
=- |=(t=tape (scan t fel))
=< fel=(bass 58 .)
=- (cook welp ;~(plug (plus siw) (stun 0^2 (cold %0 tis))))
^= siw
;~ pose
(cook |=(a/@ (sub a 56)) (shim 'A' 'H'))
(cook |=(a/@ (sub a 57)) (shim 'J' 'N'))
(cook |=(a/@ (sub a 58)) (shim 'P' 'Z'))
(cook |=(a/@ (sub a 64)) (shim 'a' 'k'))
(cook |=(a/@ (sub a 65)) (shim 'm' 'z'))
(cook |=(a/@ (sub a 49)) (shim '1' '9'))
==
--
::
++ hash160
|= d=@
(ripemd-160 256 (sha-256:sha d))
::
2018-06-27 02:03:18 +03:00
:: ripemd
::
++ md5-pad
2018-06-29 01:29:58 +03:00
|= byts
^- byts
=+ (sub 511 (mod (add wid 64) 512))
:- :(add 64 +(-) wid)
2018-06-27 02:03:18 +03:00
%+ can 0
2018-06-29 01:29:58 +03:00
~[64^(rev 3 8 wid) +(-)^(lsh 0 - 1) wid^dat]
2018-06-27 02:03:18 +03:00
::
::NOTE verified correct against:
:: http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
++ ripemd-160
:: w: data size in bits
:: d: data to hash
2018-06-29 01:29:58 +03:00
|= byts
2018-06-27 02:03:18 +03:00
^- @
:: add padding
2018-06-29 01:29:58 +03:00
=+ (md5-pad wid dat)
2018-06-27 02:03:18 +03:00
:: endianness
=. dat
%+ can 5
%+ turn (rip 5 dat)
2018-06-28 21:39:45 +03:00
|=(a=@ 1^(rev 3 4 a))
2018-06-27 02:03:18 +03:00
=* x dat
2018-06-29 01:29:58 +03:00
=+ blocks=(div wid 512)
2018-06-27 02:03:18 +03:00
=+ fev=~(. fe 5)
:: initial register values
=+ h0=0x6745.2301
=+ h1=0xefcd.ab89
=+ h2=0x98ba.dcfe
=+ h3=0x1032.5476
=+ h4=0xc3d2.e1f0
:: i: current block
=+ [i=0 j=0]
=+ *[a=@ b=@ c=@ d=@ e=@] :: a..e
=+ *[aa=@ bb=@ cc=@ dd=@ ee=@] :: a'..e'
|^
?: =(i blocks)
%+ can 5
%+ turn `(list @)`~[h4 h3 h2 h1 h0]
:: endianness
|=(h=@ 1^(swp 3 h))
=: a h0 aa h0
b h1 bb h1
c h2 cc h2
d h3 dd h3
e h4 ee h4
==
:: j: current word
=+ j=0
|-
?: =(j 80)
%= ^$
i +(i)
h1 :(sum:fev h2 d ee)
h2 :(sum:fev h3 e aa)
h3 :(sum:fev h4 a bb)
h4 :(sum:fev h0 b cc)
h0 :(sum:fev h1 c dd)
==
%= $
j +(j)
::
a e
b (fn j a b c d e (get (r j)) (k j) (s j))
c b
d (rol 10 c)
e d
::
aa ee
bb (fn (sub 79 j) aa bb cc dd ee (get (rr j)) (kk j) (ss j))
cc bb
dd (rol 10 cc)
ee dd
==
::
++ get :: word from x in block i
|= j=@ud
=+ (add (mul i 16) +(j))
(cut 5 [(sub (mul blocks 16) -) 1] x)
::
++ fn
|= [j=@ud a=@ b=@ c=@ d=@ e=@ m=@ k=@ s=@]
=- (sum:fev (rol s :(sum:fev a m k -)) e)
=. j (div j 16)
?: =(0 j) (mix (mix b c) d)
?: =(1 j) (con (dis b c) (dis (not 0 32 b) d))
?: =(2 j) (mix (con b (not 0 32 c)) d)
?: =(3 j) (con (dis b d) (dis c (not 0 32 d)))
?: =(4 j) (mix b (con c (not 0 32 d)))
!!
