Merge pull request #5171 from urbit/jb/urcrypt-merge

urcrypt: merge
This commit is contained in:
Joe Bryan 2021-09-09 07:23:48 -07:00 committed by GitHub
commit 1a8935ffe6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
200 changed files with 101483 additions and 2383 deletions

View File

@ -132,7 +132,7 @@ jobs:
# echo suppresses pacman prompt
- run: echo|./configure
env:
CACHIX_CACHE: locpyl-tidnyd-test1
CACHIX_CACHE: ares
CACHIX_AUTH_TOKEN: ${{ secrets.CACHIX_AUTH_TOKEN }}
- run: make build/urbit build/urbit-worker

3
.gitignore vendored
View File

@ -57,6 +57,9 @@ out/
work/
pkg/*/*.a
*.o
*.so
*.dll
*.dylib
# Landscape Dev
urbitrc

View File

@ -85,20 +85,12 @@ let
# Local vendored packages defined in ./pkg.
# For non-vendored nixpkgs specific package overrides, see ./nix/overlays.
pkgsLocal = {
argon2u = callPackage ./nix/pkgs/argon2u { };
ca-bundle = callPackage ./nix/pkgs/ca-bundle { };
ed25519 = callPackage ./nix/pkgs/ed25519 { };
ent = callPackage ./nix/pkgs/ent { };
ge-additions = callPackage ./nix/pkgs/ge-additions { };
libaes_siv = callPackage ./nix/pkgs/libaes_siv { inherit (pkgsNative) cmake; };
libscrypt = callPackage ./nix/pkgs/libscrypt { };
murmur3 = callPackage ./nix/pkgs/murmur3 { };
softfloat3 = callPackage ./nix/pkgs/softfloat3 { };
@ -115,6 +107,8 @@ let
urbit = callPackage ./nix/pkgs/urbit { inherit enableStatic; };
urcrypt = callPackage ./nix/pkgs/urcrypt { inherit enableStatic; };
docker-image = callPackage ./nix/pkgs/docker-image { };
hs = callPackage ./nix/pkgs/hs {

View File

@ -1,30 +0,0 @@
{ stdenv, sources, enableParallelBuilding ? true }:
stdenv.mkDerivation {
pname = "argon2u";
version = sources.argon2u.rev;
src = sources.argon2u;
postPatch = ''
substituteInPlace Makefile --replace 'ar rcs' '$(AR) rcs'
'';
buildPhase = ''
make libargon2.a
'';
installPhase = ''
mkdir -p $out/{lib,include}
cp libargon2.a $out/lib/
cp include/argon2.h $out/include/
cp ./src/blake2/*.h $out/include/
'';
makeFlags = [
"AR=${stdenv.cc.targetPrefix}ar" # Fix cross-compilation
];
NO_THREADS = true;
inherit enableParallelBuilding;
}

View File

@ -1,21 +0,0 @@
{ stdenv, sources }:
stdenv.mkDerivation {
pname = "ed25519";
version = sources.ed25519.rev;
src = sources.ed25519;
buildPhase = ''
CFLAGS="-O3 -Wall -I$src/src"
for f in $(find src -type f -name '*.c'); do
$CC $CFLAGS -c $f -o "''${f//\//_}.o"
done
'';
installPhase = ''
mkdir -p $out/{lib,include}
$AR rcs $out/lib/libed25519.a *.o
cp $src/src/*.h $out/include/
'';
}

View File

@ -1,13 +0,0 @@
{ lib, stdenv, ed25519, enableParallelBuilding ? true }:
stdenv.mkDerivation {
name = "ge-additions";
src = lib.cleanSource ../../../pkg/ge-additions;
buildInputs = [ ed25519 ];
installFlags = [ "PREFIX=$(out)" ];
inherit enableParallelBuilding;
}

View File

@ -1,35 +0,0 @@
{ stdenv, sources }:
stdenv.mkDerivation {
pname = "libscrypt";
version = sources.libscrypt.rev;
src = sources.libscrypt;
buildPhase = ''
sources=" \
crypto_scrypt-check \
crypto_scrypt-hash \
crypto_scrypt-hexconvert \
crypto_scrypt-nosse \
crypto-mcf \
crypto-scrypt-saltgen \
slowequals \
sha256 \
b64 \
"
CFLAGS="-I$src -Wall -ffast-math -O3 -D_FORTIFY_SOURCE=2 -fstack-protector"
for s in $sources; do
$CC $CFLAGS -c $src/$s.c -o $s.o
done
$AR rcs libscrypt.a *.o
'';
installPhase = ''
mkdir -p $out/{lib,include}
cp libscrypt.a $out/lib
cp $src/*.h $out/include/
'';
}

View File

@ -1,8 +1,12 @@
{ lib, stdenv, coreutils, pkgconfig, argon2u, cacert, ca-bundle, curlMinimal
, ed25519, ent, ge-additions, gmp, h2o, herb, ivory, libaes_siv, libscrypt
, libsigsegv, libuv, lmdb, murmur3, openssl, secp256k1, softfloat3, zlib
, enableStatic ? stdenv.hostPlatform.isStatic, enableDebug ? false
, doCheck ? true, enableParallelBuilding ? true, dontStrip ? true }:
{ lib, stdenv, coreutils, pkgconfig # build/env
, cacert, ca-bundle, ivory # codegen
, curlMinimal, ent, gmp, h2o, libsigsegv, libuv, lmdb # libs
, murmur3, openssl, softfloat3, urcrypt, zlib #
, enableStatic ? stdenv.hostPlatform.isStatic # opts
, enableDebug ? false
, doCheck ? true
, enableParallelBuilding ? true
, dontStrip ? true }:
let
@ -19,30 +23,23 @@ in stdenv.mkDerivation {
nativeBuildInputs = [ pkgconfig ];
buildInputs = [
argon2u
cacert
ca-bundle
curlMinimal
ed25519
ent
ge-additions
gmp
h2o
ivory.header
libaes_siv
libscrypt
libsigsegv
libuv
lmdb
murmur3
openssl
secp256k1
softfloat3
urcrypt
zlib
];
checkInputs = [ herb ];
# Ensure any `/usr/bin/env bash` shebang is patched.
postPatch = ''
patchShebangs ./configure
@ -56,9 +53,14 @@ in stdenv.mkDerivation {
cp ./build/urbit-worker $out/bin/urbit-worker
'';
dontDisableStatic = enableStatic;
configureFlags = if enableStatic
then [ "--disable-shared" "--enable-static" ]
else [];
CFLAGS = [ (if enableDebug then "-O0" else "-O3") "-g" ]
++ lib.optionals (!enableDebug) [ "-Werror" ]
++ lib.optionals enableStatic [ "-static" ];
++ lib.optionals (!enableDebug) [ "-Werror" ];
MEMORY_DEBUG = enableDebug;
CPU_DEBUG = enableDebug;

View File

@ -0,0 +1,21 @@
{ stdenv, autoreconfHook, pkgconfig
, libaes_siv, openssl, secp256k1
, enableStatic ? stdenv.hostPlatform.isStatic }:
stdenv.mkDerivation rec {
name = "urcrypt";
src = ../../../pkg/urcrypt;
# XX why are these required for darwin?
dontDisableStatic = enableStatic;
configureFlags = if enableStatic
then [ "--disable-shared" "--enable-static" ]
else [];
nativeBuildInputs =
[ autoreconfHook pkgconfig ];
propagatedBuildInputs =
[ openssl secp256k1 libaes_siv ];
}

View File

@ -56,9 +56,10 @@
"prepare": "./configure"
}
},
"ge-additions": {
"urcrypt": {
"pmnsh": {
"make": "CFLAGS=-I../ed25519"
"prepare": "./autogen.sh && ./configure --disable-shared PKG_CONFIG_PATH=../secp256k1 CFLAGS=\"-I../secp256k1/include -I../libaes_siv\" LDFLAGS=-L../libaes_siv",
"make": "install"
}
}
}

View File

@ -1,36 +1,4 @@
{
"argon2u": {
"branch": "master",
"description": "With argon2u. Based off https://github.com/P-H-C/phc-winner-argon2",
"homepage": "",
"pmnsh": {
"include": ["include", "src/blake2"],
"make": "libargon2.a"
},
"owner": "urbit",
"repo": "argon2",
"rev": "a4c1e3f7138c2e577376beb99f964cf71e1c8b1b",
"sha256": "1j8a15fx2kn5aa3scmb5qnsfk627kfvsq5ppz9j0pv2d1xck527x",
"type": "tarball",
"url": "https://github.com/urbit/argon2/archive/a4c1e3f7138c2e577376beb99f964cf71e1c8b1b.tar.gz",
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
},
"ed25519": {
"branch": "master",
"description": "Submodule included by Urbit",
"homepage": null,
"pmnsh": {
"strip": 1,
"make": "all"
},
"owner": "urbit",
"repo": "ed25519",
"rev": "76385f2ebbbc9580a9c236952d68d11d73a6135c",
"sha256": "0s1spif4s9lgcwcny3fl2fvpbw6acqn3s8r6qxnrmkd9icgyw4cp",
"type": "tarball",
"url": "https://github.com/urbit/ed25519/archive/76385f2ebbbc9580a9c236952d68d11d73a6135c.tar.gz",
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
},
"h2o": {
"branch": "master",
"description": "H2O - the optimized HTTP/1, HTTP/2, HTTP/3 server",
@ -41,7 +9,7 @@
"make": "libh2o",
"compat": {
"mingw": {
"prepare": "cmake -G\"MSYS Makefiles\" ."
"prepare": "cmake -G\"MSYS Makefiles\" -DCMAKE_INSTALL_PREFIX=. ."
}
}
},
@ -89,7 +57,7 @@
},
"mingw": {
"prepare": "cmake -G\"MSYS Makefiles\" -DDISABLE_DOCS:BOOL=ON .",
"make": "install"
"make": "aes_siv_static"
}
}
},
@ -101,21 +69,6 @@
"url": "https://github.com/dfoxfranke/libaes_siv/archive/9681279cfaa6e6399bb7ca3afbbc27fc2e19df4b.tar.gz",
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
},
"libscrypt": {
"branch": "master",
"description": null,
"homepage": null,
"pmnsh": {
"make": "libscrypt.a CFLAGS_EXTRA=-ffast-math"
},
"owner": "urbit",
"repo": "libscrypt",
"rev": "029693ff1cbe4f69d3a2da87d0f4f034f92cc0c2",
"sha256": "17pcxypzjmmrvacw45cacvibm6mlr9ip30hy30l1appsnywx679n",
"type": "tarball",
"url": "https://github.com/urbit/libscrypt/archive/029693ff1cbe4f69d3a2da87d0f4f034f92cc0c2.tar.gz",
"url_template": "https://github.com/<owner>/<repo>/archive/<rev>.tar.gz"
},
"murmur3": {
"branch": "master",
"description": null,

View File

@ -21,10 +21,7 @@
!> `@ux`(hsh pw salt n r p 64)
::
++ vectors
:: TODO: until scrypt has been jetted, we can only test the
:: first vector; the others do not finish in a reasonable
:: amount of time.
%+ scag 1 ^- (list vector)
^- (list vector)
:~
:*
0x0
@ -37,8 +34,8 @@
==
::
:*
0x7061.7373.776f.7264
0x4e61.436c
`@ux`'password'
`@ux`'NaCl'
1.024 8 16
0xfdba.be1c.9d34.7200.7856.e719.0d01.e9fe.
7c6a.d7cb.c823.7830.e773.7663.4b37.3162.
@ -47,8 +44,8 @@
==
::
:*
0x70.6c65.6173.656c.6574.6d65.696e
0x536f.6469.756d.4368.6c6f.7269.6465
`@ux`'pleaseletmein'
`@ux`'SodiumChloride'
16.384 8 1
0x7023.bdcb.3afd.7348.461c.06cd.81fd.38eb.
fda8.fbba.904f.8e3e.a9b5.43f6.545d.a1f2.
@ -57,8 +54,8 @@
==
::
:*
0x70.6c65.6173.656c.6574.6d65.696e
0x536f.6469.756d.4368.6c6f.7269.6465
`@ux`'pleaseletmein'
`@ux`'SodiumChloride'
1.048.576 8 1
0x2101.cb9b.6a51.1aae.addb.be09.cf70.f881.
ec56.8d57.4a2f.fd4d.abe5.ee98.20ad.aa47.

View File

@ -1,20 +0,0 @@
CC ?= cc
AR ?= ar
PREFIX ?= ./out
################################################################################
.PHONY: all test install clean
all: ge-additions.c ge-additions.h
$(CC) $(CFLAGS) -O3 -Wall -Werror -pedantic -std=gnu99 -c ge-additions.c
$(AR) rcs libge-additions.a ge-additions.o
install: all
@mkdir -p $(PREFIX)/lib/
@mkdir -p $(PREFIX)/include/
cp libge-additions.a $(PREFIX)/lib/
cp ge-additions.h $(PREFIX)/include/
clean:
rm -rf ./out

View File

@ -1,13 +0,0 @@
diff --git a/Makefile b/Makefile
new file mode 100644
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,8 @@
+.PHONY: all clean
+
+all: *.c *.h
+ $(CC) -c -O3 -Wall -Werror *.c
+ $(AR) rcs libed25519.a *.o
+
+clean:
+ rm -f *.o *.a

View File

@ -1,17 +0,0 @@
diff --git a/Makefile b/Makefile
index 783c537..3156ee2 100644
--- a/Makefile
+++ b/Makefile
@@ -12,10 +12,9 @@ LDFLAGS_EXTRA?=-Wl,-z,relro
all: reference
-OBJS= crypto_scrypt-nosse.o sha256.o crypto-mcf.o b64.o crypto-scrypt-saltgen.o crypto_scrypt-check.o crypto_scrypt-hash.o slowequals.o
+OBJS= crypto_scrypt-nosse.o sha256.o crypto-mcf.o b64.o slowequals.o
-libscrypt.so.0: $(OBJS)
- $(CC) $(LDFLAGS) -shared -o libscrypt.so.0 $(OBJS) -lm -lc
+libscrypt.a: $(OBJS)
ar rcs libscrypt.a $(OBJS)
reference: libscrypt.so.0 main.o crypto_scrypt-hexconvert.o

View File

@ -7,6 +7,8 @@ LDFLAGS := $(LDFLAGS) -lzstd -lcrypt32
CFLAGS := $(CFLAGS) -DH2O_NO_UNIX_SOCKETS
# libuv
LDFLAGS := $(LDFLAGS) -luserenv -liphlpapi -lpsapi
# secp256k1, due to _FORTIFY_SOURCE
LDFLAGS := $(LDFLAGS) -lssp
ifdef debug
CFLAGS := $(CFLAGS) -O0 -g

View File

@ -1,13 +0,0 @@
diff --git a/Makefile b/Makefile
new file mode 100644
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,8 @@
+.PHONY: all clean
+
+all: *.c *.h
+ $(CC) -c -O3 -Wall -Werror *.c
+ $(AR) rcs libed25519.a *.o
+
+clean:
+ rm -f *.o *.a

View File

@ -1,17 +0,0 @@
diff --git a/Makefile b/Makefile
index 783c537..3156ee2 100644
--- a/Makefile
+++ b/Makefile
@@ -12,10 +12,9 @@ LDFLAGS_EXTRA?=-Wl,-z,relro
all: reference
-OBJS= crypto_scrypt-nosse.o sha256.o crypto-mcf.o b64.o crypto-scrypt-saltgen.o crypto_scrypt-check.o crypto_scrypt-hash.o slowequals.o
+OBJS= crypto_scrypt-nosse.o sha256.o crypto-mcf.o b64.o slowequals.o
-libscrypt.so.0: $(OBJS)
- $(CC) $(LDFLAGS) -shared -o libscrypt.so.0 $(OBJS) -lm -lc
+libscrypt.a: $(OBJS)
ar rcs libscrypt.a $(OBJS)
reference: libscrypt.so.0 main.o crypto_scrypt-hexconvert.o

View File

@ -1,5 +1,6 @@
declare -a cdirs
declare -a ldirs
declare -a pdirs
declare -A hdeps
sources=(../../nix/sources.json ../../nix/sources-pmnsh.json)
patches=compat/$1
@ -141,8 +142,11 @@ strip=\($o.strip+1) \\
cmdprep=\($o.prepare//""'"$depdirs"'|@sh) \\
cmdmake=\($o.make//""'"$depdirs"'|@sh) \\
buildnixdep # sets dir
pdirs+=($dir) # XX support json override a la cdirs/pdirs
\($o.include//"."|if type == "array" then . else [.] end|map("cdirs+=(-I$dir/\(.))")|join("\n"))
\($o.lib//"."|if type == "array" then . else [.] end|map("ldirs+=(-L$dir/\(.))")|join("\n"))"' ${sources[@]})
CFLAGS="${CFLAGS-} ${cdirs[@]}"
LDFLAGS="${LDFLAGS-} ${ldirs[@]}"
PKG_CONFIG_PATH="$(IFS=:;echo "${pdirs[*]}"):${PKG_CONFIG_PATH-}"

75
pkg/urbit/configure vendored
View File

@ -4,13 +4,29 @@ set -euo pipefail
URBIT_VERSION="$(cat ./version)"
deps=" \
curl gmp sigsegv argon2 ed25519 ent h2o scrypt uv murmur3 secp256k1 \
softfloat3 aes_siv ssl crypto z lmdb ge-additions pthread \
# we require pkg-config metadata to statically link these
#
pkgc_deps=" \
libcurl \
libh2o \
liburcrypt-0 \
libuv \
openssl \
"
headers=" \
ivory.h ca-bundle.h \
deps=" \
ent \
gmp \
lmdb \
murmur3 \
pthread \
sigsegv \
softfloat3 \
"
headers=" \
ca-bundle.h \
ivory.h \
"
echo '#pragma once' >include/config.h
@ -22,6 +38,7 @@ defmacro () {
defmacro URBIT_VERSION "\"$URBIT_VERSION\""
opt_debug=
opt_static=
while test $# != 0
do
@ -32,6 +49,18 @@ do
--disable-debug)
opt_debug=
;;
--enable-static)
opt_static=1
;;
--enable-shared)
opt_static=
;;
--disable-static)
opt_static=
;;
--disable-shared)
opt_static=1
;;
*)
echo "unrecognized option: $1"
;;
@ -77,6 +106,10 @@ esac
# TODO Determine if the target cpu is little or big endian.
case $(tr A-Z a-z <<< $os) in
*mingw*)
# mingw builds are static-only
#
opt_static=1
# ensure required mingw packages are installed
mpkgs=(cmake curl gcc jq make)
pacman -S --needed autoconf automake-wrapper libtool patch ${mpkgs[@]/#/mingw-w64-x86_64-}
@ -88,7 +121,6 @@ case $(tr A-Z a-z <<< $os) in
deps="${deps/sigsegv}"
compat="${compat-} mingw"
PKG_CONFIG=false
;;
m1brew)
# ensure required packages are installed
@ -108,8 +140,6 @@ case $(tr A-Z a-z <<< $os) in
defmacro U3_OS_osx 1
deps="${deps/ssl/openssl}"
deps="${deps/uv/libuv}"
compat="${compat-} posix m1brew"
;;
*linux*)
@ -126,7 +156,7 @@ case $(tr A-Z a-z <<< $os) in
;;
*freebsd*)
defmacro U3_OS_bsd 1
osdeps="kvm"
deps="$deps kvm" # XX use new compat.mk pattern
;;
*openbsd*)
defmacro U3_OS_bsd 1
@ -137,19 +167,30 @@ case $(tr A-Z a-z <<< $os) in
;;
esac
for dep in ${osdeps-} $deps
do
LDFLAGS="${LDFLAGS-} $(${PKG_CONFIG-pkg-config} --libs $dep 2>/dev/null || echo -l$dep)"
CFLAGS="${CFLAGS-} $(${PKG_CONFIG-pkg-config} --cflags $dep 2>/dev/null || true)"
PKG_CONFIG="${PKG_CONFIG-pkg-config}"
if [ -n "${opt_static-}" ]
then
CFLAGS="${CFLAGS-} -static"
# XX can't set -static here due libuv's -ldl on MacOS
#
# LDFLAGS="${LDFLAGS-} -static"
PKG_CONFIG="$PKG_CONFIG --static"
fi
CFLAGS="${CFLAGS-} $($PKG_CONFIG --cflags $pkgc_deps)"
LDFLAGS="${LDFLAGS-} $($PKG_CONFIG --libs $pkgc_deps)"
for dep in $deps; do
LDFLAGS="${LDFLAGS-} -l$dep"
done
for header in $headers
do LDFLAGS="${LDFLAGS-} -I$header"
for header in $headers; do
CFLAGS="${CFLAGS-} -I$header"
done
compat="${compat-posix}"
for citem in $compat
do
for citem in $compat; do
CFLAGS="${CFLAGS-} -Icompat/$citem"
done

