mirror of
https://github.com/ilyakooo0/urbit.git
synced 2024-12-18 20:31:40 +03:00
180 lines
5.1 KiB
C
180 lines
5.1 KiB
C
|
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
// DESCRIPTION
|
||
|
//
|
||
|
// SparseSet<T>(m) is a set of integers in [0, m).
|
||
|
// It requires sizeof(int)*m memory, but it provides
|
||
|
// fast iteration through the elements in the set and fast clearing
|
||
|
// of the set.
|
||
|
//
|
||
|
// Insertion and deletion are constant time operations.
|
||
|
//
|
||
|
// Allocating the set is a constant time operation
|
||
|
// when memory allocation is a constant time operation.
|
||
|
//
|
||
|
// Clearing the set is a constant time operation (unusual!).
|
||
|
//
|
||
|
// Iterating through the set is an O(n) operation, where n
|
||
|
// is the number of items in the set (not O(m)).
|
||
|
//
|
||
|
// The set iterator visits entries in the order they were first
|
||
|
// inserted into the array. It is safe to add items to the set while
|
||
|
// using an iterator: the iterator will visit indices added to the set
|
||
|
// during the iteration, but will not re-visit indices whose values
|
||
|
// change after visiting. Thus SparseSet can be a convenient
|
||
|
// implementation of a work queue.
|
||
|
//
|
||
|
// The SparseSet implementation is NOT thread-safe. It is up to the
|
||
|
// caller to make sure only one thread is accessing the set. (Typically
|
||
|
// these sets are temporary values and used in situations where speed is
|
||
|
// important.)
|
||
|
//
|
||
|
// The SparseSet interface does not present all the usual STL bells and
|
||
|
// whistles.
|
||
|
//
|
||
|
// Implemented with reference to Briggs & Torczon, An Efficient
|
||
|
// Representation for Sparse Sets, ACM Letters on Programming Languages
|
||
|
// and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
|
||
|
//
|
||
|
// For a generalization to sparse array, see sparse_array.h.
|
||
|
|
||
|
// IMPLEMENTATION
|
||
|
//
|
||
|
// See sparse_array.h for implementation details
|
||
|
|
||
|
#ifndef RE2_UTIL_SPARSE_SET_H__
|
||
|
#define RE2_UTIL_SPARSE_SET_H__
|
||
|
|
||
|
#include "util/util.h"
|
||
|
|
||
|
namespace re2 {
|
||
|
|
||
|
class SparseSet {
|
||
|
public:
|
||
|
SparseSet()
|
||
|
: size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL), valgrind_(RunningOnValgrind()) {}
|
||
|
|
||
|
SparseSet(int max_size) {
|
||
|
max_size_ = max_size;
|
||
|
sparse_to_dense_ = new int[max_size];
|
||
|
dense_ = new int[max_size];
|
||
|
valgrind_ = RunningOnValgrind();
|
||
|
// Don't need to zero the memory, but do so anyway
|
||
|
// to appease Valgrind.
|
||
|
if (valgrind_) {
|
||
|
for (int i = 0; i < max_size; i++) {
|
||
|
dense_[i] = 0xababababU;
|
||
|
sparse_to_dense_[i] = 0xababababU;
|
||
|
}
|
||
|
}
|
||
|
size_ = 0;
|
||
|
}
|
||
|
|
||
|
~SparseSet() {
|
||
|
delete[] sparse_to_dense_;
|
||
|
delete[] dense_;
|
||
|
}
|
||
|
|
||
|
typedef int* iterator;
|
||
|
typedef const int* const_iterator;
|
||
|
|
||
|
int size() const { return size_; }
|
||
|
iterator begin() { return dense_; }
|
||
|
iterator end() { return dense_ + size_; }
|
||
|
const_iterator begin() const { return dense_; }
|
||
|
const_iterator end() const { return dense_ + size_; }
|
||
|
|
||
|
// Change the maximum size of the array.
|
||
|
// Invalidates all iterators.
|
||
|
void resize(int new_max_size) {
|
||
|
if (size_ > new_max_size)
|
||
|
size_ = new_max_size;
|
||
|
if (new_max_size > max_size_) {
|
||
|
int* a = new int[new_max_size];
|
||
|
if (sparse_to_dense_) {
|
||
|
memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
|
||
|
if (valgrind_) {
|
||
|
for (int i = max_size_; i < new_max_size; i++)
|
||
|
a[i] = 0xababababU;
|
||
|
}
|
||
|
delete[] sparse_to_dense_;
|
||
|
}
|
||
|
sparse_to_dense_ = a;
|
||
|
|
||
|
a = new int[new_max_size];
|
||
|
if (dense_) {
|
||
|
memmove(a, dense_, size_*sizeof a[0]);
|
||
|
if (valgrind_) {
|
||
|
for (int i = size_; i < new_max_size; i++)
|
||
|
a[i] = 0xababababU;
|
||
|
}
|
||
|
delete[] dense_;
|
||
|
}
|
||
|
dense_ = a;
|
||
|
}
|
||
|
max_size_ = new_max_size;
|
||
|
}
|
||
|
|
||
|
// Return the maximum size of the array.
|
||
|
// Indices can be in the range [0, max_size).
|
||
|
int max_size() const { return max_size_; }
|
||
|
|
||
|
// Clear the array.
|
||
|
void clear() { size_ = 0; }
|
||
|
|
||
|
// Check whether i is in the array.
|
||
|
bool contains(int i) const {
|
||
|
DCHECK_GE(i, 0);
|
||
|
DCHECK_LT(i, max_size_);
|
||
|
if (static_cast<uint>(i) >= max_size_) {
|
||
|
return false;
|
||
|
}
|
||
|
// Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
|
||
|
return (uint)sparse_to_dense_[i] < (uint)size_ &&
|
||
|
dense_[sparse_to_dense_[i]] == i;
|
||
|
}
|
||
|
|
||
|
// Adds i to the set.
|
||
|
void insert(int i) {
|
||
|
if (!contains(i))
|
||
|
insert_new(i);
|
||
|
}
|
||
|
|
||
|
// Set the value at the new index i to v.
|
||
|
// Fast but unsafe: only use if contains(i) is false.
|
||
|
void insert_new(int i) {
|
||
|
if (static_cast<uint>(i) >= max_size_) {
|
||
|
// Semantically, end() would be better here, but we already know
|
||
|
// the user did something stupid, so begin() insulates them from
|
||
|
// dereferencing an invalid pointer.
|
||
|
return;
|
||
|
}
|
||
|
DCHECK(!contains(i));
|
||
|
DCHECK_LT(size_, max_size_);
|
||
|
sparse_to_dense_[i] = size_;
|
||
|
dense_[size_] = i;
|
||
|
size_++;
|
||
|
}
|
||
|
|
||
|
// Comparison function for sorting.
|
||
|
// Can sort the sparse array so that future iterations
|
||
|
// will visit indices in increasing order using
|
||
|
// sort(arr.begin(), arr.end(), arr.less);
|
||
|
static bool less(int a, int b) { return a < b; }
|
||
|
|
||
|
private:
|
||
|
int size_;
|
||
|
int max_size_;
|
||
|
int* sparse_to_dense_;
|
||
|
int* dense_;
|
||
|
bool valgrind_;
|
||
|
|
||
|
DISALLOW_EVIL_CONSTRUCTORS(SparseSet);
|
||
|
};
|
||
|
|
||
|
} // namespace re2
|
||
|
|
||
|
#endif // RE2_UTIL_SPARSE_SET_H__
|