::
++ rol (cury rol:fev 0)
::
++ k
|= j=@ud
=. j (div j 16)
?: =(0 j) 0x0
?: =(1 j) 0x5a82.7999
?: =(2 j) 0x6ed9.eba1
?: =(3 j) 0x8f1b.bcdc
?: =(4 j) 0xa953.fd4e
!!
::
++ kk :: k'
|= j=@ud
=. j (div j 16)
?: =(0 j) 0x50a2.8be6
?: =(1 j) 0x5c4d.d124
?: =(2 j) 0x6d70.3ef3
?: =(3 j) 0x7a6d.76e9
?: =(4 j) 0x0
!!
::
++ r
|= j=@ud
%+ snag j
^- (list @)
:~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8
3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12
1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2
4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13
==
::
++ rr :: r'
|= j=@ud
%+ snag j
^- (list @)
:~ 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12
6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2
15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13
8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14
12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11
==
::
++ s
|= j=@ud
%+ snag j
^- (list @)
:~ 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8
7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12
11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5
11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12
9 15 5 11 6 8 13 12 5 12 13 14 11 8 5 6
==
::
++ ss :: s'
|= j=@ud
%+ snag j
^- (list @)
:~ 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6
9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11
9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5
15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8
8 5 12 9 12 5 14 6 8 13 6 5 15 13 11 11
==
--
::
:: hmac
::
::TODO ++hmc/hml returns reverse byte order results,
:: so does ++pbk/pbl which depends on it,
:: but not secp, which also depends on them
::NOTE tested to be correct against https://tools.ietf.org/html/rfc4231
++ hmac :: correct byte-order hmac-family
=, sha
|%
++ meet |=([k=@ m=@] [[(met 3 k) k] [(met 3 m) m]])
::
2018-06-29 01:46:08 +03:00
++ hmac-sha1 (cork meet hmac-sha1l)
++ hmac-sha256 (cork meet hmac-sha256l)
++ hmac-sha512 (cork meet hmac-sha512l)
::
2018-06-29 01:46:08 +03:00
++ hmac-sha1l (cury hmac sha-1l 64 20)
++ hmac-sha256l (cury hmac sha-256l 64 32)
++ hmac-sha512l (cury hmac sha-512l 128 64)
::
++ hmac
2018-06-28 00:17:03 +03:00
:: boq: block size in bytes used by haj
:: out: bytes output by haj
2018-06-29 01:29:58 +03:00
|* [[haj=$-([@u @] @) boq=@u out=@u] key=byts msg=byts]
2018-06-28 00:17:03 +03:00
:: ensure key and message fit signaled lengths
::TODO other crypto implementations should do this too, probably
2018-06-29 01:29:58 +03:00
=. dat.key (end 3 wid.key dat.key)
=. dat.msg (end 3 wid.msg dat.msg)
:: keys longer than block size are shortened by hashing
2018-06-29 01:29:58 +03:00
=? dat.key (gth wid.key boq) (haj wid.key dat.key)
=? wid.key (gth wid.key boq) out
:: keys shorter than block size are right-padded