View File

@ -14,7 +14,6 @@
#include <openssl/ssl.h>
#include <h2o.h>
#include <curl/curl.h>
#include <argon2.h>
#include <vere/db/lmdb.h>
#include "ca-bundle.h"
@ -533,7 +532,6 @@ report(void)
LIBCURL_VERSION_MAJOR,
LIBCURL_VERSION_MINOR,
LIBCURL_VERSION_PATCH);
printf("argon2: 0x%x\n", ARGON2_VERSION_NUMBER);
}
/* _stop_exit(): exit immediately.
@ -769,6 +767,11 @@ main(c3_i argc,
}
#endif
// starting u3m configures OpenSSL memory functions, so we must do it
// before any OpenSSL allocations
//
u3m_boot_lite();
// Initialize OpenSSL for client and server
//
{

View File

@ -21,9 +21,16 @@
/* u3kc: tier 3 functions
*/
u3_noun
u3kc_con(u3_noun a,
u3_noun b);
/* u3kc_bex(): binary exponent.
*/
u3_noun
u3kc_bex(u3_atom);
/* u3kc_con(): binary loobean conjunction.
*/
u3_noun
u3kc_con(u3_noun a,
u3_noun b);
/* u3kc_mix(): binary xor.
*/

View File

@ -138,39 +138,12 @@
u3_noun u3qea_de(u3_atom, u3_atom);
u3_noun u3qea_en(u3_atom, u3_atom);
u3_noun u3qes_hsh(u3_atom, u3_atom, u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qes_hsl(u3_atom, u3_atom, u3_atom, u3_atom, u3_atom,
u3_atom, u3_atom, u3_atom);
u3_noun u3qes_pbk(u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qes_pbl(u3_atom, u3_atom, u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qe_shax(u3_atom);
u3_noun u3qe_shay(u3_atom, u3_atom);
u3_noun u3qe_shas(u3_atom, u3_atom);
u3_noun u3qe_shal(u3_atom, u3_atom);
u3_noun u3qe_sha1(u3_atom, u3_atom);
u3_atom u3qe_fein_ob(u3_atom pyn);
u3_atom u3qe_fynd_ob(u3_atom pyn);
u3_noun u3qe_hmac(u3_noun, u3_atom, u3_atom,
u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qe_argon2(u3_atom, u3_atom, u3_atom,
u3_atom, u3_atom, u3_atom,
u3_atom, u3_atom, u3_atom, u3_atom,
u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qe_blake(u3_atom wid, u3_atom dat,
u3_atom wik, u3_atom dak, u3_atom out);
u3_noun u3qe_ripe(u3_atom wid, u3_atom dat);
u3_noun u3qe_make(u3_atom has, u3_atom prv);
u3_noun u3qe_reco(u3_atom has, u3_atom sig_v, u3_atom sig_r, u3_atom sig_s);
u3_noun u3qe_sign(u3_atom has, u3_atom prv);
u3_noun u3qe_en_base16(u3_atom len, u3_atom dat);
u3_noun u3qe_de_base16(u3_atom inp);

View File

@ -2,8 +2,18 @@
**
*/
/* u3_log(): logs to stderr or redirects to configured function.
/* u3l_log(): logs to stderr or redirects to configured function.
*/
void
u3l_log(const char* format, ...)
__attribute__ ((format (printf, 1, 2)));
/* u3l_punt(): condtionally logs a named punt
* (e.g. "mint-punt" for the `name` "mint")
* when `pro` is u3_none, and returns pro.
* For use when a jet driver declines to handle
* a core, when the user should be somehow notified
* (e.g. in a cryptographic jet).
*/
u3_weak
u3l_punt(const char* name, u3_weak pro);

View File

@ -14,6 +14,10 @@
c3_d
u3m_boot_lite(void);
/* u3m_stop(): graceful shutdown cleanup. */
void
u3m_stop(void);
/* u3m_bail(): bail out. Does not return.
**
** Bail motes:

View File

@ -336,6 +336,33 @@
c3_y* c_y,
u3_atom d);
/* u3r_bytes_fit():
**
** Copy (len_w) bytes of (a) into (buf_y) if it fits, returning overage.
*/
c3_w
u3r_bytes_fit(c3_w len_w,
c3_y* buf_y,
u3_atom a);
/* u3r_bytes_alloc():
**
** Copy (len_w) bytes starting at (a_w) from (b) into a fresh allocation.
*/
c3_y*
u3r_bytes_alloc(c3_w a_w,
c3_w len_w,
u3_atom b);
/* u3r_bytes_all():
**
** Allocate and return a new byte array with all the bytes of (a),
** storing the length in (len_w).
*/
c3_y*
u3r_bytes_all(c3_w* len_w,
u3_atom a);
/* u3r_chop():
**
** Into the bloq space of `met`, from position `fum` for a
@ -374,6 +401,15 @@
u3r_word(c3_w a_w,
u3_atom b);
/* u3r_word_fit():
**
** Fill (out_w) with (a) if it fits, returning success.
*/
c3_t
u3r_word_fit(c3_w* out_w,
u3_atom a);
/* u3r_chub():
**
** Return double-word (a_w) of (b).

View File

@ -32,6 +32,7 @@
}
}
}
u3_noun
u3wa_dec(u3_noun cor)
{

View File

@ -3,35 +3,33 @@
*/
#include "all.h"
u3_noun
u3qc_bex(u3_atom a)
{
mpz_t a_mp;
/* functions
*/
u3_noun
u3qc_bex(u3_atom a)
{
mpz_t a_mp;
if ( !_(u3a_is_cat(a)) ) {
return u3m_bail(c3__fail);
}
else {
mpz_init_set_ui(a_mp, 1);
mpz_mul_2exp(a_mp, a_mp, a);
return u3i_mp(a_mp);
}
if ( !_(u3a_is_cat(a)) ) {
return u3m_bail(c3__fail);
}
u3_noun
u3wc_bex(u3_noun cor)
{
u3_noun a;
else {
mpz_init_set_ui(a_mp, 1);
mpz_mul_2exp(a_mp, a_mp, a);
if ( (u3_none == (a = u3r_at(u3x_sam, cor))) ||
(c3n == u3ud(a)) )
{
return u3m_bail(c3__exit);
} else {
return u3qc_bex(a);
}
return u3i_mp(a_mp);
}
}
u3_noun
u3kc_bex(u3_atom a)
{
u3_noun b = u3qc_bex(a);
u3z(a);
return b;
}
u3_noun
u3wc_bex(u3_noun cor)
{
u3_noun a = u3x_at(u3x_sam, cor);
return u3qc_bex(u3x_atom(a));
}

View File

@ -2,85 +2,49 @@
**
*/
#include "all.h"
#include <urcrypt.h>
#include <openssl/aes.h>
/* All of the CBC hoon truncates its key and prv inputs by passing them to
* the ECB functions, which truncate them, hence the raw u3r_bytes unpacking.
*/
typedef int (*urcrypt_cbc)(c3_y**,
size_t*,
c3_y*,
c3_y*,
urcrypt_realloc_t);
/* functions
*/
u3_noun
u3qea_cbca_en(u3_atom key,
static u3_atom
_cqea_cbc_help(c3_y* key_y, u3_atom iv, u3_atom msg, urcrypt_cbc low_f)
{
u3_atom ret;
c3_w met_w;
c3_y iv_y[16];
c3_y* msg_y = u3r_bytes_all(&met_w, msg);
size_t len = met_w;
u3r_bytes(0, 16, iv_y, iv);
if ( 0 != (*low_f)(&msg_y, &len, key_y, iv_y, &u3a_realloc) ) {
ret = u3_none;
}
else {
ret = u3i_bytes(len, msg_y);
}
u3a_free(msg_y);
return ret;
}
static u3_atom
_cqea_cbca_en(u3_atom key,
u3_atom iv,
u3_atom msg)
{
c3_y key_y[16];
c3_y iv_y[16];
c3_w len_msg_w;
c3_w len_out_w;
c3_y *msg_y;
c3_y *out_y;
u3_atom out;
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 16);
c3_assert(u3r_met(3, iv) <= 16);
len_msg_w = u3r_met(3, msg);
len_out_w = (len_msg_w % 16) == 0 ? len_msg_w : len_msg_w + (16 - (len_msg_w % 16));
len_msg_w = len_out_w;
msg_y = u3a_malloc(len_msg_w);
out_y = u3a_malloc(len_out_w);
{
int i = 15;
do {
key_y[i] = u3r_byte(15-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
iv_y[i] = u3r_byte(15-i, iv);
i--;
} while (i >= 0);
}
{
int i = len_msg_w - 1;
do {
msg_y[i] = u3r_byte((len_msg_w - 1)-i, msg);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_encrypt_key(key_y, 128, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_cbc_encrypt(msg_y, out_y, len_msg_w, &key_u, iv_y, AES_ENCRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = len_out_w - 1;
int j = 0;
c3_y tmp;
do {
tmp = out_y[i];
out_y[i] = out_y[j];
out_y[j] = tmp;
i--; j++;
} while (i > j);
}
out = u3i_bytes(len_out_w, out_y);
u3a_free(msg_y);
u3a_free(out_y);
return out;
u3r_bytes(0, 16, key_y, key);
return _cqea_cbc_help(key_y, iv, msg, &urcrypt_aes_cbca_en);
}
u3_noun
@ -93,84 +57,18 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_cbca_en(a, b, c);
return u3l_punt("cbca-en", _cqea_cbca_en(a, b, c));
}
}
u3_noun
u3qea_cbca_de(u3_atom key,
static u3_atom
_cqea_cbca_de(u3_atom key,
u3_atom iv,
u3_atom msg)
{
c3_y key_y[16];
c3_y iv_y[16];
c3_w len_msg_w;
c3_w len_out_w;
c3_y *msg_y;
c3_y *out_y;
u3_atom out;
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 16);
c3_assert(u3r_met(3, iv) <= 16);
len_msg_w = u3r_met(3, msg);
len_out_w = (len_msg_w % 16) == 0 ? len_msg_w : len_msg_w + (16 - (len_msg_w % 16));
len_msg_w = len_out_w;
msg_y = u3a_malloc(len_msg_w);
out_y = u3a_malloc(len_out_w);
{
int i = 15;
do {
key_y[i] = u3r_byte(15-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
iv_y[i] = u3r_byte(15-i, iv);
i--;
} while (i >= 0);
}
{
int i = len_msg_w - 1;
do {
msg_y[i] = u3r_byte((len_msg_w - 1)-i, msg);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_decrypt_key(key_y, 128, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_cbc_encrypt(msg_y, out_y, len_msg_w, &key_u, iv_y, AES_DECRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = len_out_w - 1;
int j = 0;
c3_y tmp;
do {
tmp = out_y[i];
out_y[i] = out_y[j];
out_y[j] = tmp;
i--; j++;
} while (i > j);
}
out = u3i_bytes(len_out_w, out_y);
u3a_free(msg_y);
u3a_free(out_y);
return out;
u3r_bytes(0, 16, key_y, key);
return _cqea_cbc_help(key_y, iv, msg, &urcrypt_aes_cbca_de);
}
u3_noun
@ -183,84 +81,18 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_cbca_de(a, b, c);
return u3l_punt("cbca-de", _cqea_cbca_de(a, b, c));
}
}
u3_noun
u3qea_cbcb_en(u3_atom key,
static u3_atom
_cqea_cbcb_en(u3_atom key,
u3_atom iv,
u3_atom msg)
{
c3_y key_y[24];
c3_y iv_y[16];
c3_w len_msg_w;
c3_w len_out_w;
c3_y *msg_y;
c3_y *out_y;
u3_atom out;
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 24);
c3_assert(u3r_met(3, iv) <= 16);
len_msg_w = u3r_met(3, msg);
len_out_w = (len_msg_w % 16) == 0 ? len_msg_w : len_msg_w + (16 - (len_msg_w % 16));
len_msg_w = len_out_w;
msg_y = u3a_malloc(len_msg_w);
out_y = u3a_malloc(len_out_w);
{
int i = 23;
do {
key_y[i] = u3r_byte(23-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
iv_y[i] = u3r_byte(15-i, iv);
i--;
} while (i >= 0);
}
{
int i = len_msg_w - 1;
do {
msg_y[i] = u3r_byte((len_msg_w - 1)-i, msg);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_encrypt_key(key_y, 192, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_cbc_encrypt(msg_y, out_y, len_msg_w, &key_u, iv_y, AES_ENCRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = len_out_w - 1;
int j = 0;
c3_y tmp;
do {
tmp = out_y[i];
out_y[i] = out_y[j];
out_y[j] = tmp;
i--; j++;
} while (i > j);
}
out = u3i_bytes(len_out_w, out_y);
u3a_free(msg_y);
u3a_free(out_y);
return out;
u3r_bytes(0, 24, key_y, key);
return _cqea_cbc_help(key_y, iv, msg, &urcrypt_aes_cbcb_en);
}
u3_noun
@ -273,84 +105,18 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_cbcb_en(a, b, c);
return u3l_punt("cbcb-en", _cqea_cbcb_en(a, b, c));
}
}
u3_noun
u3qea_cbcb_de(u3_atom key,
static u3_atom
_cqea_cbcb_de(u3_atom key,
u3_atom iv,
u3_atom msg)
{
c3_y key_y[24];
c3_y iv_y[16];
c3_w len_msg_w;
c3_w len_out_w;
c3_y *msg_y;
c3_y *out_y;
u3_atom out;
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 24);
c3_assert(u3r_met(3, iv) <= 16);
len_msg_w = u3r_met(3, msg);
len_out_w = (len_msg_w % 16) == 0 ? len_msg_w : len_msg_w + (16 - (len_msg_w % 16));
len_msg_w = len_out_w;
msg_y = u3a_malloc(len_msg_w);
out_y = u3a_malloc(len_out_w);
{
int i = 23;
do {
key_y[i] = u3r_byte(23-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
iv_y[i] = u3r_byte(15-i, iv);
i--;
} while (i >= 0);
}
{
int i = len_msg_w - 1;
do {
msg_y[i] = u3r_byte((len_msg_w - 1)-i, msg);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_decrypt_key(key_y, 192, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_cbc_encrypt(msg_y, out_y, len_msg_w, &key_u, iv_y, AES_DECRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = len_out_w - 1;
int j = 0;
c3_y tmp;
do {
tmp = out_y[i];
out_y[i] = out_y[j];
out_y[j] = tmp;
i--; j++;
} while (i > j);
}
out = u3i_bytes(len_out_w, out_y);
u3a_free(msg_y);
u3a_free(out_y);
return out;
u3r_bytes(0, 24, key_y, key);
return _cqea_cbc_help(key_y, iv, msg, &urcrypt_aes_cbcb_de);
}
u3_noun
@ -363,84 +129,18 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_cbcb_de(a, b, c);
return u3l_punt("cbcb-de", _cqea_cbcb_de(a, b, c));
}
}
u3_noun
u3qea_cbcc_en(u3_atom key,
static u3_atom
_cqea_cbcc_en(u3_atom key,
u3_atom iv,
u3_atom msg)
{
c3_y key_y[32];
c3_y iv_y[16];
c3_w len_msg_w;
c3_w len_out_w;
c3_y *msg_y;
c3_y *out_y;
u3_atom out;
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 32);
c3_assert(u3r_met(3, iv) <= 16);
len_msg_w = u3r_met(3, msg);
len_out_w = (len_msg_w % 16) == 0 ? len_msg_w : len_msg_w + (16 - (len_msg_w % 16));
len_msg_w = len_out_w;
msg_y = u3a_malloc(len_msg_w);
out_y = u3a_malloc(len_out_w);
{
int i = 31;
do {
key_y[i] = u3r_byte(31-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
iv_y[i] = u3r_byte(15-i, iv);
i--;
} while (i >= 0);
}
{
int i = len_msg_w - 1;
do {
msg_y[i] = u3r_byte((len_msg_w - 1)-i, msg);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_encrypt_key(key_y, 256, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_cbc_encrypt(msg_y, out_y, len_msg_w, &key_u, iv_y, AES_ENCRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = len_out_w - 1;
int j = 0;
c3_y tmp;
do {
tmp = out_y[i];
out_y[i] = out_y[j];
out_y[j] = tmp;
i--; j++;
} while (i > j);
}
out = u3i_bytes(len_out_w, out_y);
u3a_free(msg_y);
u3a_free(out_y);
return out;
u3r_bytes(0, 32, key_y, key);
return _cqea_cbc_help(key_y, iv, msg, &urcrypt_aes_cbcc_en);
}
u3_noun
@ -453,84 +153,18 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_cbcc_en(a, b, c);
return u3l_punt("cbcc-en", _cqea_cbcc_en(a, b, c));
}
}
u3_noun
u3qea_cbcc_de(u3_atom key,
static u3_atom
_cqea_cbcc_de(u3_atom key,
u3_atom iv,
u3_atom msg)
{
c3_y key_y[32];
c3_y iv_y[16];
c3_w len_msg_w;
c3_w len_out_w;
c3_y *msg_y;
c3_y *out_y;
u3_atom out;
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 32);
c3_assert(u3r_met(3, iv) <= 16);
len_msg_w = u3r_met(3, msg);
len_out_w = (len_msg_w % 16) == 0 ? len_msg_w : len_msg_w + (16 - (len_msg_w % 16));
len_msg_w = len_out_w;
msg_y = u3a_malloc(len_msg_w);
out_y = u3a_malloc(len_out_w);
{
int i = 31;
do {
key_y[i] = u3r_byte(31-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
iv_y[i] = u3r_byte(15-i, iv);
i--;
} while (i >= 0);
}
{
int i = len_msg_w - 1;
do {
msg_y[i] = u3r_byte((len_msg_w - 1)-i, msg);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_decrypt_key(key_y, 256, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_cbc_encrypt(msg_y, out_y, len_msg_w, &key_u, iv_y, AES_DECRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = len_out_w - 1;
int j = 0;
c3_y tmp;
do {
tmp = out_y[i];
out_y[i] = out_y[j];
out_y[j] = tmp;
i--; j++;
} while (i > j);
}
out = u3i_bytes(len_out_w, out_y);
u3a_free(msg_y);
u3a_free(out_y);
return out;
u3r_bytes(0, 32, key_y, key);
return _cqea_cbc_help(key_y, iv, msg, &urcrypt_aes_cbcc_de);
}
u3_noun
@ -543,6 +177,6 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_cbcc_de(a, b, c);
return u3l_punt("cbcc-de", _cqea_cbcc_de(a, b, c));
}
}

