urbit/outside/scrypt/crypto_scrypt-nosse.c

330 lines
8.4 KiB
C
Raw Normal View History

2015-05-04 02:31:45 +03:00
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include <sys/types.h>
#include <sys/mman.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
#include "sysendian.h"
#include "crypto_scrypt.h"
static void
blkcpy(void * dest, void * src, size_t len)
{
2015-08-26 01:18:40 +03:00
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
2015-05-04 02:31:45 +03:00
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
2015-08-26 01:18:40 +03:00
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
2015-05-04 02:31:45 +03:00
size_t i;
for (i = 0; i < L; i++)
2015-08-26 01:18:40 +03:00
D[i] ^= S[i];
2015-05-04 02:31:45 +03:00
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
2015-08-26 01:18:40 +03:00
salsa20_8(uint32_t B[16])
2015-05-04 02:31:45 +03:00
{
2015-08-26 01:18:40 +03:00
uint32_t x[16];
2015-05-04 02:31:45 +03:00
size_t i;
2015-08-26 01:18:40 +03:00
blkcpy(x, B, 64);
2015-05-04 02:31:45 +03:00
for (i = 0; i < 8; i += 2) {
2015-08-26 01:18:40 +03:00
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
/* Operate on rows. */
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
2015-05-04 02:31:45 +03:00
2015-08-26 01:18:40 +03:00
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
#undef R
}
for (i = 0; i < 16; i++)
B[i] += x[i];
2015-05-04 02:31:45 +03:00
}
/**
* blockmix_salsa8(Bin, Bout, X, r):
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
* bytes in length; the output Bout must also be the same size. The
* temporary space X must be 64 bytes.
*/
static void
2015-08-26 01:18:40 +03:00
blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
2015-05-04 02:31:45 +03:00
{
size_t i;
/* 1: X <-- B_{2r - 1} */
2015-08-26 01:18:40 +03:00
blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
2015-05-04 02:31:45 +03:00
/* 2: for i = 0 to 2r - 1 do */
2015-08-26 01:18:40 +03:00
for (i = 0; i < 2 * r; i += 2) {
2015-05-04 02:31:45 +03:00
/* 3: X <-- H(X \xor B_i) */
2015-08-26 01:18:40 +03:00
blkxor(X, &Bin[i * 16], 64);
2015-05-04 02:31:45 +03:00
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
2015-08-26 01:18:40 +03:00
blkcpy(&Bout[i * 8], X, 64);
2015-05-04 02:31:45 +03:00
/* 3: X <-- H(X \xor B_i) */
2015-08-26 01:18:40 +03:00
blkxor(X, &Bin[i * 16 + 16], 64);
2015-05-04 02:31:45 +03:00
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
2015-08-26 01:18:40 +03:00
blkcpy(&Bout[i * 8 + r * 16], X, 64);
2015-05-04 02:31:45 +03:00
}
}
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint64_t
integerify(void * B, size_t r)
{
uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
2015-08-26 01:18:40 +03:00
return (((uint64_t)(X[1]) << 32) + X[0]);
2015-05-04 02:31:45 +03:00
}
/**
* smix(B, r, N, V, XY):
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
* the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be a
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
* multiple of 64 bytes.
*/
void
2015-08-26 01:18:40 +03:00
smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
2015-05-04 02:31:45 +03:00
{
2015-08-26 01:18:40 +03:00
uint32_t * X = XY;
uint32_t * Y = &XY[32 * r];
uint32_t * Z = &XY[64 * r];
uint64_t i;
uint64_t j;
2015-05-04 02:31:45 +03:00
size_t k;
/* 1: X <-- B */
2015-08-26 01:18:40 +03:00
for (k = 0; k < 32 * r; k++)
X[k] = le32dec(&B[4 * k]);
2015-05-04 02:31:45 +03:00
/* 2: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 3: V_i <-- X */
2015-08-26 01:18:40 +03:00
blkcpy(&V[i * (32 * r)], X, 128 * r);
2015-05-04 02:31:45 +03:00
/* 4: X <-- H(X) */
blockmix_salsa8(X, Y, Z, r);
/* 3: V_i <-- X */
2015-08-26 01:18:40 +03:00
blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
2015-05-04 02:31:45 +03:00
/* 4: X <-- H(X) */
blockmix_salsa8(Y, X, Z, r);
}
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
2015-08-26 01:18:40 +03:00
blkxor(X, &V[j * (32 * r)], 128 * r);
2015-05-04 02:31:45 +03:00
blockmix_salsa8(X, Y, Z, r);
/* 7: j <-- Integerify(X) mod N */
j = integerify(Y, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
2015-08-26 01:18:40 +03:00
blkxor(Y, &V[j * (32 * r)], 128 * r);
2015-05-04 02:31:45 +03:00
blockmix_salsa8(Y, X, Z, r);
}
/* 10: B' <-- X */
2015-08-26 01:18:40 +03:00
for (k = 0; k < 32 * r; k++)
le32enc(&B[4 * k], X[k]);
2015-05-04 02:31:45 +03:00
}
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error.
*/
int
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
{
void * B0, * V0, * XY0;
uint8_t * B;
uint32_t * V;
uint32_t * XY;
uint32_t i;
/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
goto err0;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
goto err0;
}
if (((N & (N - 1)) != 0) || (N == 0)) {
errno = EINVAL;
goto err0;
}
if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
2015-08-26 01:18:40 +03:00
(r > SIZE_MAX / 256) ||
2015-05-04 02:31:45 +03:00
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
goto err0;
}
/* Allocate memory. */
#ifdef HAVE_POSIX_MEMALIGN
if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
goto err0;
B = (uint8_t *)(B0);
if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
goto err1;
XY = (uint32_t *)(XY0);
#ifndef MAP_ANON
if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
goto err2;
V = (uint32_t *)(V0);
#endif
#else
if ((B0 = malloc(128 * r * p + 63)) == NULL)
goto err0;
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
goto err1;
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
#ifndef MAP_ANON
if ((V0 = malloc(128 * r * N + 63)) == NULL)
goto err2;
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
#endif
#endif
#ifdef MAP_ANON
if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
#ifdef MAP_NOCORE
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
#else
MAP_ANON | MAP_PRIVATE,
#endif
-1, 0)) == MAP_FAILED)
goto err2;
V = (uint32_t *)(V0);
#endif
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
smix(&B[i * 128 * r], r, N, V, XY);
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
/* Free memory. */
#ifdef MAP_ANON
if (munmap(V0, 128 * r * N))
goto err2;
#else
free(V0);
#endif
free(XY0);
free(B0);
/* Success! */
return (0);
err2:
free(XY0);
err1:
free(B0);
err0:
/* Failure! */
return (-1);
}