2018-06-29 01:29:58 +03:00
=? dat.key (lth wid.key boq) (lsh 3 (sub boq wid.key) dat.key)
:: pad key, inner and outer
2018-06-29 01:29:58 +03:00
=+ kip=(mix dat.key (fil 3 boq 0x36))
=+ kop=(mix dat.key (fil 3 boq 0x5c))
:: append inner padding to message, then hash
2018-06-29 01:29:58 +03:00
=+ (haj (add wid.msg boq) (add (lsh 3 wid.msg kip) dat.msg))
:: prepend outer padding to result, hash again
(haj (add out boq) (add (lsh 3 out kop) -))
--
::
++ sha :: correct byte-order sha-family
|%
++ sha-1f (cork flin shan)
++ sha-1 (cork meet sha-1l)
::
++ sha-256 :(cork flin shax (flip 32))
++ sha-256l :(cork flim shay (flip 32))
::
++ sha-512 :(cork flin shaz (flip 64))
++ sha-512l :(cork flim shal (flip 64))
::
++ flin |=(a=@ (swp 3 a)) :: flip input
2018-06-29 01:29:58 +03:00
++ flim |=(byts [wid (rev 3 wid dat)]) :: flip input w/ length
++ flip |=(w=@u (cury (cury rev 3) w)) :: flip output of size
++ meet |=(a=@ [(met 3 a) a])
::
++ sha-1l
2018-06-29 01:29:58 +03:00
|= byts
=+ [few==>(fe .(a 5)) wac=|=({a/@ b/@} (cut 5 [a 1] b))]
=+ [sum=sum.few ror=ror.few rol=rol.few net=net.few inv=inv.few]
2018-06-29 01:29:58 +03:00
=+ ral=(lsh 0 3 wid)
=+ ^= ful
%+ can 0
2018-06-29 01:29:58 +03:00
:~ [ral (rev 3 wid dat)]
[8 128]
[(mod (sub 960 (mod (add 8 ral) 512)) 512) 0]
[64 (~(net fe 6) ral)]
==
=+ lex=(met 9 ful)
=+ kbx=0xca62.c1d6.8f1b.bcdc.6ed9.eba1.5a82.7999
=+ hax=0xc3d2.e1f0.1032.5476.98ba.dcfe.efcd.ab89.6745.2301
=+ i=0
|-
?: =(i lex)
(rep 5 (flop (rip 5 hax)))
=+ ^= wox
=+ dux=(cut 9 [i 1] ful)
=+ wox=(rep 5 (turn (rip 5 dux) net))
=+ j=16
|- ^- @
?: =(80 j)
wox
=+ :* l=(wac (sub j 3) wox)
m=(wac (sub j 8) wox)
n=(wac (sub j 14) wox)
o=(wac (sub j 16) wox)
==
=+ z=(rol 0 1 :(mix l m n o))
$(wox (con (lsh 5 j z) wox), j +(j))
=+ j=0
=+ :* a=(wac 0 hax)
b=(wac 1 hax)
c=(wac 2 hax)
d=(wac 3 hax)
e=(wac 4 hax)
==
|- ^- @
?: =(80 j)
%= ^$
i +(i)
hax %+ rep 5
:~
(sum a (wac 0 hax))
(sum b (wac 1 hax))
(sum c (wac 2 hax))
(sum d (wac 3 hax))
(sum e (wac 4 hax))
==
==
=+ fx=(con (dis b c) (dis (not 5 1 b) d))
=+ fy=:(mix b c d)
=+ fz=:(con (dis b c) (dis b d) (dis c d))
=+ ^= tem
?: &((gte j 0) (lte j 19))
:(sum (rol 0 5 a) fx e (wac 0 kbx) (wac j wox))
?: &((gte j 20) (lte j 39))
:(sum (rol 0 5 a) fy e (wac 1 kbx) (wac j wox))
?: &((gte j 40) (lte j 59))
:(sum (rol 0 5 a) fz e (wac 2 kbx) (wac j wox))
:(sum (rol 0 5 a) fy e (wac 3 kbx) (wac j wox))
$(j +(j), a tem, b a, c (rol 0 30 b), d c, e d)
--
::
::
++ secp
|%
+= jaco [x=@ y=@ z=@] :: jacobian point
+= pont [x=@ y=@] :: curve point
::
++ secp192k1 ::TODO unverified
%+ secp 24
:* p=0xffff.ffff.ffff.ffff.ffff.ffff.ffff.ffff.
ffff.ffff.ffff.ffff.ffff.fffe.ffff.ee37
a=0
b=3
^= g
:* x=0xdb4f.f10e.c057.e9ae.26b0.7d02.
80b7.f434.1da5.d1b1.eae0.6c7d
y=0x9b2f.2f6d.9c56.28a7.8441.63d0.
15be.8634.4082.aa88.d95e.2f9d
==
n=0xffff.ffff.ffff.ffff.ffff.fffe.