View File

@ -2,64 +2,38 @@
**
*/
#include "all.h"
#include <urcrypt.h>
#include <openssl/aes.h>
#include "aes_siv.h"
typedef int (*urcrypt_ecb)(c3_y*, c3_y[16], c3_y[16]);
/* functions
*/
u3_noun
u3qea_ecba_en(u3_atom key,
/* All of the ECB hoon truncates its key and blk inputs with +fe, in these
* jets we unpack with an unconditional u3r_bytes */
static u3_atom
_cqea_ecb_help(c3_y* key_y, u3_atom blk, urcrypt_ecb low_f)
{
c3_y blk_y[16], out_y[16];
u3r_bytes(0, 16, blk_y, blk);
if ( 0 != (*low_f)(key_y, blk_y, out_y) ) {
return u3_none;
}
else {
return u3i_bytes(16, out_y);
}
}
static u3_atom
_cqea_ecba_en(u3_atom key,
u3_atom blk)
{
c3_y key_y[16];
c3_y blk_y[16];
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 16);
c3_assert(u3r_met(3, blk) <= 16);
{
int i = 15;
do {
key_y[i] = u3r_byte(15-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
blk_y[i] = u3r_byte(15-i, blk);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_encrypt_key(key_y, 128, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_ecb_encrypt(blk_y, blk_y, &key_u, AES_ENCRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = 15;
int j = 0;
c3_y tmp;
do {
tmp = blk_y[i];
blk_y[i] = blk_y[j];
blk_y[j] = tmp;
i--; j++;
} while (i > j);
}
return u3i_bytes(16, blk_y);
u3r_bytes(0, 16, key_y, key);
return _cqea_ecb_help(key_y, blk, &urcrypt_aes_ecba_en);
}
u3_noun
@ -72,60 +46,17 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_ecba_en(a, b);
return u3l_punt("ecba-en", _cqea_ecba_en(a, b));
}
}
u3_noun
u3qea_ecba_de(u3_atom key,
static u3_atom
_cqea_ecba_de(u3_atom key,
u3_atom blk)
{
c3_y key_y[16];
c3_y blk_y[16];
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 16);
c3_assert(u3r_met(3, blk) <= 16);
{
int i = 15;
do {
key_y[i] = u3r_byte(15-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
blk_y[i] = u3r_byte(15-i, blk);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_decrypt_key(key_y, 128, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_ecb_encrypt(blk_y, blk_y, &key_u, AES_DECRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = 15;
int j = 0;
c3_y tmp;
do {
tmp = blk_y[i];
blk_y[i] = blk_y[j];
blk_y[j] = tmp;
i--; j++;
} while (i > j);
}
return u3i_bytes(16, blk_y);
u3r_bytes(0, 16, key_y, key);
return _cqea_ecb_help(key_y, blk, &urcrypt_aes_ecba_de);
}
u3_noun
@ -138,61 +69,17 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_ecba_de(a, b);
return u3l_punt("ecba-de", _cqea_ecba_de(a, b));
}
}
u3_noun
u3qea_ecbb_en(u3_atom key,
static u3_atom
_cqea_ecbb_en(u3_atom key,
u3_atom blk)
{
c3_y key_y[24];
c3_y blk_y[16];
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 24);
c3_assert(u3r_met(3, blk) <= 16);
{
int i = 23;
do {
key_y[i] = u3r_byte(23-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
blk_y[i] = u3r_byte(15-i, blk);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_encrypt_key(key_y, 192, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_ecb_encrypt(blk_y, blk_y, &key_u, AES_ENCRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = 15;
int j = 0;
c3_y tmp;
do {
tmp = blk_y[i];
blk_y[i] = blk_y[j];
blk_y[j] = tmp;
i--; j++;
} while (i > j);
}
return u3i_bytes(16, blk_y);
u3r_bytes(0, 24, key_y, key);
return _cqea_ecb_help(key_y, blk, &urcrypt_aes_ecbb_en);
}
u3_noun
@ -205,60 +92,17 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_ecbb_en(a, b);
return u3l_punt("ecbb-en", _cqea_ecbb_en(a, b));
}
}
u3_noun
u3qea_ecbb_de(u3_atom key,
static u3_atom
_cqea_ecbb_de(u3_atom key,
u3_atom blk)
{
c3_y key_y[24];
c3_y blk_y[16];
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 24);
c3_assert(u3r_met(3, blk) <= 16);
{
int i = 23;
do {
key_y[i] = u3r_byte(23-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
blk_y[i] = u3r_byte(15-i, blk);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_decrypt_key(key_y, 192, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_ecb_encrypt(blk_y, blk_y, &key_u, AES_DECRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = 15;
int j = 0;
c3_y tmp;
do {
tmp = blk_y[i];
blk_y[i] = blk_y[j];
blk_y[j] = tmp;
i--; j++;
} while (i > j);
}
return u3i_bytes(16, blk_y);
u3r_bytes(0, 24, key_y, key);
return _cqea_ecb_help(key_y, blk, &urcrypt_aes_ecbb_de);
}
u3_noun
@ -271,61 +115,17 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_ecbb_de(a, b);
return u3l_punt("ecbb-de", _cqea_ecbb_de(a, b));
}
}
u3_noun
u3qea_ecbc_en(u3_atom key,
static u3_atom
_cqea_ecbc_en(u3_atom key,
u3_atom blk)
{
c3_y key_y[32];
c3_y blk_y[16];
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 32);
c3_assert(u3r_met(3, blk) <= 16);
{
int i = 31;
do {
key_y[i] = u3r_byte(31-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
blk_y[i] = u3r_byte(15-i, blk);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_encrypt_key(key_y, 256, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_ecb_encrypt(blk_y, blk_y, &key_u, AES_ENCRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = 15;
int j = 0;
c3_y tmp;
do {
tmp = blk_y[i];
blk_y[i] = blk_y[j];
blk_y[j] = tmp;
i--; j++;
} while (i > j);
}
return u3i_bytes(16, blk_y);
u3r_bytes(0, 32, key_y, key);
return _cqea_ecb_help(key_y, blk, &urcrypt_aes_ecbc_en);
}
u3_noun
@ -338,60 +138,17 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_ecbc_en(a, b);
return u3l_punt("ecbc-en", _cqea_ecbc_en(a, b));
}
}
u3_noun
u3qea_ecbc_de(u3_atom key,
static u3_atom
_cqea_ecbc_de(u3_atom key,
u3_atom blk)
{
c3_y key_y[32];
c3_y blk_y[16];
AES_KEY key_u;
c3_assert(u3r_met(3, key) <= 32);
c3_assert(u3r_met(3, blk) <= 16);
{
int i = 31;
do {
key_y[i] = u3r_byte(31-i, key);
i--;
} while (i >= 0);
}
{
int i = 15;
do {
blk_y[i] = u3r_byte(15-i, blk);
i--;
} while (i >= 0);
}
if ( 0 != AES_set_decrypt_key(key_y, 256, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_ecb_encrypt(blk_y, blk_y, &key_u, AES_DECRYPT);
}
/* array reverse - we can write backwards u3i_bytes *
* in the unlikely event that this becomes a problem */
{
int i = 15;
int j = 0;
c3_y tmp;
do {
tmp = blk_y[i];
blk_y[i] = blk_y[j];
blk_y[j] = tmp;
i--; j++;
} while (i > j);
}
return u3i_bytes(16, blk_y);
u3r_bytes(0, 32, key_y, key);
return _cqea_ecb_help(key_y, blk, &urcrypt_aes_ecbc_de);
}
u3_noun
@ -404,6 +161,6 @@
c3n == u3ud(b) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_ecbc_de(a, b);
return u3l_punt("ecbc-de", _cqea_ecbc_de(a, b));
}
}

View File

@ -2,175 +2,182 @@
**
*/
#include "all.h"
#include <urcrypt.h>
#include <openssl/aes.h>
#include "aes_siv.h"
typedef int (*urcrypt_siv)(c3_y*, size_t,
urcrypt_aes_siv_data*, size_t,
c3_y*, c3_y[16], c3_y*);
/* functions
*/
static void u3r_bytes_reverse(c3_w a_w,
c3_w b_w,
c3_y* c_y, /* out */
u3_atom d) /* in */
*/
// soc_w = number of items
// mat_w = size in bytes of assoc array
// dat_w = size of allocation (array + atom storage)
static void
_cqea_measure_ads(u3_noun ads, c3_w* soc_w, c3_w *mat_w, c3_w *dat_w)
{
u3r_bytes(a_w, b_w, c_y, d);
c3_w i_w;
for (i_w = 0; i_w < ((b_w - a_w) / 2) ; i_w++) {
c3_y lo = c_y[i_w];
c3_y hi = c_y[b_w - i_w - 1];
c_y[i_w] = hi;
c_y[b_w - i_w - 1] = lo;
u3_noun i, t;
c3_w a_w, b_w, tmp_w, met_w;
for ( a_w = b_w = 0, t = ads; u3_nul != t; ++a_w ) {
u3x_cell(t, &i, &t);
if ( c3n == u3ud(i) ) {
u3m_bail(c3__exit);
return;
}
else {
tmp_w = b_w;
b_w += u3r_met(3, i);
if ( b_w < tmp_w ) {
u3m_bail(c3__fail);
return;
}
}
}
return;
// check for size overflows
tmp_w = a_w * sizeof(urcrypt_aes_siv_data);
if ( (tmp_w / a_w) != sizeof(urcrypt_aes_siv_data) ) {
u3m_bail(c3__fail);
}
else if ( (*dat_w = tmp_w + b_w) < tmp_w ) {
u3m_bail(c3__fail);
}
else {
*soc_w = a_w;
*mat_w = tmp_w;
}
}
static u3_noun _siv_en(c3_y* key_y,
c3_w keysize,
u3_noun ads,
u3_atom txt)
// assumes ads is a valid (list @) because it's already been measured
static void
_cqea_encode_ads(u3_noun ads,
c3_w mat_w,
urcrypt_aes_siv_data *dat_u)
{
AES_SIV_CTX* ctx = AES_SIV_CTX_new();
if ( 0 == ctx ) {
return u3_none;
c3_w met_w;
u3_noun i, t;
urcrypt_aes_siv_data *cur_u;
c3_y *dat_y = ((c3_y*) dat_u) + mat_w;
for ( cur_u = dat_u, t = ads; u3_nul != t; t = u3t(t), ++cur_u ) {
i = u3h(t);
met_w = u3r_met(3, i);
u3r_bytes(0, met_w, dat_y, i);
cur_u->length = met_w;
cur_u->bytes = dat_y;
dat_y += met_w;
}
}
if ( 0 == AES_SIV_Init(ctx, key_y, keysize) ) {
AES_SIV_CTX_free(ctx);
return u3_none;
static void
_cqea_ads_free(urcrypt_aes_siv_data *dat_u)
{
if ( NULL != dat_u ) {
u3a_free(dat_u);
}
}
while (u3_nul != ads) {
c3_w ad_w = u3r_met(3, u3h(ads));
c3_y* ad_y = u3a_malloc(ad_w);
u3r_bytes_reverse(0, ad_w, ad_y, u3h(ads));
c3_w ret = AES_SIV_AssociateData(ctx, ad_y, ad_w);
u3a_free(ad_y);
if ( 0 == ret ) {
AES_SIV_CTX_free(ctx);
return u3_none;
}
ads = u3t(ads);
static urcrypt_aes_siv_data*
_cqea_ads_alloc(u3_noun ads, c3_w *soc_w)
{
if ( !ads ) {
*soc_w = 0;
return NULL;
}
else {
c3_w mat_w, dat_w;
urcrypt_aes_siv_data *dat_u;
c3_w txt_w = u3r_met(3, txt);
c3_y* txt_y = u3a_malloc(txt_w);
u3r_bytes_reverse(0, txt_w, txt_y, txt);
const c3_w iv_w = 16;
c3_y iv_y[iv_w];
c3_y* out_y = u3a_malloc(txt_w);
if ( 0 == AES_SIV_EncryptFinal(ctx, iv_y, out_y, txt_y, txt_w) ) {
u3a_free(out_y);
u3a_free(txt_y);
AES_SIV_CTX_free(ctx);
return u3_none;
_cqea_measure_ads(ads, soc_w, &mat_w, &dat_w);
dat_u = u3a_malloc(dat_w);
_cqea_encode_ads(ads, mat_w, dat_u);
return dat_u;
}
}
static u3_noun
_cqea_siv_en(c3_y* key_y,
c3_w key_w,
u3_noun ads,
u3_atom txt,
urcrypt_siv low_f)
{
u3_noun ret;
c3_w txt_w, soc_w;
c3_y *txt_y, *out_y, iv_y[16];
urcrypt_aes_siv_data *dat_u;
dat_u = _cqea_ads_alloc(ads, &soc_w);
txt_y = u3r_bytes_all(&txt_w, txt);
out_y = u3a_malloc(txt_w);
ret = ( 0 != (*low_f)(txt_y, txt_w, dat_u, soc_w, key_y, iv_y, out_y) )
? u3_none
: u3nt(u3i_bytes(16, iv_y),
u3i_words(1, &txt_w),
u3i_bytes(txt_w, out_y));
u3a_free(txt_y);
AES_SIV_CTX_free(ctx);
// Read the first 16 bytes as the "iv"
u3_noun iv = u3i_bytes(16, iv_y);
u3_noun msg = u3i_bytes(txt_w, out_y);
// Reverse byte order for output
u3_noun rev_iv = u3kc_rev(3, iv_w, iv);
u3_noun rev_msg = u3kc_rev(3, txt_w, msg);
u3a_free(out_y);
return u3nt(rev_iv, u3i_words(1, &txt_w), rev_msg);
_cqea_ads_free(dat_u);
return ret;
}
static u3_noun _siv_de(c3_y* key_y,
c3_w keysize,
u3_noun ads,
u3_atom iv,
u3_atom len,
u3_atom txt)
static u3_noun
_cqea_siv_de(c3_y* key_y,
c3_w key_w,
u3_noun ads,
u3_atom iv,
u3_atom len,
u3_atom txt,
urcrypt_siv low_f)
{
AES_SIV_CTX* ctx = AES_SIV_CTX_new();
if ( 0 == ctx ) {
return u3_none;
c3_w txt_w;
if ( !u3r_word_fit(&txt_w, len) ) {
return u3m_bail(c3__fail);
}
else {
u3_noun ret;
c3_w soc_w;
c3_y *txt_y, *out_y, iv_y[16];
urcrypt_aes_siv_data *dat_u;
if ( 0 == AES_SIV_Init(ctx, key_y, keysize) ) {
AES_SIV_CTX_free(ctx);
return u3_none;
}
u3r_bytes(0, 16, iv_y, iv);
dat_u = _cqea_ads_alloc(ads, &soc_w);
txt_y = u3r_bytes_alloc(0, txt_w, txt);
out_y = u3a_malloc(txt_w);
if ( c3y == u3qa_gth(u3r_met(3, txt), len) ) {
return u3_none;
}
ret = ( 0 != (*low_f)(txt_y, txt_w, dat_u, soc_w, key_y, iv_y, out_y) )
? u3_none
: u3nc(0, u3i_bytes(txt_w, out_y));
while (u3_nul != ads) {
c3_w ad_w = u3r_met(3, u3h(ads));
c3_y* ad_y = u3a_malloc(ad_w);
u3r_bytes_reverse(0, ad_w, ad_y, u3h(ads));
c3_w ret = AES_SIV_AssociateData(ctx, ad_y, ad_w);
u3a_free(ad_y);
if ( 0 == ret ) {
AES_SIV_CTX_free(ctx);
return u3_none;
}
ads = u3t(ads);
}
c3_w txt_w = u3r_word(0, len);
c3_y* txt_y = u3a_malloc(txt_w);
u3r_bytes_reverse(0, txt_w, txt_y, txt);
const c3_w iv_w = 16;
c3_y iv_y[iv_w];
u3r_bytes_reverse(0, 16, iv_y, iv);
c3_y* out_y = u3a_malloc(txt_w);
if ( 0 == AES_SIV_DecryptFinal(ctx, out_y, iv_y, txt_y, txt_w) ) {
u3a_free(out_y);
u3a_free(txt_y);
AES_SIV_CTX_free(ctx);
u3a_free(out_y);
_cqea_ads_free(dat_u);
// Either decryption failed or signature bad or there was a memory
// error. Some of these are deterministic and some are not. return u3_none
// to fallback to the Nock implementation.
return u3_none;
return ret;
}
u3a_free(txt_y);
AES_SIV_CTX_free(ctx);
// Read the first 16 bytes as the "iv"
u3_noun msg = u3i_bytes(txt_w, out_y);
// Reverse byte order for output
u3_noun rev_msg = u3kc_rev(3, txt_w, msg);
u3a_free(out_y);
return u3nc(0, rev_msg);
}
// the siv* hoon doesn't explicitly check keysizes, but all of these functions
// have fixed maximum keysizes, so we will punt if we get a key that is too
// large.
u3_noun
u3qea_siva_en(u3_atom key,
static u3_noun
_cqea_siva_en(u3_atom key,
u3_noun ads,
u3_atom txt)
{
c3_y key_y[32];
if (u3r_met(3, key) > 32) {
if ( u3r_met(3, key) > 32 ) {
return u3_none;
}
u3r_bytes_reverse(0, 32, key_y, key);
return _siv_en(key_y, 32, ads, txt);
else {
c3_y key_y[32];
u3r_bytes(0, 32, key_y, key);
return _cqea_siv_en(key_y, 32, ads, txt, &urcrypt_aes_siva_en);
}
}
u3_noun
@ -185,24 +192,25 @@ u3wea_siva_en(u3_noun cor)
c3n == u3ud(txt) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_siva_en(key, ads, txt);
return u3l_punt("siva-en", _cqea_siva_en(key, ads, txt));
}
}
u3_noun
u3qea_siva_de(u3_atom key,
static u3_noun
_cqea_siva_de(u3_atom key,
u3_noun ads,
u3_atom iv,
u3_atom len,
u3_atom txt)
{
c3_y key_y[32];
if (u3r_met(3, key) > 32) {
if ( u3r_met(3, key) > 32 ) {
return u3_none;
}
u3r_bytes_reverse(0, 32, key_y, key);
return _siv_de(key_y, 32, ads, iv, len, txt);
else {
c3_y key_y[32];
u3r_bytes(0, 32, key_y, key);
return _cqea_siv_de(key_y, 32, ads, iv, len, txt, &urcrypt_aes_siva_de);
}
}
u3_noun
@ -220,25 +228,26 @@ u3wea_siva_de(u3_noun cor)
c3n == u3ud(txt) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_siva_de(key, ads, iv, len, txt);
return u3l_punt("siva-de", _cqea_siva_de(key, ads, iv, len, txt));
}
}
u3_noun
u3qea_sivb_en(u3_atom key,
static u3_noun
_cqea_sivb_en(u3_atom key,
u3_noun ads,
u3_atom txt)
{
c3_y key_y[48];
if (u3r_met(3, key) > 48) {
if ( u3r_met(3, key) > 48 ) {
return u3_none;
}
u3r_bytes_reverse(0, 48, key_y, key);
return _siv_en(key_y, 48, ads, txt);
else {
c3_y key_y[48];
u3r_bytes(0, 48, key_y, key);
return _cqea_siv_en(key_y, 48, ads, txt, &urcrypt_aes_sivb_en);
}
}
u3_noun
u3wea_sivb_en(u3_noun cor)
{
@ -251,24 +260,25 @@ u3wea_sivb_en(u3_noun cor)
c3n == u3ud(txt) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_sivb_en(key, ads, txt);
return u3l_punt("sivb-en", _cqea_sivb_en(key, ads, txt));
}
}
u3_noun
u3qea_sivb_de(u3_atom key,
static u3_noun
_cqea_sivb_de(u3_atom key,
u3_noun ads,
u3_atom iv,
u3_atom len,
u3_atom txt)
{
c3_y key_y[48];
if (u3r_met(3, key) > 48) {
if ( u3r_met(3, key) > 48 ) {
return u3_none;
}
u3r_bytes_reverse(0, 48, key_y, key);
return _siv_de(key_y, 48, ads, iv, len, txt);
else {
c3_y key_y[48];
u3r_bytes(0, 48, key_y, key);
return _cqea_siv_de(key_y, 48, ads, iv, len, txt, &urcrypt_aes_sivb_de);
}
}
u3_noun
@ -286,24 +296,23 @@ u3wea_sivb_de(u3_noun cor)
c3n == u3ud(txt) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_sivb_de(key, ads, iv, len, txt);
return u3l_punt("sivb-de", _cqea_sivb_de(key, ads, iv, len, txt));
}
}
u3_noun
u3qea_sivc_en(u3_atom key,
static u3_noun
_cqea_sivc_en(u3_atom key,
u3_noun ads,
u3_atom txt)
{
c3_y key_y[64];
if (u3r_met(3, key) > 64) {
if ( u3r_met(3, key) > 64 ) {
return u3_none;
}
u3r_bytes_reverse(0, 64, key_y, key);
return _siv_en(key_y, 64, ads, txt);
else {
c3_y key_y[64];
u3r_bytes(0, 64, key_y, key);
return _cqea_siv_en(key_y, 64, ads, txt, &urcrypt_aes_sivc_en);
}
}
u3_noun
@ -318,25 +327,25 @@ u3wea_sivc_en(u3_noun cor)
c3n == u3ud(txt) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_sivc_en(key, ads, txt);
return u3l_punt("sivc-en", _cqea_sivc_en(key, ads, txt));
}
}
u3_noun
u3qea_sivc_de(u3_atom key,
static u3_noun
_cqea_sivc_de(u3_atom key,
u3_noun ads,
u3_atom iv,
u3_atom len,
u3_atom txt)
{
c3_y key_y[64];
if ( u3r_met(3, key) > 64 ) {
return u3_none;
}
u3r_bytes_reverse(0, 64, key_y, key);
return _siv_de(key_y, 64, ads, iv, len, txt);
else {
c3_y key_y[64];
u3r_bytes(0, 64, key_y, key);
return _cqea_siv_de(key_y, 64, ads, iv, len, txt, &urcrypt_aes_sivc_de);
}
}
u3_noun
@ -354,6 +363,6 @@ u3wea_sivc_de(u3_noun cor)
c3n == u3ud(txt) ) {
return u3m_bail(c3__exit);
} else {
return u3qea_sivc_de(key, ads, iv, len, txt);
return u3l_punt("sivc-de", _cqea_sivc_de(key, ads, iv, len, txt));
}
}

View File

@ -1,121 +0,0 @@
/* j/5/aes.c
**
*/
#include "all.h"
#if defined(U3_OS_osx)
#include <CommonCrypto/CommonCryptor.h>
#else
#include <openssl/aes.h>
#endif
/* functions
*/
u3_noun
u3qea_en(u3_atom a,
u3_atom b)
{
c3_y a_y[32];
c3_y b_y[16];
#if defined(U3_OS_osx)
size_t siz_i = 0;
#else
AES_KEY key_u;
#endif
c3_assert(u3r_met(3, a) <= 32);
c3_assert(u3r_met(3, b) <= 16);
u3r_bytes(0, 32, a_y, a);
u3r_bytes(0, 16, b_y, b);
#if defined(U3_OS_osx)
if ( kCCSuccess != CCCrypt(kCCEncrypt, kCCAlgorithmAES128,
kCCOptionECBMode, a_y, kCCKeySizeAES256, 0, b_y,
16, b_y, 16, &siz_i) )
{
return u3m_bail(c3__exit);
}
else c3_assert(16 == siz_i);
#else
if ( 0 != AES_set_encrypt_key(a_y, 256, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_encrypt(b_y, b_y, &key_u);
}
#endif
return u3i_bytes(16, b_y);
}
u3_noun
u3wea_en(u3_noun cor)
{
u3_noun a, b;
if ( c3n == u3r_mean(cor, u3x_sam_2, &a, u3x_sam_3, &b, 0) ||
c3n == u3ud(a) ||
c3n == u3ud(b) )
{
return u3m_bail(c3__exit);
}
else {
return u3qea_en(a, b);
}
}
u3_noun
u3qea_de(u3_atom a,
u3_atom b)
{
c3_y a_y[32];
c3_y b_y[16];
#if defined(U3_OS_osx)
size_t siz_i = 0;
#else
AES_KEY key_u;
#endif
c3_assert(u3r_met(3, a) <= 32);
c3_assert(u3r_met(3, b) <= 16);
u3r_bytes(0, 32, a_y, a);
u3r_bytes(0, 16, b_y, b);
#if defined(U3_OS_osx)
if ( kCCSuccess != CCCrypt(kCCDecrypt, kCCAlgorithmAES128,
kCCOptionECBMode, a_y, kCCKeySizeAES256, 0, b_y,
16, b_y, 16, &siz_i) )
{
return u3m_bail(c3__exit);
}
else c3_assert(16 == siz_i);
#else
if ( 0 != AES_set_decrypt_key(a_y, 256, &key_u) ) {
return u3m_bail(c3__exit);
}
else {
AES_decrypt(b_y, b_y, &key_u);
}
#endif
return u3i_bytes(16, b_y);
}
u3_noun
u3wea_de(u3_noun cor)
{
u3_noun a, b;
if ( c3n == u3r_mean(cor, u3x_sam_2, &a, u3x_sam_3, &b, 0) ||
c3n == u3ud(a) ||
c3n == u3ud(b) )
{
return u3m_bail(c3__exit);
}
else {
return u3qea_de(a, b);
}
}

View File

@ -2,104 +2,108 @@
**
*/
#include "all.h"
#include <argon2.h>
#include <urcrypt.h>
/* helpers
*/
int argon2_alloc(uint8_t** output, size_t bytes)
static int
argon2_alloc(uint8_t** output, size_t bytes)
{
*output = u3a_malloc(bytes);
return 1;
}
void argon2_free(uint8_t* memory, size_t bytes)
static void
argon2_free(uint8_t* memory, size_t bytes)
{
u3a_free(memory);
}
static c3_t
_cqear_unpack_type(c3_y* out, u3_atom in)
{
switch ( in ) {
default:
return 0;
case c3__d:
*out = urcrypt_argon2_d;
return 1;
case c3__i:
*out = urcrypt_argon2_i;
return 1;
case c3__id:
*out = urcrypt_argon2_id;
return 1;
case c3__u:
*out = urcrypt_argon2_u;
return 1;
}
}
/* functions
*/
u3_noun
u3qe_argon2( // configuration params,
static u3_atom
_cqe_argon2( // configuration params,
u3_atom out, u3_atom type, u3_atom version,
u3_atom threads, u3_atom mem_cost, u3_atom time_cost,
u3_atom wik, u3_atom key, u3_atom wix, u3_atom extra,
// input params
u3_atom wid, u3_atom dat, u3_atom wis, u3_atom sat )
{
c3_assert( _(u3a_is_cat(out)) && _(u3a_is_cat(type)) &&
_(u3a_is_cat(version)) && _(u3a_is_cat(threads)) &&
_(u3a_is_cat(mem_cost)) && _(u3a_is_cat(time_cost)) &&
_(u3a_is_cat(wik)) && _(u3a_is_cat(wix)) &&
_(u3a_is_cat(wid)) && _(u3a_is_cat(wis)) );
c3_y typ_u;
c3_w out_w, wik_w, wix_w, wid_w, wis_w, ver_w, ted_w, mem_w, tim_w;
// flip endianness for argon2
key = u3qc_rev(3, wik, key);
extra = u3qc_rev(3, wix, extra);
dat = u3qc_rev(3, wid, dat);
sat = u3qc_rev(3, wis, sat);
// atoms to byte arrays
c3_y bytes_key[wik];
u3r_bytes(0, wik, bytes_key, key);
c3_y bytes_extra[wix];
u3r_bytes(0, wix, bytes_extra, extra);
c3_y bytes_dat[wid];
u3r_bytes(0, wid, bytes_dat, dat);
c3_y bytes_sat[wis];
u3r_bytes(0, wis, bytes_sat, sat);
c3_y outhash[out];
argon2_context context = {
outhash, // output array, at least [digest length] in size
out, // digest length
bytes_dat, // password array
wid, // password length
bytes_sat, // salt array
wis, // salt length
bytes_key, wik, // optional secret data
bytes_extra, wix, // optional associated data
time_cost, mem_cost, threads, threads, // performance cost configuration
version, // algorithm version
argon2_alloc, // custom memory allocation function
argon2_free, // custom memory deallocation function
ARGON2_DEFAULT_FLAGS // by default only internal memory is cleared
};
int argon_res;
switch ( type ) {
default:
u3l_log("\nunjetted argon2 variant %i\n", type);
u3m_bail(c3__exit);
break;
//
case c3__d:
argon_res = argon2d_ctx(&context);
break;
//
case c3__i:
argon_res = argon2i_ctx(&context);
break;
//
case c3__id:
argon_res = argon2id_ctx(&context);
break;
//
case c3__u:
argon_res = argon2u_ctx(&context);
break;
if ( !(u3r_word_fit(&out_w, out) &&
u3r_word_fit(&wik_w, wik) &&
u3r_word_fit(&wix_w, wix) &&
u3r_word_fit(&wid_w, wid) &&
u3r_word_fit(&wis_w, wis)) ) {
// too big to allocate
return u3m_bail(c3__fail);
}
if ( ARGON2_OK != argon_res ) {
u3l_log("\nargon2 error: %s\n", argon2_error_message(argon_res));
u3m_bail(c3__exit);
else if ( !(_cqear_unpack_type(&typ_u, type) &&
u3r_word_fit(&ver_w, version) &&
u3r_word_fit(&ted_w, threads) &&
u3r_word_fit(&mem_w, mem_cost) &&
u3r_word_fit(&tim_w, time_cost)) ) {
return u3_none;
}
else {
u3_atom ret;
c3_y *key_y = u3r_bytes_alloc(0, wik_w, key),
*ex_y = u3r_bytes_alloc(0, wix_w, extra),
*dat_y = u3r_bytes_alloc(0, wid_w, dat),
*sat_y = u3r_bytes_alloc(0, wis_w, sat),
*out_y = u3a_malloc(out_w);
u3z(key); u3z(extra); u3z(dat); u3z(sat);
return u3kc_rev(3, out, u3i_bytes(out, outhash));
const c3_c* err_c = urcrypt_argon2(
typ_u, ver_w, ted_w, mem_w, tim_w,
wik_w, key_y,
wix_w, ex_y,
wid_w, dat_y,
wis_w, sat_y,
out_w, out_y,
&argon2_alloc,
&argon2_free);
u3a_free(key_y);
u3a_free(ex_y);
u3a_free(dat_y);
u3a_free(sat_y);
if ( NULL == err_c ) {
ret = u3i_bytes(out_w, out_y);
}
else {
ret = u3_none;
u3l_log("argon2-error: %s\r\n", err_c);
}
u3a_free(out_y);
return ret;
}
}
u3_noun
@ -138,9 +142,10 @@
return u3m_bail(c3__exit);
}
else {
return u3qe_argon2(out, type, version,
threads, mem_cost, time_cost,
wik, key, wix, extra,
wid, dat, wis, sat);
return u3l_punt("argon2",
_cqe_argon2(out, type, version,
threads, mem_cost, time_cost,
wik, key, wix, extra,
wid, dat, wis, sat));
}
}

View File

@ -2,52 +2,41 @@
**
*/
#include "all.h"
#include <argon2.h>
#include <blake2.h>
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qe_blake(u3_atom wid, u3_atom dat,
static u3_atom
_cqe_blake(u3_atom wid, u3_atom dat,
u3_atom wik, u3_atom dak,
u3_atom out)
{
c3_assert(_(u3a_is_cat(wid)) && _(u3a_is_cat(wik)) && _(u3a_is_cat(out)));
// flip endianness for the internal blake2b function
dat = u3qc_rev(3, wid, dat);
dak = u3qc_rev(3, wik, dak);
c3_y* dat_y = (c3_y*)u3a_malloc(wid);
u3r_bytes(0, wid, (void*)dat_y, dat);
c3_y* dak_y = (c3_y*)u3a_malloc(wik);
u3r_bytes(0, wik, (void*)dak_y, dak);
int ret;
c3_y out_y[64];
ret = blake2b(out_y, // OUT: output
out, // IN: max output size
dat_y, // IN: msg body
wid, // IN: msg len
dak_y, // IN: key body
wik); // IN: key len
/* free() BEFORE checking error code;
we don't want to leak memory if we return early
*/
u3a_free(dat_y);
u3a_free(dak_y);
if ( 0 != ret )
{
u3l_log("\rblake jet: cryto lib error\n");
return u3m_bail(c3__exit);
c3_w wid_w;
if ( !u3r_word_fit(&wid_w, wid) ) {
// impossible to represent an atom this large
return u3m_bail(c3__fail);
}
else {
// the hoon adjusts these widths to its liking
int err;
u3_atom ret;
c3_y out_y[64], dak_y[64];
c3_w wik_w = c3_min(wik, 64),
out_w = c3_max(1, c3_min(out, 64));
c3_y *dat_y = u3r_bytes_alloc(0, wid_w, dat);
return u3kc_rev(3, out, u3i_bytes(out, out_y));
u3r_bytes(0, wik_w, dak_y, dak);
err = urcrypt_blake2(wid_w, dat_y, wik_w, dak_y, out_w, out_y);
u3a_free(dat_y);
if ( 0 == err ) {
return u3i_bytes(out_w, out_y);
}
else {
return u3_none;
}
}
}
u3_noun
@ -64,9 +53,8 @@
u3r_cell(key, &wik, &dak) || u3ud(wik) || u3ud(dak) ||
u3ud(out) )
{
u3l_log("\rblake jet: arguments error\n");
return u3m_bail(c3__exit);
} else {
return u3qe_blake(wid, dat, wik, dak, out);
return u3l_punt("blake", _cqe_blake(wid, dat, wik, dak, out));
}
}

View File

@ -2,88 +2,28 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <ge.h>
#include "ge-additions.h"
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qc_add_double_scalarmult(u3_atom a,
u3_atom a_point,
static u3_atom
_cqee_add_double_scalarmult(u3_atom a,
u3_atom b,
u3_atom b_point)
u3_atom c,
u3_atom d)
{
c3_y met_w;
c3_y a_y[32], b_y[32], c_y[32], d_y[32], out_y[32];
met_w = u3r_met(3, a);
if (met_w > 32) {
return u3m_bail(c3__fail);
if ( (0 != u3r_bytes_fit(32, a_y, a)) ||
(0 != u3r_bytes_fit(32, b_y, b)) ||
(0 != u3r_bytes_fit(32, c_y, c)) ||
(0 != u3r_bytes_fit(32, d_y, d)) ||
(0 != urcrypt_ed_add_double_scalarmult(a_y, b_y, c_y, d_y, out_y)) ) {
return u3_none;
}
c3_y a_y[32];
memset(a_y, 0, 32);
u3r_bytes(0, met_w, a_y, a);
met_w = u3r_met(3, a_point);
if (met_w > 32) {
return u3m_bail(c3__fail);
else {
return u3i_bytes(32, out_y);
}
c3_y a_point_y[32];
memset(a_point_y, 0, 32);
u3r_bytes(0, met_w, a_point_y, a_point);
met_w = u3r_met(3, b);
if (met_w > 32) {
return u3m_bail(c3__fail);
}
c3_y b_y[32];
memset(b_y, 0, 32);
u3r_bytes(0, met_w, b_y, b);
met_w = u3r_met(3, b_point);
if (met_w > 32) {
return u3m_bail(c3__fail);
}
c3_y b_point_y[32];
memset(b_point_y, 0, 32);
u3r_bytes(0, met_w, b_point_y, b_point);
ge_p3 A;
if (ge_frombytes_negate_vartime(&A, a_point_y) != 0) {
return u3m_bail(c3__exit);
}
ge_p3 B;
if (ge_frombytes_negate_vartime(&B, b_point_y) != 0) {
return u3m_bail(c3__exit);
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(A.X, A.X);
fe_neg(A.T, A.T);
fe_neg(B.X, B.X);
fe_neg(B.T, B.T);
// Perform the multiplications of a*A and b*B
ge_p3 a_result, b_result;
ge_scalarmult(&a_result, a_y, &A);
ge_scalarmult(&b_result, b_y, &B);
// Sum those two points
ge_cached b_result_cached;
ge_p3_to_cached(&b_result_cached, &b_result);
ge_p1p1 sum;
ge_add(&sum, &a_result, &b_result_cached);
ge_p3 final_result;
ge_p1p1_to_p3(&final_result, &sum);
c3_y output_y[32];
ge_p3_tobytes(output_y, &final_result);
return u3i_bytes(32, output_y);
}
u3_noun
@ -101,6 +41,7 @@
{
return u3m_bail(c3__exit);
} else {
return u3qc_add_double_scalarmult(a, b, c, d);
return u3l_punt("add-double-scalarmult",
_cqee_add_double_scalarmult(a, b, c, d));
}
}

View File

@ -2,61 +2,26 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <ge.h>
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qc_add_scalarmult_scalarmult_base(u3_atom a,
u3_atom a_point,
u3_atom b)
static u3_atom
_cqee_add_scalarmult_scalarmult_base(u3_atom a,
u3_atom b,
u3_atom c)
{
c3_y met_w;
c3_y a_y[32], b_y[32], c_y[32], out_y[32];
met_w = u3r_met(3, a);
if (met_w > 32) {
return u3m_bail(c3__fail);
if ( (0 != u3r_bytes_fit(32, a_y, a)) ||
(0 != u3r_bytes_fit(32, b_y, b)) ||
(0 != u3r_bytes_fit(32, c_y, c)) ||
(0 != urcrypt_ed_add_scalarmult_scalarmult_base(a_y, b_y, c_y, out_y)) ) {
return u3_none;
}
c3_y a_y[32];
memset(a_y, 0, 32);
u3r_bytes(0, met_w, a_y, a);
met_w = u3r_met(3, a_point);
if (met_w > 32) {
return u3m_bail(c3__fail);
else {
return u3i_bytes(32, out_y);
}
c3_y a_point_y[32];
memset(a_point_y, 0, 32);
u3r_bytes(0, met_w, a_point_y, a_point);
met_w = u3r_met(3, b);
if (met_w > 32) {
return u3m_bail(c3__fail);
}
c3_y b_y[32];
memset(b_y, 0, 32);
u3r_bytes(0, met_w, b_y, b);
ge_p3 A;
if (ge_frombytes_negate_vartime(&A, a_point_y) != 0) {
return u3m_bail(c3__exit);
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(A.X, A.X);
fe_neg(A.T, A.T);
ge_p2 r;
ge_double_scalarmult_vartime(&r, a_y, &A, b_y);
c3_y output_y[32];
ge_tobytes(output_y, &r);
return u3i_bytes(32, output_y);
}
u3_noun
@ -73,6 +38,7 @@
{
return u3m_bail(c3__exit);
} else {
return u3qc_add_scalarmult_scalarmult_base(a, b, c);
return u3l_punt("add-scalarmult-scalarmult-base",
_cqee_add_scalarmult_scalarmult_base(a, b, c));
}
}

View File

@ -2,64 +2,25 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <ge.h>
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qc_point_add(u3_atom a,
static u3_atom
_cqee_point_add(u3_atom a,
u3_atom b)
{
c3_y met_w;
c3_y a_y[32], b_y[32], out_y[32];
met_w = u3r_met(3, a);
if (met_w > 32) {
return u3m_bail(c3__fail);
if ( (0 != u3r_bytes_fit(32, a_y, a)) ||
(0 != u3r_bytes_fit(32, b_y, b)) ||
(0 != urcrypt_ed_point_add(a_y, b_y, out_y)) ) {
return u3_none;
}
c3_y a_y[32];
memset(a_y, 0, 32);
u3r_bytes(0, met_w, a_y, a);
met_w = u3r_met(3, b);
if (met_w > 32) {
return u3m_bail(c3__fail);
else {
return u3i_bytes(32, out_y);
}
c3_y b_y[32];
memset(b_y, 0, 32);
u3r_bytes(0, met_w, b_y, b);
ge_p3 A;
if (ge_frombytes_negate_vartime(&A, a_y) != 0) {
return u3m_bail(c3__exit);
}
ge_p3 B;
if (ge_frombytes_negate_vartime(&B, b_y) != 0) {
return u3m_bail(c3__exit);
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(A.X, A.X);
fe_neg(A.T, A.T);
fe_neg(B.X, B.X);
fe_neg(B.T, B.T);
ge_cached b_cached;
ge_p3_to_cached(&b_cached, &B);
ge_p1p1 sum;
ge_add(&sum, &A, &b_cached);
ge_p3 result;
ge_p1p1_to_p3(&result, &sum);
c3_y output_y[32];
ge_p3_tobytes(output_y, &result);
return u3i_bytes(32, output_y);
}
u3_noun
@ -74,6 +35,6 @@
{
return u3m_bail(c3__exit);
} else {
return u3qc_point_add(a, b);
return u3l_punt("point-add", _cqee_point_add(a, b));
}
}

View File

@ -2,32 +2,35 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <urcrypt.h>
/* functions
*/
static u3_atom
_cqee_puck(u3_atom sed)
{
c3_y sed_y[32];
if ( 0 != u3r_bytes_fit(32, sed_y, sed) ) {
// hoon explicitly crashes on mis-size
return u3m_bail(c3__exit);
}
else {
c3_y pub_y[32];
urcrypt_ed_puck(sed_y, pub_y);
return u3i_bytes(32, pub_y);
}
}
u3_noun
u3wee_puck(u3_noun cor)
{
c3_y pub_y[32];
c3_y sec_y[64];
c3_y sed_y[32];
c3_w met_w;
u3_noun a = u3r_at(u3x_sam, cor);
if ( (u3_none == a) || (c3n == u3ud(a)) ) {
return u3m_bail(c3__exit);
}
met_w = u3r_met(3, a);
if ( met_w > 32 ) {
return u3m_bail(c3__exit);
else {
return _cqee_puck(a);
}
memset(sed_y, 0, 32);
u3r_bytes(0, met_w, sed_y, a);
ed25519_create_keypair(pub_y, sec_y, sed_y);
return u3i_bytes(32, pub_y);
}

View File

@ -2,51 +2,25 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include "ge-additions.h"
#include "urcrypt.h"
/* functions
*/
u3_noun
u3qc_scalarmult(u3_atom a,
static u3_atom
_cqee_scalarmult(u3_atom a,
u3_atom b)
{
c3_y met_w;
c3_y a_y[32], b_y[32], out_y[32];
met_w = u3r_met(3, a);
if (met_w > 32) {
return u3m_bail(c3__exit);
if ( (0 != u3r_bytes_fit(32, a_y, a)) ||
(0 != u3r_bytes_fit(32, b_y, b)) ||
(0 != urcrypt_ed_scalarmult(a_y, b_y, out_y)) ) {
// hoon does not check size of inputs
return u3_none;
}
c3_y a_y[32];
memset(a_y, 0, 32);
u3r_bytes(0, met_w, a_y, a);
met_w = u3r_met(3, b);
if (met_w > 32) {
return u3m_bail(c3__exit);
else {
return u3i_bytes(32, out_y);
}
c3_y b_y[32];
memset(b_y, 0, 32);
u3r_bytes(0, met_w, b_y, b);
ge_p3 B;
if (ge_frombytes_negate_vartime(&B, b_y) != 0) {
return u3m_bail(c3__exit);
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(B.X, B.X);
fe_neg(B.T, B.T);
ge_p3 result;
ge_scalarmult(&result, a_y, &B);
c3_y output_y[32];
ge_p3_tobytes(output_y, &result);
return u3i_bytes(32, output_y);
}
u3_noun
@ -61,6 +35,6 @@
{
return u3m_bail(c3__exit);
} else {
return u3qc_scalarmult(a, b);
return u3l_punt("scalarmult", _cqee_scalarmult(a, b));
}
}

View File

@ -2,35 +2,34 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <ge.h>
#include <urcrypt.h>
/* functions
*/
static u3_atom
_cqee_scalarmult_base(u3_atom a)
{
c3_y a_y[32];
if ( 0 != u3r_bytes_fit(32, a_y, a) ) {
return u3_none;
}
else {
c3_y out_y[32];
urcrypt_ed_scalarmult_base(a_y, out_y);
return u3i_bytes(32, out_y);
}
}
u3_noun
u3wee_scalarmult_base(u3_noun cor)
{
u3_noun scalar = u3r_at(u3x_sam, cor);
u3_noun a = u3r_at(u3x_sam, cor);
if ( (u3_none == scalar) || (c3n == u3ud(scalar)) ) {
if ( (u3_none == a) || (c3n == u3ud(a)) ) {
return u3m_bail(c3__exit);
}
c3_w met_w = u3r_met(3, scalar);
if ( met_w > 32 ) {
return u3m_bail(c3__fail);
else {
return u3l_punt("scalarmult-base", _cqee_scalarmult_base(a));
}
c3_y scalar_y[32];
memset(scalar_y, 0, 32);
u3r_bytes(0, met_w, scalar_y, scalar);
ge_p3 R;
ge_scalarmult_base(&R, scalar_y);
c3_y output_y[32];
ge_p3_tobytes(output_y, &R);
return u3i_bytes(32, output_y);
}