26f2.fc17.0f69.466a.74de.fd8d
==
::
++ secp192r1 ::TODO incorrect
%+ secp 24
:* p=0xffff.ffff.ffff.ffff.ffff.ffff.ffff.ffff.
ffff.ffff.ffff.ffff.ffff.fffe.ffff.fc2f
a=0xffff.ffff.ffff.ffff.ffff.ffff.
ffff.fffe.ffff.ffff.ffff.fffc
b=0x6421.0519.e59c.80e7.0fa7.e9ab.
7224.3049.feb8.deec.c146.b9b1
^= g
:* x=0x188d.a80e.b030.90f6.7cbf.20eb.
43a1.8800.f4ff.0afd.82ff.1012
y=0x719.2b95.ffc8.da78.6310.11ed.
6b24.cdd5.73f9.77a1.1e79.4811
==
n=0xffff.ffff.ffff.ffff.ffff.ffff.
99de.f836.146b.c9b1.b4d2.2831
==
::
::TODO more
::
++ secp256k1 ::NOTE verified correct
%+ secp 32
:* p=0xffff.ffff.ffff.ffff.ffff.ffff.ffff.ffff. :: modulo
ffff.ffff.ffff.ffff.ffff.fffe.ffff.fc2f
a=0 :: y^2=x^3+ax+b
b=7
^= g :: "prime" point
:* x=0x79be.667e.f9dc.bbac.55a0.6295.ce87.0b07.
029b.fcdb.2dce.28d9.59f2.815b.16f8.1798
y=0x483a.da77.26a3.c465.5da4.fbfc.0e11.08a8.
fd17.b448.a685.5419.9c47.d08f.fb10.d4b8
==
n=0xffff.ffff.ffff.ffff.ffff.ffff.ffff.fffe. :: prime order of g
baae.dce6.af48.a03b.bfd2.5e8c.d036.4141
==
::
++ secp256r1 ::TODO incorrect
%+ secp 32
:* p=0xffff.ffff.0000.0001.0000.0000.0000.0000.
0000.0000.ffff.ffff.ffff.ffff.ffff.ffff
a=0xffff.ffff.0000.0001.0000.0000.0000.0000.
0000.0000.ffff.ffff.ffff.ffff.ffff.fffc
b=0x5ac6.35d8.aa3a.93e7.b3eb.bd55.7698.86bc.
651d.06b0.cc53.b0f6.3bce.3c3e.27d2.604b
^= g
:* x=0x6b17.d1f2.e12c.4247.f8bc.e6e5.63a4.40f2.
7703.7d81.2deb.33a0.f4a1.3945.d898.c296
y=0x4fe3.42e2.fe1a.7f9b.8ee7.eb4a.7c0f.9e16.
2bce.3357.6b31.5ece.cbb6.4068.37bf.51f5
==
n=0xffff.ffff.0000.0000.ffff.ffff.ffff.ffff.
bce6.faad.a717.9e84.f3b9.cac2.fc63.2551
==
::
++ secp
|= [w=@ p=@ a=@ b=@ g=pont n=@]
=/ p ~(. fo p)
=/ n ~(. fo n)
|%
++ point-compressed
|= pont
(can 3 ~[w^x 1^(add 0x2 (cut 0 [0 1] y))])
::
++ point-uncompressed
|= pont
(can 3 ~[w^y w^x 1^0x4])
::
++ decompress-point
|= dat=@
^- pont
=+ x=(end 3 w a)
=+ y=:(add (pow x 3) (mul a x) b)
=+ s=(rsh 3 32 dat)
:- x
?: =(0x2 s) y
?: =(0x3 s) y
~| [`@ux`s `@ux`dat]
!!
::
++ priv-to-pub :: get pub from priv
|= prv=@
^- pont
(jc-mul g prv)
::
++ hmc :: hmac swap endianness
|= [k=@ kl=@ t=@ tl=@]
^- @
(swp 3 (hml:scr:crypto (swp 3 k) kl (swp 3 t) tl))
::
++ make-k :: deterministic nonce
=, mimes:html
|= [has=@uvI prv=@]
^- @
=/ v (fil 3 w 1)
=/ k 0
=. k (hmc k w [+ -]:(as-octs (can 3 [w has] [w prv] [1 0x0] [w v] ~)))
=. v (hmc k w v w)
=. k (hmc k w [+ -]:(as-octs (can 3 [w has] [w prv] [1 0x1] [w v] ~)))
=. v (hmc k w v w)
(hmc k w v w)
::
++ ecdsa-raw-sign :: generate signature
|= [has=@uvI prv=@]
^- [v=@ r=@ s=@]
=/ z has
=/ k (make-k has prv)
=+ [r y]=(jc-mul g k)
=/ s (pro.n `@`(inv.n k) `@`(sum.n z (mul r prv))) ::TODO mul.n?