View File

@ -2,33 +2,26 @@
**
*/
#include "all.h"
#include <urcrypt.h>
#include <ed25519.h>
u3_noun
u3qee_shar(u3_atom pub, u3_atom sek)
static u3_atom
_cqee_shar(u3_atom pub, u3_atom sek)
{
c3_y pub_y[32], sek_y[32], self_y[32], exp_y[64], shr_y[32];
c3_w met_pub_w, met_sek_w;
c3_y pub_y[32], sek_y[32];
met_pub_w = u3r_met(3, pub);
met_sek_w = u3r_met(3, sek);
if ( (met_pub_w > 32) || (met_sek_w > 32) ) {
if ( 0 != u3r_bytes_fit(32, pub_y, pub) ) {
// pub is not size checked in the hoon
return u3_none;
}
else if ( 0 != u3r_bytes_fit(32, sek_y, sek) ) {
// sek explicitly bails through suck
return u3m_bail(c3__exit);
}
u3r_bytes(0, 32, pub_y, pub);
u3r_bytes(0, 32, sek_y, sek);
memset(self_y, 0, 32);
memset(exp_y, 0, 64);
memset(shr_y, 0, 32);
ed25519_create_keypair(self_y, exp_y, sek_y);
ed25519_key_exchange(shr_y, pub_y, exp_y);
return u3i_bytes(32, shr_y);
else {
c3_y shr_y[32];
urcrypt_ed_shar(pub_y, sek_y, shr_y);
return u3i_bytes(32, shr_y);
}
}
u3_noun
@ -42,6 +35,6 @@
{
return u3m_bail(c3__exit);
} else {
return u3qee_shar(pub, sek);
return u3l_punt("shar", _cqee_shar(pub, sek));
}
}

View File

@ -2,40 +2,30 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <urcrypt.h>
/* functions
*/
static u3_noun
static u3_atom
_cqee_sign(u3_noun a,
u3_noun b)
{
c3_y sig_y[64];
c3_y sed_y[32];
c3_y pub_y[64];
c3_y sec_y[64];
c3_w mesm_w = u3r_met(3, a);
c3_w mess_w = u3r_met(3, b);
if ( 0 != u3r_bytes_fit(32, sed_y, b) ) {
// hoon calls suck, which calls puck, which crashes
return u3m_bail(c3__exit);
}
else {
c3_y sig_y[64];
c3_w met_w;
c3_y* mes_y = u3r_bytes_all(&met_w, a);
c3_y* mes_y = 0;
urcrypt_ed_sign(mes_y, met_w, sed_y, sig_y);
u3a_free(mes_y);
memset(sig_y, 0, 64);
memset(sed_y, 0, 32);
memset(pub_y, 0, 64);
memset(sec_y, 0, 64);
mes_y = u3a_malloc(mesm_w);
u3r_bytes(0, mesm_w, mes_y, a);
u3r_bytes(0, mess_w, sed_y, b);
ed25519_create_keypair(pub_y, sec_y, sed_y);
ed25519_sign(sig_y, mes_y, mesm_w, pub_y, sec_y);
u3a_free(mes_y);
return u3i_bytes(64, sig_y);
return u3i_bytes(64, sig_y);
}
}
u3_noun

View File

@ -2,36 +2,30 @@
**
*/
#include "all.h"
#include <ed25519.h>
#include <urcrypt.h>
/* functions
*/
static u3_noun
static u3_atom
_cqee_veri(u3_noun s,
u3_noun m,
u3_noun pk)
{
c3_y sig_y[64];
c3_y pub_y[32];
c3_w ret;
c3_y* mes_y;
c3_y sig_y[64], pub_y[32];
c3_w mesm_w = u3r_met(3, m);
if ( (0 != u3r_bytes_fit(64, sig_y, s)) ||
(0 != u3r_bytes_fit(32, pub_y, pk)) ) {
// hoon checks sizes, but weirdly and without crashes
return u3_none;
}
else {
c3_w met_w;
c3_y* mes_y = u3r_bytes_all(&met_w, m);
c3_t val_t = urcrypt_ed_veri(mes_y, met_w, pub_y, sig_y);
u3a_free(mes_y);
memset(sig_y, 0, 64);
memset(pub_y, 0, 32);
mes_y = u3a_malloc(mesm_w);
u3r_bytes(0, 64, sig_y, s);
u3r_bytes(0, 32, pub_y, pk);
u3r_bytes(0, mesm_w, mes_y, m);
ret = ed25519_verify(sig_y, mes_y, mesm_w, pub_y) == 1 ? c3y : c3n;
u3a_free(mes_y);
return ret;
return val_t ? c3y : c3n;
}
}
u3_noun
@ -43,6 +37,6 @@
u3x_sam_7, &c, 0) ) {
return u3m_bail(c3__fail);
} else {
return _cqee_veri(a, b, c);
return u3l_punt("veri", _cqee_veri(a, b, c));
}
}

View File

@ -2,62 +2,31 @@
**
*/
#include "all.h"
#include <openssl/evp.h>
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qe_ripe(u3_atom wid, u3_atom dat)
static u3_atom
_cqe_ripe(u3_atom wid, u3_atom dat)
{
c3_assert(_(u3a_is_cat(wid)));
dat = u3qc_rev(3, wid, dat);
c3_w len_w;
if ( !u3r_word_fit(&len_w, wid) ) {
return u3m_bail(c3__fail);
}
else {
u3_atom ret;
c3_y out_y[20];
c3_y *dat_y = u3r_bytes_alloc(0, len_w, dat);
c3_y* dat_y = (c3_y*)u3a_malloc(wid); // msg body
u3r_bytes(0, wid, (void*)dat_y, dat);
ret = ( 0 == urcrypt_ripemd160(dat_y, len_w, out_y) )
? u3i_bytes(20, out_y)
: u3_none;
const EVP_MD* rip_u = EVP_ripemd160(); // ripem algorithm
EVP_MD_CTX* con_u = EVP_MD_CTX_create();
/* perform signature
*/
c3_y sib_y[20]; // signature body
c3_w sil_w; // signature length
c3_w ret_w; // return code
ret_w = EVP_DigestInit_ex(con_u, rip_u, NULL);
if ( 1 != ret_w ) {
u3a_free(dat_y);
EVP_MD_CTX_destroy(con_u);
u3l_log("\rripe jet: crypto library fail 1\n");
return u3m_bail(c3__fail);
return ret;
}
ret_w = EVP_DigestUpdate(con_u, (void*)dat_y, wid);
u3a_free(dat_y);
if (1 != ret_w) {
EVP_MD_CTX_destroy(con_u);
u3l_log("\rripe jet: crypto library fail 2\n");
return u3m_bail(c3__fail);
}
ret_w = EVP_DigestFinal_ex(con_u, sib_y, &sil_w);
if ( 1 != ret_w ) {
EVP_MD_CTX_destroy(con_u);
u3l_log("\rripe jet: crypto library fail 3\n");
return u3m_bail(c3__fail);
}
EVP_MD_CTX_destroy(con_u);
/* endian conversion;
turn into noun for return
*/
return u3kc_rev(3, sil_w, u3i_bytes(sil_w, sib_y));
}
u3_noun
u3we_ripe(u3_noun cor)
{
@ -68,10 +37,9 @@
u3ud(wid) || u3ud(dat))
)
{
u3l_log("\rripe jet: argument error\n");
return u3m_bail(c3__exit);
}
else {
return u3qe_ripe(wid, dat);
return u3l_punt("ripe", _cqe_ripe(wid, dat));
}
}

View File

@ -2,48 +2,88 @@
**
*/
#include "all.h"
#include <stdint.h>
#include <errno.h>
#include <libscrypt.h>
#include <sha256.h>
static int _crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint32_t, uint32_t, uint8_t *, size_t);
#include <urcrypt.h>
/* functions
*/
static u3_weak
_cqes_hs(u3_atom p, c3_w pwd_w,
u3_atom s, c3_w sal_w,
u3_atom n,
u3_atom r,
u3_atom z,
u3_atom d)
{
u3_noun chk;
c3_w out_w;
u3_noun
u3qes_hsl(u3_atom p, u3_atom pl,
if ( !u3r_word_fit(&out_w, d) ) {
return u3m_bail(c3__fail);
}
if ( 0 == r || 0 == z ) {
return u3m_bail(c3__exit);
}
chk = u3qc_bex(31);
if ( (c3n == u3qa_lth(pwd_w, chk)) ||
(c3n == u3qa_lth(sal_w, chk)) ) {
return u3m_bail(c3__exit);
}
u3z(chk);
chk = u3kc_bex(u3ka_dec(u3qc_xeb(n)));
if ( c3n == u3r_sing(n, chk) ) {
return u3m_bail(c3__exit);
}
u3z(chk);
if ( c3n == u3ka_lte(
u3ka_mul(u3qa_mul(128, r), u3ka_dec(u3qa_add(n, z))),
u3qc_bex(30)) ) {
return u3m_bail(c3__exit);
}
if ( (u3r_met(6, n) > 1) ||
(u3r_met(5, r) > 1) ||
(u3r_met(5, z) > 1) ) {
return u3_none;
}
else {
u3_noun pro;
c3_d n_d = u3r_chub(0, n);
c3_w r_w = u3r_word(0, r),
z_w = u3r_word(0, z);
c3_y *pwd_y = u3a_malloc(pwd_w),
*sal_y = u3a_malloc(sal_w),
*out_y = u3a_malloc(d);
u3r_bytes(0, pwd_w, pwd_y, p);
u3r_bytes(0, sal_w, sal_y, s);
pro = ( 0 == urcrypt_scrypt(pwd_y, pwd_w,
sal_y, sal_w,
n_d, r_w, z_w,
out_w, out_y) )
? u3i_bytes(out_w, out_y)
: u3_none;
u3a_free(pwd_y);
u3a_free(sal_y);
u3a_free(out_y);
return pro;
}
}
static u3_weak
_cqes_hsl(u3_atom p, u3_atom pl,
u3_atom s, u3_atom sl,
u3_atom n,
u3_atom r,
u3_atom z,
u3_atom d)
{
// asserting that n is power of 2 in _crypto_scrypt
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(pl)) && _(u3a_is_cat(sl)) &&
_(u3a_is_cat(n)) && _(u3a_is_cat(r)) &&
_(u3a_is_cat(z)) && _(u3a_is_cat(d)) &&
(r != 0) && (z != 0) &&
(((c3_d)r * 128 * ((c3_d)n + z - 1)) <= (1 << 30))))
return u3m_bail(c3__exit);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(sl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
if (_crypto_scrypt(b_p, pl, b_s, sl, n, r, z, buf, d) != 0)
return u3m_bail(c3__exit);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
c3_w pwd_w, sal_w;
if ( !(u3r_word_fit(&pwd_w, pl) &&
u3r_word_fit(&sal_w, sl)) ) {
return u3m_bail(c3__fail);
}
else {
return _cqes_hs(p, pwd_w, s, sal_w, n, r, z, d);
}
}
u3_noun
@ -52,41 +92,31 @@ static int _crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t,
u3_noun p, pl, s, sl, n, r, z, d;
u3_noun q;
u3x_quil(u3r_at(u3x_sam, cor), &p, &pl, &s, &sl, &q);
u3x_quil(u3x_at(u3x_sam, cor), &p, &pl, &s, &sl, &q);
u3x_qual(q, &n, &r, &z, &d);
return u3qes_hsl(p, pl, s, sl, n, r, z, d);
if ( !(_(u3a_is_atom(p)) && _(u3a_is_atom(pl)) &&
_(u3a_is_atom(s)) && _(u3a_is_atom(sl)) &&
_(u3a_is_atom(n)) && _(u3a_is_atom(r)) &&
_(u3a_is_atom(z)) && _(u3a_is_atom(d))) ) {
return u3m_bail(c3__exit);
}
else {
return u3l_punt("scr-hsl", _cqes_hsl(p, pl, s, sl, n, r, z, d));
}
}
u3_noun
u3qes_hsh(u3_atom p,
static u3_weak
_cqes_hsh(u3_atom p,
u3_atom s,
u3_atom n,
u3_atom r,
u3_atom z,
u3_atom d)
{
// asserting that n is power of 2 in _crypto_scrypt
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(n)) && _(u3a_is_cat(r)) &&
_(u3a_is_cat(z)) && _(u3a_is_cat(d)) &&
(r != 0) && (z != 0) &&
(((c3_d)r * 128 * ((c3_d)n + z - 1)) <= (1 << 30))))
return u3m_bail(c3__exit);
c3_w pl = u3r_met(3, p); c3_w sl = u3r_met(3, s);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(sl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
if (_crypto_scrypt(b_p, pl, b_s, sl, n, r, z, buf, d) != 0)
return u3m_bail(c3__exit);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
return _cqes_hs(p, u3r_met(3, p),
s, u3r_met(3, s),
n, r, z, d);
}
u3_noun
@ -95,36 +125,62 @@ static int _crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t,
u3_noun p, s, n, r, z, d;
u3_noun q;
u3x_quil(u3r_at(u3x_sam, cor), &p, &s, &n, &r, &q);
u3x_quil(u3x_at(u3x_sam, cor), &p, &s, &n, &r, &q);
u3x_cell(q, &z, &d);
return u3qes_hsh(p, s, n, r, z, d);
if ( !(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_atom(n)) && _(u3a_is_atom(r)) &&
_(u3a_is_atom(z)) && _(u3a_is_atom(d))) ) {
return u3m_bail(c3__exit);
}
else {
return u3l_punt("scr-hsh", _cqes_hsh(p, s, n, r, z, d));
}
}
u3_noun
u3qes_pbl(u3_atom p, u3_atom pl,
static u3_atom
_cqes_pb(u3_atom p, c3_w pwd_w,
u3_atom s, c3_w sal_w,
u3_atom c,
u3_atom d)
{
if ( (c > (1 << 28)) ||
(d > (1 << 30)) ) {
// max key length 1gb
// max iterations 2^28
return u3m_bail(c3__exit);
}
else {
u3_noun pro;
c3_w out_w;
c3_y *pwd_y = u3a_malloc(pwd_w),
*sal_y = u3a_malloc(sal_w),
*out_y = u3a_malloc(d);
u3r_bytes(0, pwd_w, pwd_y, p);
u3r_bytes(0, sal_w, sal_y, s);
urcrypt_scrypt_pbkdf_sha256(pwd_y, pwd_w, sal_y, sal_w, c, d, out_y);
pro = u3i_bytes(d, out_y);
u3a_free(pwd_y);
u3a_free(sal_y);
u3a_free(out_y);
return pro;
}
}
static u3_noun
_cqes_pbl(u3_atom p, u3_atom pl,
u3_atom s, u3_atom sl,
u3_atom c,
u3_atom d)
{
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(pl)) && _(u3a_is_cat(sl)) &&
_(u3a_is_cat(c)) && _(u3a_is_cat(d)) &&
(d <= (1 << 30)) && (c <= (1 << 28)) &&
(c != 0)))
return u3m_bail(c3__exit);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(pl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
libscrypt_PBKDF2_SHA256(b_p, pl, b_s, sl, c, buf, d);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
c3_w pwd_w, sal_w;
if ( !(u3r_word_fit(&pwd_w, pl) &&
u3r_word_fit(&sal_w, sl)) ) {
return u3m_bail(c3__fail);
}
else {
return _cqes_pb(p, pwd_w, s, sal_w, c, d);
}
}
u3_noun
@ -133,33 +189,25 @@ static int _crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t,
u3_noun p, pl, s, sl, c, d;
u3_noun q;
u3x_quil(u3r_at(u3x_sam, cor), &p, &pl, &s, &sl, &q);
u3x_quil(u3x_at(u3x_sam, cor), &p, &pl, &s, &sl, &q);
u3x_cell(q, &c, &d);
return u3qes_pbl(p, pl, s, sl, c, d);
if ( !(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_atom(pl)) && _(u3a_is_atom(sl)) &&
_(u3a_is_atom(c)) && _(u3a_is_atom(d))) ) {
return u3m_bail(c3__exit);
}
else {
return _cqes_pbl(p, pl, s, sl, c, d);
}
}
u3_noun
u3qes_pbk(u3_atom p, u3_atom s, u3_atom c, u3_atom d)
static u3_atom
_cqes_pbk(u3_atom p, u3_atom s, u3_atom c, u3_atom d)
{
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(c)) && _(u3a_is_cat(d)) &&
(d <= (1 << 30)) && (c <= (1 << 28)) &&
(c != 0)))
return u3m_bail(c3__exit);
c3_w pl = u3r_met(3, p); c3_w sl = u3r_met(3, s);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(pl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
libscrypt_PBKDF2_SHA256(b_p, pl, b_s, sl, c, buf, d);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
return _cqes_pb(p, u3r_met(3, p),
s, u3r_met(3, s),
c, d);
}
u3_noun
@ -167,24 +215,13 @@ static int _crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t,
{
u3_noun p, s, c, d;
u3x_qual(u3r_at(u3x_sam, cor), &p, &s, &c, &d);
u3x_qual(u3x_at(u3x_sam, cor), &p, &s, &c, &d);
return u3qes_pbk(p, s, c, d);
if ( !(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_atom(c)) && _(u3a_is_atom(d))) ) {
return u3m_bail(c3__exit);
}
else {
return _cqes_pbk(p, s, c, d);
}
}
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error.
*/
static int
_crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
{
return libscrypt_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen);
}

View File

@ -2,55 +2,111 @@
**
*/
#include "all.h"
#include "../include/secp256k1.h"
#include "../include/secp256k1_recovery.h"
#include "urcrypt.h"
#include <ent.h>
static urcrypt_secp_context* sec_u;
/* call at process start */
void
u3je_secp_init()
{
c3_y ent_y[32];
ent_getentropy(ent_y, 32);
sec_u = malloc(urcrypt_secp_prealloc_size());
if ( 0 != urcrypt_secp_init(sec_u, ent_y) ) {
u3l_log("u3e_secp_init failed\r\n");
abort();
}
}
/* call at process end */
void
u3je_secp_stop()
{
urcrypt_secp_destroy(sec_u);
free(sec_u);
sec_u = NULL;
}
/* util funcs
*/
/* no guarantees if 'in' and 'out' overlap / are the same */
static void byte_reverse(c3_y *i_y, /* in */
c3_y *o_y, /* out */
c3_w n_w) /* size */
static c3_t
_cqes_in_order(u3_atom a)
{
c3_w j_w;
for (j_w = 0; j_w < n_w; j_w++){
o_y[n_w - 1 - j_w] = i_y[j_w];
}
// this is the "n" parameter of the secp256k1 curve
static const c3_w now_w[8] = {
0xd0364141, 0xbfd25e8c, 0xaf48a03b, 0xbaaedce6,
0xfffffffe, 0xffffffff, 0xffffffff, 0xffffffff
};
return;
if ( 0 == a ) {
return 0;
}
else if ( c3y == u3a_is_cat(a) ) {
return 1;
}
else {
u3a_atom* a_u = u3a_to_ptr(a);
c3_w len_w = a_u->len_w;
if ( len_w < 8 ) {
return 1;
}
else if ( len_w > 8 ) {
return 0;
}
else {
c3_y i_y;
c3_w *buf_w = a_u->buf_w;
// loop from most to least significant words
for ( i_y = 8; i_y > 0; ) {
c3_w b_w = buf_w[i_y],
o_w = now_w[--i_y];
if ( b_w < o_w ) {
return 1;
}
else if ( b_w > o_w ) {
return 0;
}
}
return 1;
}
}
}
/* Identical to u3r_bytes, but reverses bytes in place.
could be cleaner if we modified u3r_bytes(), but not gonna do that.
This func exists bc Urbit code base is explicitly little-endian,
and secp256k1 library is explicitly big-endian.
Several times below we do the pattern of (1) invoke u3r_bytes, (2) invert. Do it in a func.
*/
static void u3r_bytes_reverse(c3_w a_w,
c3_w b_w,
c3_y* c_y, /* out */
u3_atom d) /* in */
static void
_cqes_unpack_fe(u3_atom k, c3_y out_y[32])
{
u3r_bytes(a_w, b_w, c_y, d);
c3_w i_w;
for (i_w = 0; i_w < ((b_w - a_w) / 2) ; i_w++) {
c3_y lo = c_y[i_w];
c3_y hi = c_y[b_w - i_w - 1];
c_y[i_w] = hi;
c_y[b_w - i_w - 1] = lo;
if ( _cqes_in_order(k) ) {
u3r_bytes(0, 32, out_y, k);
}
else {
u3m_bail(c3__exit);
}
return;
}
/* sign hash with priv key
*/
static u3_noun
_cqes_sign(u3_atom has,
u3_atom prv)
{
c3_y has_y[32];
if ( 0 != u3r_bytes_fit(32, has_y, has) ) {
return u3m_bail(c3__exit);
}
else {
c3_y prv_y[32], v_y, r_y[32], s_y[32];
_cqes_unpack_fe(prv, prv_y);
return( 0 == urcrypt_secp_sign(sec_u, has_y, prv_y, &v_y, r_y, s_y) )
? u3nt(v_y, u3i_bytes(32, r_y), u3i_bytes(32, s_y))
: u3_none;
}
}
u3_noun
u3we_sign(u3_noun cor)
@ -64,73 +120,36 @@ u3we_sign(u3_noun cor)
0)) ||
(c3n == u3ud(has)) ||
(c3n == u3ud(prv))) {
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
} else {
return (u3qe_sign(has, prv));
}
else {
return u3l_punt("secp-sign", _cqes_sign(has, prv));
}
}
u3_noun
u3qe_sign(u3_atom has,
u3_atom prv)
{
/* build library context object once (and only once) */
static secp256k1_context * ctx_u = NULL;
if (NULL == ctx_u) {
ctx_u = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
}
/* parse arguments, convert endianness */
c3_y has_y[32]; /* hash */
c3_y prv_y[32]; /* private key */
u3r_bytes_reverse(0, 32, has_y, has);
u3r_bytes_reverse(0, 32, prv_y, prv);
/* sign
N.B. if we want the 'v' field we can't use default secp256k1_ecdsa_sign(),
but must use secp256k1_ecdsa_sign_recoverable() */
c3_ws ret;
secp256k1_ecdsa_recoverable_signature sig_u;
ret = secp256k1_ecdsa_sign_recoverable(ctx_u, /* IN: context object */
& sig_u, /* OUT: signature */
(const c3_y *) has_y, /* IN: 32 byte hash to be signed */
(const c3_y *) prv_y, /* IN: 32 byte secret key */
(secp256k1_nonce_function) NULL, /* IN: nonce-function ptr ; NULL = default */
(const void *) NULL); /* IN: data for nonce function; not used */
if (1 != ret) {
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
}
/* convert opaque 65 byte signature into v + [r + s]
convert endianness while we're at it */
c3_y rec_y[64];
c3_ws v = 0;
ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx_u,
rec_y, /* OUT: 64 byte sig (r,s) */
& v, /* OUT: v */
& sig_u); /* IN: 65 byte sig */
if (1 != ret) {
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
}
c3_y s_y[32];
c3_y r_y[32];
byte_reverse(rec_y, r_y, 32);
byte_reverse(rec_y + 32, s_y, 32);
/* package s,r,v signature for return */
u3_noun s = u3i_words(8, (const c3_w*) s_y);
u3_noun r = u3i_words(8, (const c3_w*) r_y);
return (u3nt(v, r, s));
}
/* recover pubkey from signature (which is how we verify signatures)
*/
static u3_noun
_cqes_reco(u3_atom has,
u3_atom siv, /* signature: v */
u3_atom sir, /* signature: r */
u3_atom sis) /* signature: s */
{
c3_y has_y[32];
if ( !((siv < 4) && (0 == u3r_bytes_fit(32, has_y, has)) ) ) {
return u3m_bail(c3__exit);
}
else {
c3_y sir_y[32], sis_y[32], x_y[32], y_y[32];
c3_y siv_y = (c3_y) siv;
_cqes_unpack_fe(sir, sir_y);
_cqes_unpack_fe(sis, sis_y);
return
( 0 == urcrypt_secp_reco(sec_u, has_y, siv, sir_y, sis_y, x_y, y_y) )
? u3nc(u3i_bytes(32, x_y), u3i_bytes(32, y_y))
: u3_none;
}
}
u3_noun
u3we_reco(u3_noun cor)
@ -147,117 +166,32 @@ u3we_reco(u3_noun cor)
(c3n == u3ud(has)) ||
(c3n == u3ud(siv)) ||
(c3n == u3ud(sir)) ||
(c3n == u3ud(sis)) )
{
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
} else {
return u3qe_reco(has, siv, sir, sis);
(c3n == u3ud(sis)) ) {
return u3m_bail(c3__exit);
}
else {
return u3l_punt("secp-reco", _cqes_reco(has, siv, sir, sis));
}
}
u3_noun
u3qe_reco(u3_atom has,
u3_atom siv, /* signature: v */
u3_atom sir, /* signature: r */
u3_atom sis) /* signature: s */
static u3_atom
_cqes_make(u3_atom has,
u3_atom prv)
{
/* build library context object once (and only once) */
static secp256k1_context * ctx_u = NULL;
if (NULL == ctx_u) {
ctx_u = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
}
/* parse arguments, convert endianness */
c3_y has_y[32];
c3_y sir_y[32];
c3_y sis_y[32];
c3_y siv_y[1];
u3r_bytes_reverse(0, 32, has_y, has);
u3r_bytes_reverse(0, 32, sir_y, sir);
u3r_bytes_reverse(0, 32, sis_y, sis);
u3r_bytes_reverse(0, 1, siv_y, siv);
/* build the signature object */
c3_y ras_y[64]; /* priv key: r and s components */
c3_ws i_ws;
for (i_ws = 0; i_ws < 32; i_ws++) {
ras_y[i_ws] = sir_y[i_ws] ;
}
for (i_ws = 0; i_ws < 32; i_ws++) {
ras_y[i_ws + 32] = sis_y[i_ws] ;
}
c3_ws siv_ws = siv_y[0];
secp256k1_ecdsa_recoverable_signature sig_u;
memset( (void *) & sig_u, 0, sizeof(secp256k1_ecdsa_recoverable_signature) );
c3_ws ret = secp256k1_ecdsa_recoverable_signature_parse_compact(ctx_u, /* IN: context */
& sig_u, /* OUT: sig */
ras_y, /* IN: r/s */
siv_ws); /* IN: v */
if (1 != ret) {
u3l_log("\rsecp jet: crypto package error\n");
if ( 0 != u3r_bytes_fit(32, has_y, has) ) {
return u3m_bail(c3__exit);
}
/* turn sign into puk_u */
secp256k1_pubkey puk_u;
memset((void *) & puk_u, 0, sizeof(secp256k1_pubkey) );
ret = secp256k1_ecdsa_recover(ctx_u, /* IN: context */
& puk_u, /* OUT: pub key */
& sig_u, /* IN: signature */
has_y); /* IN: message has */
if (1 != ret) {
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
else {
c3_y prv_y[32], out_y[32];
_cqes_unpack_fe(prv, prv_y);
return ( 0 == urcrypt_secp_make(has_y, prv_y, out_y) )
? u3i_bytes(32, out_y)
: u3_none;
}
/* convert puk_u into serialized form that we can get x,y out of */
c3_y puk_y[65];
size_t outputlen = 65;
memset((void *) puk_y, 0, 65);
ret = secp256k1_ec_pubkey_serialize( ctx_u, /* IN: */
puk_y, /* OUT: */
& outputlen, /* OUT: */
& puk_u, /* IN: */
SECP256K1_EC_UNCOMPRESSED); /* IN: flags */
if (1 != ret) {
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
}
/* in file
subprojects/secp256k1/src/eckey_impl.h
func
secp256k1_eckey_puk_u_parse()
we can see
byte 0: signal bits (???)
bytes 1-32: x
bytes 33-64: y
convert endianness while we're at it */
c3_y x_y[32];
for (i_ws = 0; i_ws < 32; i_ws++) {
x_y[i_ws] = puk_y[32 - i_ws];
}
u3_noun x = u3i_bytes(32, x_y);
c3_y y_y[32];
for (i_ws = 0; i_ws < 32; i_ws++) {
y_y[i_ws] = puk_y[64 - i_ws];
}
u3_noun y = u3i_bytes(32, y_y);
/* returns x,y */
return(u3nc(x, y));
}
u3_noun
u3we_make(u3_noun cor)
{
@ -267,49 +201,10 @@ u3we_make(u3_noun cor)
u3x_sam_3, &prv,
0)) ||
(c3n == u3ud(has)) ||
(c3n == u3ud(prv)) )
{
u3l_log("\rsecp jet: crypto package error\n");
return u3m_bail(c3__exit);
} else {
return u3qe_make(has, prv);
}
}
u3_noun
u3qe_make(u3_atom has,
u3_atom prv)
{
c3_y hel_y[32]; /* hash, little endian */
c3_y heb_y[32]; /* hash, big endian */
u3r_bytes(0, 32, hel_y, has);
byte_reverse(hel_y, heb_y, 32);
c3_y pel_y[32]; /* priv key, little endian */
c3_y peb_y[32]; /* priv key, big endian */
u3r_bytes(0, 32, pel_y, prv);
byte_reverse(pel_y, peb_y, 32);
c3_ws ret_ws;
c3_y neb_y[32]; /* nonce */
ret_ws = secp256k1_nonce_function_rfc6979(neb_y, /* OUT: return arg for nonce */
(const c3_y *) heb_y, /* IN: message / hash */
(const c3_y *) peb_y, /* IN: key32 */
NULL, /* IN: algorithm (NULL == ECDSA) */
(void *) NULL, /* IN: arbitrary data pointer (unused) */
0); /* IN: attempt number (0 == normal) */
if (1 != ret_ws) {
u3l_log("\rsecp jet: crypto package error\n");
(c3n == u3ud(prv)) ) {
return u3m_bail(c3__exit);
}
c3_y nel_y[32];
byte_reverse(neb_y, nel_y, 32);
u3_noun non = u3i_words(8, (const c3_w*) nel_y);
return(non);
else {
return u3l_punt("secp-make", _cqes_make(has, prv));
}
}

View File

@ -2,42 +2,24 @@
**
*/
#include "all.h"
#if defined(U3_OS_osx)
#include <CommonCrypto/CommonDigest.h>
#else
#include <openssl/sha.h>
#endif
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qe_sha1(u3_atom wid, u3_atom dat)
static u3_noun
_cqe_sha1(u3_atom wid, u3_atom dat)
{
c3_assert(_(u3a_is_cat(wid)));
dat = u3qc_rev(3, wid, dat);
c3_w len_w;
if ( !u3r_word_fit(&len_w, wid) ) {
return u3m_bail(c3__fail);
}
else {
c3_y out_y[20];
c3_y *dat_y = u3r_bytes_alloc(0, len_w, dat);
c3_y* fat_y = u3a_malloc(wid + 1);
u3r_bytes(0, wid, fat_y, dat);
{
c3_y dig_y[32];
#if defined(U3_OS_osx)
CC_SHA1_CTX ctx_h;
CC_SHA1_Init(&ctx_h);
CC_SHA1_Update(&ctx_h, fat_y, wid);
CC_SHA1_Final(dig_y, &ctx_h);
#else
SHA_CTX ctx_h;
SHA1_Init(&ctx_h);
SHA1_Update(&ctx_h, fat_y, wid);
SHA1_Final(dig_y, &ctx_h);
#endif
u3a_free(fat_y);
u3z(dat);
return u3kc_rev(3, 20, u3i_bytes(20, dig_y));
urcrypt_sha1(dat_y, len_w, out_y);
u3a_free(dat_y);
return u3i_bytes(20, out_y);
}
}
@ -48,12 +30,11 @@
if ( (c3n == u3r_mean(cor, u3x_sam_2, &wid, u3x_sam_3, &dat, 0)) ||
(c3n == u3ud(wid)) ||
(c3n == u3a_is_cat(wid)) ||
(c3n == u3ud(dat)) )
{
return u3m_bail(c3__exit);
}
else {
return u3qe_sha1(wid, dat);
return _cqe_sha1(wid, dat);
}
}

View File

@ -2,119 +2,69 @@
**
*/
#include "all.h"
#if defined(U3_OS_osx)
#include <CommonCrypto/CommonDigest.h>
#else
#include <openssl/sha.h>
#endif
#include <urcrypt.h>
/* functions
*/
u3_noun
u3qe_shay(u3_atom a,
u3_atom b)
static u3_atom
_cqe_shay(u3_atom wid,
u3_atom dat)
{
c3_assert(_(u3a_is_cat(a)));
c3_y* fat_y = u3a_malloc(a + 1);
u3r_bytes(0, a, fat_y, b);
{
c3_y dig_y[32];
#if defined(U3_OS_osx)
CC_SHA256_CTX ctx_h;
CC_SHA256_Init(&ctx_h);
CC_SHA256_Update(&ctx_h, fat_y, a);
CC_SHA256_Final(dig_y, &ctx_h);
#else
SHA256_CTX ctx_h;
SHA256_Init(&ctx_h);
SHA256_Update(&ctx_h, fat_y, a);
SHA256_Final(dig_y, &ctx_h);
#endif
u3a_free(fat_y);
return u3i_bytes(32, dig_y);
c3_w len_w;
if ( !u3r_word_fit(&len_w, wid) ) {
return u3m_bail(c3__fail);
}
else {
c3_y out_y[32];
c3_y* dat_y = u3r_bytes_alloc(0, len_w, dat);
urcrypt_shay(dat_y, len_w, out_y);
u3a_free(dat_y);
return u3i_bytes(32, out_y);
}
}
// u3_noun
// u3qe_shax(
// u3_atom a)
// {
// c3_w met_w = u3r_met(3, a);
// return u3qe_shay(met_w, a);
// }
// XX preformance
u3_noun
u3qe_shax(u3_atom a)
static u3_atom
_cqe_shax(u3_atom a)
{
c3_w met_w = u3r_met(3, a);
c3_y* fat_y = u3a_malloc(met_w + 1);
c3_w len_w;
c3_y out_y[32];
c3_y* dat_y = u3r_bytes_all(&len_w, a);
urcrypt_shay(dat_y, len_w, out_y);
u3a_free(dat_y);
return u3i_bytes(32, out_y);
}
u3r_bytes(0, met_w, fat_y, a);
{
c3_y dig_y[32];
#if defined(U3_OS_osx)
CC_SHA256_CTX ctx_h;
CC_SHA256_Init(&ctx_h);
CC_SHA256_Update(&ctx_h, fat_y, met_w);
CC_SHA256_Final(dig_y, &ctx_h);
#else
SHA256_CTX ctx_h;
SHA256_Init(&ctx_h);
SHA256_Update(&ctx_h, fat_y, met_w);
SHA256_Final(dig_y, &ctx_h);
#endif
u3a_free(fat_y);
return u3i_bytes(32, dig_y);
static u3_atom
_cqe_shal(u3_atom wid,
u3_atom dat)
{
c3_w len_w;
if ( !u3r_word_fit(&len_w, wid) ) {
return u3m_bail(c3__fail);
}
else {
c3_y out_y[64];
c3_y* dat_y = u3r_bytes_alloc(0, len_w, dat);
urcrypt_shal(dat_y, len_w, out_y);
u3a_free(dat_y);
return u3i_bytes(64, out_y);
}
}
// XX end preformance
u3_noun
u3qe_shal(u3_atom a,
u3_atom b)
{
c3_assert(_(u3a_is_cat(a)));
c3_y* fat_y = u3a_malloc(a + 1);
u3r_bytes(0, a, fat_y, b);
{
c3_y dig_y[64];
#if defined(U3_OS_osx)
CC_SHA512_CTX ctx_h;
CC_SHA512_Init(&ctx_h);
CC_SHA512_Update(&ctx_h, fat_y, a);
CC_SHA512_Final(dig_y, &ctx_h);
#else
SHA512_CTX ctx_h;
SHA512_Init(&ctx_h);
SHA512_Update(&ctx_h, fat_y, a);
SHA512_Final(dig_y, &ctx_h);
#endif
u3a_free(fat_y);
return u3i_bytes(64, dig_y);
}
}
u3_noun
u3qe_shas(u3_atom sal,
static u3_atom
_cqe_shas(u3_atom sal,
u3_atom ruz)
{
u3_noun one = u3qe_shax(ruz);
u3_noun two = u3qc_mix(sal, one);
u3_noun tri = u3qe_shax(two);
c3_w sal_w, ruz_w;
c3_y *sal_y, *ruz_y, out_y[32];
u3z(one); u3z(two); return tri;
sal_y = u3r_bytes_all(&sal_w, sal);
ruz_y = u3r_bytes_all(&ruz_w, ruz);
urcrypt_shas(sal_y, sal_w, ruz_y, ruz_w, out_y);
u3a_free(sal_y);
u3a_free(ruz_y);
return u3i_bytes(32, out_y);
}
u3_noun
@ -127,7 +77,7 @@ u3_noun
{
return u3m_bail(c3__exit);
} else {
return u3qe_shax(a);
return _cqe_shax(a);
}
}
@ -136,20 +86,14 @@ u3_noun
{
u3_noun a, b;
// static int few = 0;
// if(few == 0) printf("foo\r\n");
// few++; few %= 1000;
if ( (u3_none == (a = u3r_at(u3x_sam_2, cor))) ||
(u3_none == (b = u3r_at(u3x_sam_3, cor))) ||
(c3n == u3ud(a)) ||
(c3n == u3a_is_cat(a)) ||
(c3n == u3ud(b)) )
{
return u3m_bail(c3__exit);
} else {
return u3qe_shay(a, b);
return _cqe_shay(a, b);
}
}
@ -161,12 +105,11 @@ u3_noun
if ( (u3_none == (a = u3r_at(u3x_sam_2, cor))) ||
(u3_none == (b = u3r_at(u3x_sam_3, cor))) ||
(c3n == u3ud(a)) ||
(c3n == u3a_is_cat(a)) ||
(c3n == u3ud(b)) )
{
return u3m_bail(c3__exit);
} else {
return u3qe_shal(a, b);
return _cqe_shal(a, b);
}
}
@ -182,7 +125,7 @@ u3_noun
{
return u3m_bail(c3__exit);
} else {
return u3qe_shas(sal, ruz);
return _cqe_shas(sal, ruz);
}
}
@ -199,7 +142,7 @@ u3_noun
while ( 0 != b ) {
u3_noun x = u3qc_mix(a, c);
u3_noun y = u3qc_mix(b, x);
u3_noun d = u3qe_shas(c3_s4('o','g','-','b'), y);
u3_noun d = _cqe_shas(c3_s4('o','g','-','b'), y);
u3_noun m;
u3z(x); u3z(y);
@ -226,7 +169,7 @@ u3_noun
u3_atom b)
{
u3_noun x = u3qc_mix(b, a);
u3_noun c = u3qe_shas(c3_s4('o','g','-','a'), x);
u3_noun c = _cqe_shas(c3_s4('o','g','-','a'), x);
u3_noun l = _og_list(a, b, c);
u3_noun r = u3qc_can(0, l);

View File

@ -376,17 +376,29 @@ static c3_c* _140_hex_argon_ha[] = {
0
};
static c3_c* _140_hex_scr_pbk_ha[] = { 0 };
static u3j_harm _140_hex_scr_pbk_a[] = {{".2", u3wes_pbk, c3y}, {}};
static c3_c* _140_hex_scr_pbl_ha[] = { 0 };
static u3j_harm _140_hex_scr_pbl_a[] = {{".2", u3wes_pbl, c3y}, {}};
static c3_c* _140_hex_scr_hsh_ha[] = { 0 };
static u3j_harm _140_hex_scr_hsh_a[] = {{".2", u3wes_hsh, c3y}, {}};
static c3_c* _140_hex_scr_hsl_ha[] = { 0 };
static u3j_harm _140_hex_scr_hsl_a[] = {{".2", u3wes_hsl, c3y}, {}};
static c3_c* _140_hex_scr_ha[] = { 0 };
static u3j_core _140_hex_scr_d[] =
{ { "pbk", 7, _140_hex_scr_pbk_a, 0, _140_hex_scr_pbk_ha },
{ "pbl", 7, _140_hex_scr_pbl_a, 0, _140_hex_scr_pbl_ha },
{ "hsh", 7, _140_hex_scr_hsh_a, 0, _140_hex_scr_hsh_ha },
{ "hsl", 7, _140_hex_scr_hsl_a, 0, _140_hex_scr_hsl_ha },
{}
};
static c3_c* _140_hex_secp_secp256k1_make_ha[] = { 0 };
static u3j_harm _140_hex_secp_secp256k1_make_a[] = {{".2", u3we_make, c3y}, {}};
static c3_c* _140_hex_secp_secp256k1_sign_ha[] = {
"3e75b3452b74776488d5eec75a91211700d9f360a4e06dd779600d5128d9c600",
0
};
static c3_c* _140_hex_secp_secp256k1_sign_ha[] = { 0 };
static u3j_harm _140_hex_secp_secp256k1_sign_a[] = {{".2", u3we_sign, c3y}, {}};
static c3_c* _140_hex_secp_secp256k1_reco_ha[] = {
"449f3aa878b61962c3048e167c23ba54a0736d3aa1ab7762bd54016fbba136ee",
0
};
static c3_c* _140_hex_secp_secp256k1_reco_ha[] = { 0 };
static u3j_harm _140_hex_secp_secp256k1_reco_a[] = {{".2", u3we_reco, c3y}, {}};
static c3_c* _140_hex_secp_secp256k1_ha[] = {
@ -451,7 +463,8 @@ static u3j_core _140_hex_d[] =
{ "argon", 31, 0, _140_hex_argon_d, _140_hex_argon_ha },
{ "blake", 31, 0, _140_hex_blake_d, _140_hex_blake_ha },
{ "ripemd", 31, 0, _140_hex_ripe_d, _140_hex_ripe_ha },
{ "secp", 6, 0, _140_hex_secp_d, _140_hex_secp_ha },
{ "scr", 31, 0, _140_hex_scr_d, _140_hex_scr_ha },
{ "secp", 6, 0, _140_hex_secp_d, _140_hex_secp_ha },
{ "mimes", 31, 0, _140_hex_mimes_d, _140_hex_mimes_ha },
{}
};