=/ big-s (gte (mul 2 s) ^n)
:* v=(add 27 (mix (end 0 1 y) ?:(big-s 1 0)))
r=r
s=?.(big-s s (sub ^n s))
==
::
++ ecdsa-raw-recover :: get pubkey from sig
|= [has=@uvI sig=[v=@ r=@ s=@]]
^- pont
?> ?&((lte 27 v.sig) (lte v.sig 34))
=/ x r.sig
=/ ysq (sum.p b (exp.p 3 x)) :: omits A=0
=/ bet (exp.p (div +(^p) 4) ysq)
=/ y ?:(=(1 (end 0 1 (mix v.sig bet))) bet (dif.p 0 bet))
?> =(0 (dif.p ysq (pro.p y y)))
?< =(0 (sit.n r.sig))
?< =(0 (sit.n s.sig))
=/ gz (mul:jc [x y 1]:g (dif.n 0 has))
=/ xy (mul:jc [x y 1] s.sig)
=/ qr (add:jc gz xy)
(from:jc (mul:jc qr (inv.n r.sig)))
::
++ jc-mul :: point x scalar
|= [a=pont n=@]
^- pont
(from:jc (mul:jc (into:jc a) n))
::
++ jc-add :: add points
|= [a=pont b=pont]
^- pont
(from:jc (add:jc (into:jc a) (into:jc b)))
::
++ jc :: jacobian core
|%
++ add :: addition
|= [a=jaco b=jaco]
^- jaco
?: =(0 y.a) b
?: =(0 y.b) a
=/ u1 :(pro.p x.a z.b z.b)
=/ u2 :(pro.p x.b z.a z.a)
=/ s1 :(pro.p y.a z.b z.b z.b)
=/ s2 :(pro.p y.b z.a z.a z.a)
?: =(u1 u2)
?. =(s1 s2)
[0 0 1]
(dub a)
=/ h (dif.p u2 u1)
=/ r (dif.p s2 s1)
=/ h2 (pro.p h h)
=/ h3 (pro.p h2 h)
=/ u1h2 (pro.p u1 h2)
=/ nx (dif.p (pro.p r r) :(sum.p h3 u1h2 u1h2))
=/ ny (dif.p (pro.p r (dif.p u1h2 nx)) (pro.p s1 h3))
=/ nz :(pro.p h z.a z.b)
[nx ny nz]
::
++ dub :: double
|= a=jaco
^- jaco
?: =(0 y.a)
[0 0 0]
=/ ysq (pro.p y.a y.a)
=/ s :(pro.p 4 x.a ysq)
=/ m :(pro.p 3 x.a x.a) :: omits A=0
=/ nx (dif.p (pro.p m m) (sum.p s s))
=/ ny (dif.p (pro.p m (dif.p s nx)) :(pro.p 8 ysq ysq))
=/ nz :(pro.p 2 y.a z.a)
[nx ny nz]
::
++ mul :: jaco x scalar
|= [a=jaco n=@]
^- jaco
?: =(0 y.a)
[0 0 1]
?: =(0 n)
[0 0 1]
?: =(1 n)
a
?: (gte n ^^n)
$(n (mod n ^^n))
?: =(0 (mod n 2))
(dub $(n (div n 2)))
(add a (dub $(n (div n 2))))
::
++ from :: jaco -> point
|= a=jaco
^- pont
=/ z (inv.p z.a)
[:(pro.p x.a z z) :(pro.p y.a z z z)]
::
++ into :: point -> jaco
|= pont
^- jaco
[x y z=1]
--
--
--
--