View File

@ -2,12 +2,7 @@
**
*/
#include "all.h"
#if defined(U3_OS_osx)
#include <CommonCrypto/CommonDigest.h>
#else
#include <openssl/sha.h>
#endif
#include <urcrypt.h>
/** Data structures.
**/
@ -128,20 +123,7 @@ _cj_bash(u3_noun bat)
//
c3_y* fat_y = sab_u.buf_y;
c3_y dig_y[32];
#if defined(U3_OS_osx)
CC_SHA256_CTX ctx_h;
CC_SHA256_Init(&ctx_h);
CC_SHA256_Update(&ctx_h, fat_y, met_w);
CC_SHA256_Final(dig_y, &ctx_h);
#else
SHA256_CTX ctx_h;
SHA256_Init(&ctx_h);
SHA256_Update(&ctx_h, fat_y, met_w);
SHA256_Final(dig_y, &ctx_h);
#endif
urcrypt_shay(fat_y, met_w, dig_y);
pro = u3i_bytes(32, dig_y);
u3h_put(u3R->jed.bas_p, bat, u3k(pro));

View File

@ -26,3 +26,12 @@ u3l_log(const char* format, ...)
va_end(myargs);
}
u3_weak
u3l_punt(const char* name, u3_weak pro)
{
if ( u3_none == pro ) {
u3l_log("%s-punt\r\n", name);
}
return pro;
}

View File

@ -9,6 +9,7 @@
#include <sys/stat.h>
#include <ctype.h>
#include <openssl/crypto.h>
#include <urcrypt.h>
// XX stack-overflow recovery should be gated by -a
//
@ -1677,6 +1678,23 @@ _cm_signals(void)
# endif
}
extern void u3je_secp_init(void);
extern void u3je_secp_stop(void);
static void
_cm_crypto()
{
/* Initialize OpenSSL with loom allocation functions. */
if ( 0 == CRYPTO_set_mem_functions(&u3a_malloc_ssl,
&u3a_realloc_ssl,
&u3a_free_ssl) ) {
u3l_log("%s\r\n", "openssl initialization failed");
abort();
}
u3je_secp_init();
}
/* u3m_init(): start the environment.
*/
void
@ -1684,6 +1702,7 @@ u3m_init(void)
{
_cm_limits();
_cm_signals();
_cm_crypto();
/* Make sure GMP uses our malloc.
*/
@ -1722,6 +1741,13 @@ u3m_init(void)
}
}
/* u3m_stop(): graceful shutdown cleanup. */
void
u3m_stop()
{
u3je_secp_stop();
}
/* u3m_boot(): start the u3 system. return next event, starting from 1.
*/
c3_d
@ -1733,11 +1759,6 @@ u3m_boot(c3_c* dir_c)
*/
u3m_init();
/* In the worker, set the openssl memory allocation functions to always
** work on the loom.
*/
CRYPTO_set_mem_functions(u3a_malloc_ssl, u3a_realloc_ssl, u3a_free_ssl);
/* Activate the storage system.
*/
nuu_o = u3e_live(c3n, dir_c);

View File

@ -1188,6 +1188,49 @@ u3r_bytes(c3_w a_w,
}
}
/* u3r_bytes_fit():
**
** Copy (len_w) bytes of (a) into (buf_y) if it fits, returning overage
*/
c3_w
u3r_bytes_fit(c3_w len_w, c3_y *buf_y, u3_atom a)
{
c3_w met_w = u3r_met(3, a);
if ( met_w <= len_w ) {
u3r_bytes(0, len_w, buf_y, a);
return 0;
}
else {
return len_w - met_w;
}
}
/* u3r_bytes_alloc():
**
** Copy (len_w) bytes starting at (a_w) from (b) into a fresh allocation.
*/
c3_y*
u3r_bytes_alloc(c3_w a_w,
c3_w len_w,
u3_atom b)
{
c3_y* b_y = u3a_malloc(len_w);
u3r_bytes(a_w, a_w + len_w, b_y, b);
return b_y;
}
/* u3r_bytes_all():
**
** Allocate and return a new byte array with all the bytes of (a),
** storing the length in (len_w).
*/
c3_y*
u3r_bytes_all(c3_w* len_w, u3_atom a)
{
c3_w met_w = *len_w = u3r_met(3, a);
return u3r_bytes_alloc(0, met_w, a);
}
/* u3r_mp():
**
** Copy (b) into (a_mp).
@ -1274,6 +1317,22 @@ u3r_word(c3_w a_w,
}
}
/* u3r_word_fit():
**
** Fill (out_w) with (a) if it fits, returning success.
*/
c3_t
u3r_word_fit(c3_w *out_w, u3_atom a)
{
if ( u3r_met(5, a) > 1 ) {
return 0;
}
else {
*out_w = u3r_word(0, a);
return 1;
}
}
/* u3r_chub():
**
** Return double-word (a_w) of (b).

View File

@ -757,8 +757,6 @@ u3_king_commence()
u3C.wag_w |= u3o_hashless;
u3C.wag_w &= ~u3o_debug_cpu;
u3m_boot_lite();
// wire up signal controls
//
u3C.sign_hold_f = _king_sign_hold;
@ -799,6 +797,7 @@ u3_king_commence()
_king_loop_init();
uv_run(u3L, UV_RUN_DEFAULT);
_king_loop_exit();
u3m_stop();
}
/* u3_king_stub(): get the One Pier for unreconstructed code.

View File

@ -314,6 +314,7 @@ _cw_serf_commence(c3_i argc, c3_c* argv[])
// enter loop
//
uv_run(lup_u, UV_RUN_DEFAULT);
u3m_stop();
}
/* _cw_info(); print pier info
@ -327,6 +328,7 @@ _cw_info(c3_i argc, c3_c* argv[])
c3_d eve_d = u3m_boot(dir_c);
fprintf(stderr, "urbit-worker: %s at event %" PRIu64 "\r\n", dir_c, eve_d);
u3m_stop();
}
/* _cw_grab(); gc pier.
@ -339,6 +341,7 @@ _cw_grab(c3_i argc, c3_c* argv[])
c3_c* dir_c = argv[2];
u3m_boot(dir_c);
u3_serf_grab();
u3m_stop();
}
/* _cw_cram(); jam persistent state (rock), and exit.
@ -368,6 +371,8 @@ _cw_cram(c3_i argc, c3_c* argv[])
if ( c3n == ret_o ) {
exit(1);
}
u3m_stop();
}
/* _cw_queu(); cue rock, save, and exit.
@ -404,6 +409,7 @@ _cw_queu(c3_i argc, c3_c* argv[])
u3e_save();
fprintf(stderr, "urbit-worker: queu: rock loaded at event %" PRIu64 "\r\n", eve_d);
u3m_stop();
}
}
@ -440,6 +446,7 @@ _cw_pack(c3_i argc, c3_c* argv[])
u3a_print_memory(stderr, "urbit-worker: pack: gained", u3m_pack());
u3e_save();
u3m_stop();
}
/* _cw_usage(): print urbit-worker usage.

56
pkg/urcrypt/.gitignore vendored Normal file
View File

@ -0,0 +1,56 @@
*.pc
config.h
config.status
libtool
# the following was adapted from
# https://github.com/github/gitignore/blob/991e760c1c6d50fdda246e0178b9c58b06770b90/Autotools.gitignore
# http://www.gnu.org/software/automake
Makefile.in
build-aux/ar-lib
/mdate-sh
/py-compile
/test-driver
/ylwrap
.deps/
.dirstamp
# http://www.gnu.org/software/autoconf
autom4te.cache
/autoscan.log
/autoscan-*.log
/aclocal.m4
build-aux/compile
/config.cache
build-aux/config.guess
/config.h.in
build-aux/config.log
build-aux/config.status
build-aux/config.sub
/configure
/configure.scan
build-aux/depcomp
build-aux/install-sh
build-aux/missing
/stamp-h1
# https://www.gnu.org/software/libtool/
build-aux/ltmain.sh
# http://www.gnu.org/software/m4/
build-aux/m4/libtool.m4
build-aux/m4/ltoptions.m4
build-aux/m4/ltsugar.m4
build-aux/m4/ltversion.m4
build-aux/m4/lt~obsolete.m4
# Generated Makefile
# (meta build system like autotools,
# can automatically generate from config.status script
# (which is called by configure script))
Makefile

110
pkg/urcrypt/Makefile.am Normal file
View File

@ -0,0 +1,110 @@
ACLOCAL_AMFLAGS = -I build-aux/m4
AM_CFLAGS = -Wall -g -O3
lib_LTLIBRARIES = liburcrypt.la
noinst_LTLIBRARIES = libed25519.la \
libge_additions.la \
libargon2.la \
libscrypt.la
include_HEADERS = urcrypt/urcrypt.h
noinst_HEADERS = urcrypt/util.h \
ed25519/src/ed25519.h \
ed25519/src/ge.h \
ge-additions/ge-additions.h \
argon2/include/argon2.h \
argon2/src/blake2/blake2.h \
scrypt/sha256.h \
scrypt/libscrypt.h
# main library
pkgconfig_DATA = liburcrypt-$(URCRYPT_API_VERSION).pc
DISTCLEANFILES = $(pkgconfig_DATA)
liburcrypt_la_CPPFLAGS = -I$(srcdir)/ed25519/src \
-I$(srcdir)/ge-additions \
-I$(srcdir)/argon2/include \
-I$(srcdir)/argon2/src/blake2 \
-I$(srcdir)/scrypt
liburcrypt_la_LIBADD = $(LIBCRYPTO_LIBS) \
$(LIBSECP256K1_LIBS) \
$(LIBAES_SIV_LIBS) \
libed25519.la \
libge_additions.la \
libargon2.la \
libscrypt.la
liburcrypt_la_CFLAGS = $(LIBCRYPTO_CFLAGS) \
$(LIBSECP256K1_CFLAGS) \
$(LIBAES_SIV_CFLAGS)
# urcrypt_ is used for public symbols, urcrypt__ for internal.
liburcrypt_la_LDFLAGS = -export-symbols-regex '^urcrypt_[^_]' \
-version-info $(URCRYPT_LT_VERSION)
liburcrypt_la_SOURCES = urcrypt/aes_cbc.c \
urcrypt/aes_ecb.c \
urcrypt/aes_siv.c \
urcrypt/argon.c \
urcrypt/ed25519.c \
urcrypt/ge_additions.c \
urcrypt/ripemd.c \
urcrypt/scrypt.c \
urcrypt/secp256k1.c \
urcrypt/sha.c \
urcrypt/util.c \
urcrypt/util.h
# ed25519
libed25519_la_CFLAGS = -Wno-unused-result
libed25519_la_SOURCES = ed25519/src/fixedint.h \
ed25519/src/sha512.h \
ed25519/src/fe.h \
ed25519/src/precomp_data.h \
ed25519/src/sc.h \
ed25519/src/add_scalar.c \
ed25519/src/keypair.c \
ed25519/src/sc.c \
ed25519/src/seed.c \
ed25519/src/verify.c \
ed25519/src/ge.c \
ed25519/src/fe.c \
ed25519/src/key_exchange.c \
ed25519/src/sha512.c \
ed25519/src/sign.c
# ge-additions
libge_additions_la_CPPFLAGS = -I$(srcdir)/ed25519/src
libge_additions_la_CFLAGS = -Werror -pedantic -std=gnu99
libge_additions_la_SOURCES = ge-additions/ge-additions.c
# argon2
libargon2_la_CPPFLAGS = -I$(srcdir)/argon2/include -DARGON2_NO_THREADS
libargon2_la_CFLAGS = -Wno-unused-value -Wno-unused-function
libargon2_la_SOURCES = argon2/src/core.h \
argon2/src/thread.h \
argon2/src/encoding.h \
argon2/src/blake2/blake2-impl.h \
argon2/src/blake2/blamka-round-opt.h \
argon2/src/blake2/blamka-round-ref.h \
argon2/src/argon2.c \
argon2/src/core.c \
argon2/src/blake2/blake2b.c \
argon2/src/thread.c \
argon2/src/encoding.c \
argon2/src/opt.c
# scrypt
libscrypt_la_CPPFLAGS = -D_FORTIFY_SOURCE=2
libscrypt_la_SOURCES = scrypt/b64.c \
scrypt/crypto-mcf.c \
scrypt/crypto-scrypt-saltgen.c \
scrypt/crypto_scrypt-check.c \
scrypt/crypto_scrypt-hash.c \
scrypt/crypto_scrypt-hexconvert.c \
scrypt/crypto_scrypt-nosse.c \
scrypt/main.c \
scrypt/sha256.c \
scrypt/slowequals.c \
scrypt/b64.h \
scrypt/crypto_scrypt-hexconvert.h \
scrypt/slowequals.h \
scrypt/sysendian.h

36
pkg/urcrypt/README.md Normal file
View File

@ -0,0 +1,36 @@
What is urcrypt?
----------------
urcrypt is a library of cryptography routines used by urbit jets.
Why is urcrypt?
---------------
Urbit's C runtime (long the only urbit runtime) has accumulated a collection of
cryptography dependencies, some with custom additions or patches. These
libraries have different conventions and have been managed by u3 in an ad-hoc
manner. Reproducing that arrangement in other runtimes is tricky and
error-prone. The (sometimes inconsistent) logic must be reproduced and suitable
cryptography primitives must be found (or worse, written) for the new
environment.
To ease these burdens, urcrypt isolates the quirks behind a consistent calling
convention. Everything is a little-endian byte array, and each jetted operation
has a corresponding function in the library. Jets simply unpack their nouns,
call urcrypt, and pack the results.
What is a cryptography routine?
-------------------------------
This is more of a subjective question than it might appear. Any of the following
conditions are sufficient, but not necessary, for a function to be included in
urcrypt:
* The routine is sensitive to side-channel attacks (encryption, etc)
* Some property of the routine is cryptographically useful (SHA, RIPE, etc)
* The routine typically lives in a crypto library, for whatever reason.
A word on OpenSSL
-----------------
Urcrypt depends on OpenSSL's libcrypto, which has global state. In order
to avoid dealing with this state, urcrypt refuses to build with an internal
libcrypto. Either build statically (pass `--disable-shared` to `./configure`)
or provide a shared libcrypto for urcrypt to link against. It is the library
user's responsibility to initialize openssl, set custom memory functions, etc.

10
pkg/urcrypt/argon2/.gitattributes vendored Normal file
View File

@ -0,0 +1,10 @@
# Export ignore
.gitattributes export-ignore
.gitignore export-ignore
.travis.yml export-ignore
appveyor.yml export-ignore
export.sh export-ignore
latex/* export-ignore
# Linguist documentation
latex/* linguist-documentation

21
pkg/urcrypt/argon2/.gitignore vendored Normal file
View File

@ -0,0 +1,21 @@
argon2
libargon2.a
libargon2.so*
libargon2.dylib
.DS_Store
src/*.o
src/blake2/*.o
genkat
.idea
*.pyc
testcase
*.gcda
*.gcno
*.gcov
bench
vs2015/build
Argon2.sdf
Argon2.VC.opendb
*.zip
*.tar.gz
tags

View File

@ -0,0 +1,25 @@
language: c
compiler:
- clang
- gcc
os:
- linux
- osx
# Clang on Linux needs to run in a VM to use ASAN.
# See: https://github.com/travis-ci/travis-ci/issues/9033
matrix:
exclude:
- compiler: clang
os: linux
include:
- compiler: clang
os: linux
sudo: true
script: make && make testci
after_success:
- bash <(curl -s https://codecov.io/bash)

View File

@ -0,0 +1,160 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 14
VisualStudioVersion = 14.0.25420.1
MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2OptTestCI", "vs2015\Argon2OptTestCI\Argon2OptTestCI.vcxproj", "{12956597-5E42-433A-93F3-D4EFF50AA207}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2RefTestCI", "vs2015\Argon2RefTestCI\Argon2RefTestCI.vcxproj", "{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2OptGenKAT", "vs2015\Argon2OptGenKAT\Argon2OptGenKAT.vcxproj", "{DBBAAAE6-4560-4D11-8280-30A6650A82EF}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2RefGenKAT", "vs2015\Argon2RefGenKAT\Argon2RefGenKAT.vcxproj", "{71921B4C-A795-4A37-95A3-99D600E01211}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2Opt", "vs2015\Argon2Opt\Argon2Opt.vcxproj", "{CAA75C57-998C-494E-B8A5-5894EF0FC528}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2Ref", "vs2015\Argon2Ref\Argon2Ref.vcxproj", "{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2OptBench", "vs2015\Argon2OptBench\Argon2OptBench.vcxproj", "{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2RefBench", "vs2015\Argon2RefBench\Argon2RefBench.vcxproj", "{99203F6A-6E8C-42FC-8C7C-C07E8913D539}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2OptDll", "vs2015\Argon2OptDll\Argon2OptDll.vcxproj", "{3A898DD8-ACAE-4269-ADFE-EB7260D71583}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Argon2RefDll", "vs2015\Argon2RefDll\Argon2RefDll.vcxproj", "{19D911A1-533C-4475-B313-F372481A35D4}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Debug|x86 = Debug|x86
Release|x64 = Release|x64
Release|x86 = Release|x86
ReleaseStatic|x64 = ReleaseStatic|x64
ReleaseStatic|x86 = ReleaseStatic|x86
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{12956597-5E42-433A-93F3-D4EFF50AA207}.Debug|x64.ActiveCfg = Debug|x64
{12956597-5E42-433A-93F3-D4EFF50AA207}.Debug|x64.Build.0 = Debug|x64
{12956597-5E42-433A-93F3-D4EFF50AA207}.Debug|x86.ActiveCfg = Debug|Win32
{12956597-5E42-433A-93F3-D4EFF50AA207}.Debug|x86.Build.0 = Debug|Win32
{12956597-5E42-433A-93F3-D4EFF50AA207}.Release|x64.ActiveCfg = Release|x64
{12956597-5E42-433A-93F3-D4EFF50AA207}.Release|x64.Build.0 = Release|x64
{12956597-5E42-433A-93F3-D4EFF50AA207}.Release|x86.ActiveCfg = Release|Win32
{12956597-5E42-433A-93F3-D4EFF50AA207}.Release|x86.Build.0 = Release|Win32
{12956597-5E42-433A-93F3-D4EFF50AA207}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{12956597-5E42-433A-93F3-D4EFF50AA207}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{12956597-5E42-433A-93F3-D4EFF50AA207}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{12956597-5E42-433A-93F3-D4EFF50AA207}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Debug|x64.ActiveCfg = Debug|x64
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Debug|x64.Build.0 = Debug|x64
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Debug|x86.ActiveCfg = Debug|Win32
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Debug|x86.Build.0 = Debug|Win32
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Release|x64.ActiveCfg = Release|x64
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Release|x64.Build.0 = Release|x64
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Release|x86.ActiveCfg = Release|Win32
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.Release|x86.Build.0 = Release|Win32
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{8A1F7F84-34AF-4DB2-9D58-D4823DFE79E9}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Debug|x64.ActiveCfg = Debug|x64
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Debug|x64.Build.0 = Debug|x64
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Debug|x86.ActiveCfg = Debug|Win32
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Debug|x86.Build.0 = Debug|Win32
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Release|x64.ActiveCfg = Release|x64
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Release|x64.Build.0 = Release|x64
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Release|x86.ActiveCfg = Release|Win32
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.Release|x86.Build.0 = Release|Win32
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{DBBAAAE6-4560-4D11-8280-30A6650A82EF}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{71921B4C-A795-4A37-95A3-99D600E01211}.Debug|x64.ActiveCfg = Debug|x64
{71921B4C-A795-4A37-95A3-99D600E01211}.Debug|x64.Build.0 = Debug|x64
{71921B4C-A795-4A37-95A3-99D600E01211}.Debug|x86.ActiveCfg = Debug|Win32
{71921B4C-A795-4A37-95A3-99D600E01211}.Debug|x86.Build.0 = Debug|Win32
{71921B4C-A795-4A37-95A3-99D600E01211}.Release|x64.ActiveCfg = Release|x64
{71921B4C-A795-4A37-95A3-99D600E01211}.Release|x64.Build.0 = Release|x64
{71921B4C-A795-4A37-95A3-99D600E01211}.Release|x86.ActiveCfg = Release|Win32
{71921B4C-A795-4A37-95A3-99D600E01211}.Release|x86.Build.0 = Release|Win32
{71921B4C-A795-4A37-95A3-99D600E01211}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{71921B4C-A795-4A37-95A3-99D600E01211}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{71921B4C-A795-4A37-95A3-99D600E01211}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{71921B4C-A795-4A37-95A3-99D600E01211}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Debug|x64.ActiveCfg = Debug|x64
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Debug|x64.Build.0 = Debug|x64
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Debug|x86.ActiveCfg = Debug|Win32
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Debug|x86.Build.0 = Debug|Win32
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Release|x64.ActiveCfg = Release|x64
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Release|x64.Build.0 = Release|x64
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Release|x86.ActiveCfg = Release|Win32
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.Release|x86.Build.0 = Release|Win32
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{CAA75C57-998C-494E-B8A5-5894EF0FC528}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Debug|x64.ActiveCfg = Debug|x64
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Debug|x64.Build.0 = Debug|x64
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Debug|x86.ActiveCfg = Debug|Win32
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Debug|x86.Build.0 = Debug|Win32
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Release|x64.ActiveCfg = Release|x64
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Release|x64.Build.0 = Release|x64
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Release|x86.ActiveCfg = Release|Win32
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.Release|x86.Build.0 = Release|Win32
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{B9CAC9CE-9F0D-4F52-8D67-FDBBAFCD0DE2}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Debug|x64.ActiveCfg = Debug|x64
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Debug|x64.Build.0 = Debug|x64
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Debug|x86.ActiveCfg = Debug|Win32
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Debug|x86.Build.0 = Debug|Win32
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Release|x64.ActiveCfg = Release|x64
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Release|x64.Build.0 = Release|x64
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Release|x86.ActiveCfg = Release|Win32
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.Release|x86.Build.0 = Release|Win32
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{B3A0FB44-0C1C-4EC3-B155-8B39371F8EE4}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Debug|x64.ActiveCfg = Debug|x64
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Debug|x64.Build.0 = Debug|x64
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Debug|x86.ActiveCfg = Debug|Win32
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Debug|x86.Build.0 = Debug|Win32
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Release|x64.ActiveCfg = Release|x64
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Release|x64.Build.0 = Release|x64
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Release|x86.ActiveCfg = Release|Win32
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.Release|x86.Build.0 = Release|Win32
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{99203F6A-6E8C-42FC-8C7C-C07E8913D539}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Debug|x64.ActiveCfg = Debug|x64
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Debug|x64.Build.0 = Debug|x64
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Debug|x86.ActiveCfg = Debug|Win32
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Debug|x86.Build.0 = Debug|Win32
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Release|x64.ActiveCfg = Release|x64
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Release|x64.Build.0 = Release|x64
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Release|x86.ActiveCfg = Release|Win32
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.Release|x86.Build.0 = Release|Win32
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{3A898DD8-ACAE-4269-ADFE-EB7260D71583}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
{19D911A1-533C-4475-B313-F372481A35D4}.Debug|x64.ActiveCfg = Debug|x64
{19D911A1-533C-4475-B313-F372481A35D4}.Debug|x64.Build.0 = Debug|x64
{19D911A1-533C-4475-B313-F372481A35D4}.Debug|x86.ActiveCfg = Debug|Win32
{19D911A1-533C-4475-B313-F372481A35D4}.Debug|x86.Build.0 = Debug|Win32
{19D911A1-533C-4475-B313-F372481A35D4}.Release|x64.ActiveCfg = Release|x64
{19D911A1-533C-4475-B313-F372481A35D4}.Release|x64.Build.0 = Release|x64
{19D911A1-533C-4475-B313-F372481A35D4}.Release|x86.ActiveCfg = Release|Win32
{19D911A1-533C-4475-B313-F372481A35D4}.Release|x86.Build.0 = Release|Win32
{19D911A1-533C-4475-B313-F372481A35D4}.ReleaseStatic|x64.ActiveCfg = ReleaseStatic|x64
{19D911A1-533C-4475-B313-F372481A35D4}.ReleaseStatic|x64.Build.0 = ReleaseStatic|x64
{19D911A1-533C-4475-B313-F372481A35D4}.ReleaseStatic|x86.ActiveCfg = ReleaseStatic|Win32
{19D911A1-533C-4475-B313-F372481A35D4}.ReleaseStatic|x86.Build.0 = ReleaseStatic|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,32 @@
# 20171227
* Added ABI version number
* AVX2/AVX-512F optimizations of BLAMKA
* Set Argon2 version number from the command line
* New bindings
* Minor bug and warning fixes (no security issue)
# 20161029
* Argon2id added
* Better documentation
* Dual licensing CC0 / Apache 2.0
* Minor bug fixes (no security issue)
# 20160406
* Version 1.3 of Argon2
* Version number in encoded hash
* Refactored low-level API
* Visibility control for library symbols
* Microsoft Visual Studio solution
* New bindings
* Minor bug and warning fixes (no security issue)
# 20151206
* Python bindings
* Password read from stdin, instead of being an argument
* Compatibility FreeBSD, NetBSD, OpenBSD
* Constant-time verification
* Minor bug and warning fixes (no security issue)

314
pkg/urcrypt/argon2/LICENSE Normal file
View File

@ -0,0 +1,314 @@
Argon2 reference source code package - reference C implementations
Copyright 2015
Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
You may use this work under the terms of a Creative Commons CC0 1.0
License/Waiver or the Apache Public License 2.0, at your option. The terms of
these licenses can be found at:
- CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
- Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
The terms of the licenses are reproduced below.
--------------------------------------------------------------------------------
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.
--------------------------------------------------------------------------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

187
pkg/urcrypt/argon2/Makefile Normal file
View File

@ -0,0 +1,187 @@
#
# Argon2 reference source code package - reference C implementations
#
# Copyright 2015
# Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
#
# You may use this work under the terms of a Creative Commons CC0 1.0
# License/Waiver or the Apache Public License 2.0, at your option. The terms of
# these licenses can be found at:
#
# - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
# - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
#
# You should have received a copy of both of these licenses along with this
# software. If not, they may be obtained at the above URLs.
#
RUN = argon2
BENCH = bench
GENKAT = genkat
# Increment on an ABI breaking change
ABI_VERSION = 1
DIST = phc-winner-argon2
SRC = src/argon2.c src/core.c src/blake2/blake2b.c src/thread.c src/encoding.c
SRC_RUN = src/run.c
SRC_BENCH = src/bench.c
SRC_GENKAT = src/genkat.c
OBJ = $(SRC:.c=.o)
CFLAGS += -std=c89 -O3 -Wall -g -Iinclude -Isrc
ifeq ($(NO_THREADS), 1)
CFLAGS += -DARGON2_NO_THREADS
else
CFLAGS += -pthread
endif
CI_CFLAGS := $(CFLAGS) -Werror=declaration-after-statement -D_FORTIFY_SOURCE=2 \
-Wextra -Wno-type-limits -Werror -coverage -DTEST_LARGE_RAM
OPTTARGET ?= native
OPTTEST := $(shell $(CC) -Iinclude -Isrc -march=$(OPTTARGET) src/opt.c -c \
-o /dev/null 2>/dev/null; echo $$?)
# Detect compatible platform
ifneq ($(OPTTEST), 0)
$(info Building without optimizations)
SRC += src/ref.c
else
$(info Building with optimizations for $(OPTTARGET))
CFLAGS += -march=$(OPTTARGET)
SRC += src/opt.c
endif
BUILD_PATH := $(shell pwd)
KERNEL_NAME := $(shell uname -s)
LIB_NAME=argon2
ifeq ($(KERNEL_NAME), Linux)
LIB_EXT := so.$(ABI_VERSION)
LIB_CFLAGS := -shared -fPIC -fvisibility=hidden -DA2_VISCTL=1
SO_LDFLAGS := -Wl,-soname,lib$(LIB_NAME).$(LIB_EXT)
LINKED_LIB_EXT := so
endif
ifeq ($(KERNEL_NAME), $(filter $(KERNEL_NAME),FreeBSD NetBSD OpenBSD))
LIB_EXT := so
LIB_CFLAGS := -shared -fPIC
endif
ifeq ($(KERNEL_NAME), Darwin)
LIB_EXT := $(ABI_VERSION).dylib
LIB_CFLAGS := -dynamiclib -install_name @rpath/lib$(LIB_NAME).$(LIB_EXT)
LINKED_LIB_EXT := dylib
endif
ifeq ($(findstring CYGWIN, $(KERNEL_NAME)), CYGWIN)
LIB_EXT := dll
LIB_CFLAGS := -shared -Wl,--out-implib,lib$(LIB_NAME).$(LIB_EXT).a
endif
ifeq ($(findstring MINGW, $(KERNEL_NAME)), MINGW)
LIB_EXT := dll
LIB_CFLAGS := -shared -Wl,--out-implib,lib$(LIB_NAME).$(LIB_EXT).a
endif
ifeq ($(findstring MSYS, $(KERNEL_NAME)), MSYS)
LIB_EXT := dll
LIB_CFLAGS := -shared -Wl,--out-implib,lib$(LIB_NAME).$(LIB_EXT).a
endif
ifeq ($(KERNEL_NAME), SunOS)
CC := gcc
CFLAGS += -D_REENTRANT
LIB_EXT := so
LIB_CFLAGS := -shared -fPIC
endif
ifeq ($(KERNEL_NAME), Linux)
ifeq ($(CC), clang)
CI_CFLAGS += -fsanitize=address -fsanitize=undefined
endif
endif
LIB_SH := lib$(LIB_NAME).$(LIB_EXT)
LIB_ST := lib$(LIB_NAME).a
ifdef LINKED_LIB_EXT
LINKED_LIB_SH := lib$(LIB_NAME).$(LINKED_LIB_EXT)
endif
LIBRARIES = $(LIB_SH) $(LIB_ST)
HEADERS = include/argon2.h
INSTALL = install
DESTDIR =
PREFIX = /usr
INCLUDE_REL = include
LIBRARY_REL = lib
BINARY_REL = bin
INST_INCLUDE = $(DESTDIR)$(PREFIX)/$(INCLUDE_REL)
INST_LIBRARY = $(DESTDIR)$(PREFIX)/$(LIBRARY_REL)
INST_BINARY = $(DESTDIR)$(PREFIX)/$(BINARY_REL)
.PHONY: clean dist format $(GENKAT) all install
all: $(RUN) libs
libs: $(LIBRARIES)
$(RUN): $(SRC) $(SRC_RUN)
$(CC) $(CFLAGS) $(LDFLAGS) $^ -o $@
$(BENCH): $(SRC) $(SRC_BENCH)
$(CC) $(CFLAGS) $^ -o $@
$(GENKAT): $(SRC) $(SRC_GENKAT)
$(CC) $(CFLAGS) $^ -o $@ -DGENKAT
$(LIB_SH): $(SRC)
$(CC) $(CFLAGS) $(LIB_CFLAGS) $(LDFLAGS) $(SO_LDFLAGS) $^ -o $@
$(LIB_ST): $(OBJ)
ar rcs $@ $^
clean:
rm -f $(RUN) $(BENCH) $(GENKAT)
rm -f $(LIB_SH) $(LIB_ST) kat-argon2*
rm -f testcase
rm -rf *.dSYM
cd src/ && rm -f *.o
cd src/blake2/ && rm -f *.o
cd kats/ && rm -f kat-* diff* run_* make_*
dist:
cd ..; \
tar -c --exclude='.??*' -z -f $(DIST)-`date "+%Y%m%d"`.tgz $(DIST)/*
test: $(SRC) src/test.c
$(CC) $(CFLAGS) -Wextra -Wno-type-limits $^ -o testcase
@sh kats/test.sh
./testcase
testci: $(SRC) src/test.c
$(CC) $(CI_CFLAGS) $^ -o testcase
@sh kats/test.sh
./testcase
.PHONY: test
format:
clang-format -style="{BasedOnStyle: llvm, IndentWidth: 4}" \
-i include/*.h src/*.c src/*.h src/blake2/*.c src/blake2/*.h
install: $(RUN) libs
$(INSTALL) -d $(INST_INCLUDE)
$(INSTALL) -m 0644 $(HEADERS) $(INST_INCLUDE)
$(INSTALL) -d $(INST_LIBRARY)
$(INSTALL) $(LIBRARIES) $(INST_LIBRARY)
ifdef LINKED_LIB_SH
cd $(INST_LIBRARY) && ln -s $(notdir $(LIB_SH) $(LINKED_LIB_SH))
endif
$(INSTALL) -d $(INST_BINARY)
$(INSTALL) $(RUN) $(INST_BINARY)
uninstall:
cd $(INST_INCLUDE) && rm -f $(notdir $(HEADERS))
cd $(INST_LIBRARY) && rm -f $(notdir $(LIBRARIES) $(LINKED_LIB_SH))
cd $(INST_BINARY) && rm -f $(notdir $(RUN))

View File

@ -0,0 +1,30 @@
# Argon2
This is a fork of [the reference C implementation of Argon2](https://github.com/P-H-C/phc-winner-argon2), the password-hashing function that won the [Password Hashing Competition (PHC)](https://password-hashing.net).
## About Argon2u
In addition to the official three variants (Argon2i, Argon2d, and Argon2id), this fork also implements a fourth variant, Argon2u. It operates similarly to Argon2id, in that it is a hybrid of Argon2i and Argon2d. Where Argon2id uses Argon2i's algorithm for the first two processed segments, Argon2u does this for the first three.
## More about Argon2
Please see the [original repository](https://github.com/P-H-C/phc-winner-argon2) for information about Argon2.
## Intellectual property
Except for the components listed below, the Argon2 code in this
repository is copyright (c) 2015 Daniel Dinu, Dmitry Khovratovich (main
authors), Jean-Philippe Aumasson and Samuel Neves, and dual licensed under the
[CC0 License](https://creativecommons.org/about/cc0) and the
[Apache 2.0 License](http://www.apache.org/licenses/LICENSE-2.0). For more info
see the LICENSE file.
The string encoding routines in [`src/encoding.c`](src/encoding.c) are
copyright (c) 2015 Thomas Pornin, and under
[CC0 License](https://creativecommons.org/about/cc0).
The BLAKE2 code in [`src/blake2/`](src/blake2) is copyright (c) Samuel
Neves, 2013-2015, and under
[CC0 License](https://creativecommons.org/about/cc0).
All licenses are therefore GPL-compatible.

View File

@ -0,0 +1,25 @@
os: Visual Studio 2015
environment:
matrix:
- platform: x86
configuration: Debug
- platform: x86
configuration: Release
- platform: x64
configuration: Debug
- platform: x64
configuration: Release
matrix:
fast_finish: false
build:
parallel: true
project: Argon2.sln
verbosity: minimal
test_script:
- ps: kats\test.ps1
- ps: if ("Release" -eq $env:configuration) { vs2015\build\Argon2OptTestCI.exe }
- ps: if ("Release" -eq $env:configuration) { vs2015\build\Argon2RefTestCI.exe }

Binary file not shown.

7
pkg/urcrypt/argon2/export.sh Executable file
View File

@ -0,0 +1,7 @@
#!/bin/sh
FILE=`date "+%Y%m%d"`
BRANCH=master
git archive --format zip --output $FILE.zip $BRANCH
git archive --format tar.gz --output $FILE.tar.gz $BRANCH

View File

@ -0,0 +1,475 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ARGON2_H
#define ARGON2_H
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif
/* Symbols visibility control */
#ifdef A2_VISCTL
#define ARGON2_PUBLIC __attribute__((visibility("default")))
#define ARGON2_LOCAL __attribute__ ((visibility ("hidden")))
#elif _MSC_VER
#define ARGON2_PUBLIC __declspec(dllexport)
#define ARGON2_LOCAL
#else
#define ARGON2_PUBLIC
#define ARGON2_LOCAL
#endif
/*
* Argon2 input parameter restrictions
*/
/* Minimum and maximum number of lanes (degree of parallelism) */
#define ARGON2_MIN_LANES UINT32_C(1)
#define ARGON2_MAX_LANES UINT32_C(0xFFFFFF)
/* Minimum and maximum number of threads */
#define ARGON2_MIN_THREADS UINT32_C(1)
#define ARGON2_MAX_THREADS UINT32_C(0xFFFFFF)
/* Number of synchronization points between lanes per pass */
#define ARGON2_SYNC_POINTS UINT32_C(4)
/* Minimum and maximum digest size in bytes */
#define ARGON2_MIN_OUTLEN UINT32_C(4)
#define ARGON2_MAX_OUTLEN UINT32_C(0xFFFFFFFF)
/* Minimum and maximum number of memory blocks (each of BLOCK_SIZE bytes) */
#define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS) /* 2 blocks per slice */
#define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
/* Max memory size is addressing-space/2, topping at 2^32 blocks (4 TB) */
#define ARGON2_MAX_MEMORY_BITS \
ARGON2_MIN(UINT32_C(32), (sizeof(void *) * CHAR_BIT - 10 - 1))
#define ARGON2_MAX_MEMORY \
ARGON2_MIN(UINT32_C(0xFFFFFFFF), UINT64_C(1) << ARGON2_MAX_MEMORY_BITS)
/* Minimum and maximum number of passes */
#define ARGON2_MIN_TIME UINT32_C(1)
#define ARGON2_MAX_TIME UINT32_C(0xFFFFFFFF)
/* Minimum and maximum password length in bytes */
#define ARGON2_MIN_PWD_LENGTH UINT32_C(0)
#define ARGON2_MAX_PWD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum associated data length in bytes */
#define ARGON2_MIN_AD_LENGTH UINT32_C(0)
#define ARGON2_MAX_AD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum salt length in bytes */
#define ARGON2_MIN_SALT_LENGTH UINT32_C(8)
#define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum key length in bytes */
#define ARGON2_MIN_SECRET UINT32_C(0)
#define ARGON2_MAX_SECRET UINT32_C(0xFFFFFFFF)
/* Flags to determine which fields are securely wiped (default = no wipe). */
#define ARGON2_DEFAULT_FLAGS UINT32_C(0)
#define ARGON2_FLAG_CLEAR_PASSWORD (UINT32_C(1) << 0)
#define ARGON2_FLAG_CLEAR_SECRET (UINT32_C(1) << 1)
/* Global flag to determine if we are wiping internal memory buffers. This flag
* is defined in core.c and deafults to 1 (wipe internal memory). */
extern int FLAG_clear_internal_memory;
/* Error codes */
typedef enum Argon2_ErrorCodes {
ARGON2_OK = 0,
ARGON2_OUTPUT_PTR_NULL = -1,
ARGON2_OUTPUT_TOO_SHORT = -2,
ARGON2_OUTPUT_TOO_LONG = -3,
ARGON2_PWD_TOO_SHORT = -4,
ARGON2_PWD_TOO_LONG = -5,
ARGON2_SALT_TOO_SHORT = -6,
ARGON2_SALT_TOO_LONG = -7,
ARGON2_AD_TOO_SHORT = -8,
ARGON2_AD_TOO_LONG = -9,
ARGON2_SECRET_TOO_SHORT = -10,
ARGON2_SECRET_TOO_LONG = -11,
ARGON2_TIME_TOO_SMALL = -12,
ARGON2_TIME_TOO_LARGE = -13,
ARGON2_MEMORY_TOO_LITTLE = -14,
ARGON2_MEMORY_TOO_MUCH = -15,
ARGON2_LANES_TOO_FEW = -16,
ARGON2_LANES_TOO_MANY = -17,
ARGON2_PWD_PTR_MISMATCH = -18, /* NULL ptr with non-zero length */
ARGON2_SALT_PTR_MISMATCH = -19, /* NULL ptr with non-zero length */
ARGON2_SECRET_PTR_MISMATCH = -20, /* NULL ptr with non-zero length */
ARGON2_AD_PTR_MISMATCH = -21, /* NULL ptr with non-zero length */
ARGON2_MEMORY_ALLOCATION_ERROR = -22,
ARGON2_FREE_MEMORY_CBK_NULL = -23,
ARGON2_ALLOCATE_MEMORY_CBK_NULL = -24,
ARGON2_INCORRECT_PARAMETER = -25,
ARGON2_INCORRECT_TYPE = -26,
ARGON2_OUT_PTR_MISMATCH = -27,
ARGON2_THREADS_TOO_FEW = -28,
ARGON2_THREADS_TOO_MANY = -29,
ARGON2_MISSING_ARGS = -30,
ARGON2_ENCODING_FAIL = -31,
ARGON2_DECODING_FAIL = -32,
ARGON2_THREAD_FAIL = -33,
ARGON2_DECODING_LENGTH_FAIL = -34,
ARGON2_VERIFY_MISMATCH = -35
} argon2_error_codes;
/* Memory allocator types --- for external allocation */
typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate);
typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate);
/* Argon2 external data structures */
/*
*****
* Context: structure to hold Argon2 inputs:
* output array and its length,
* password and its length,
* salt and its length,
* secret and its length,
* associated data and its length,
* number of passes, amount of used memory (in KBytes, can be rounded up a bit)
* number of parallel threads that will be run.
* All the parameters above affect the output hash value.
* Additionally, two function pointers can be provided to allocate and
* deallocate the memory (if NULL, memory will be allocated internally).
* Also, three flags indicate whether to erase password, secret as soon as they
* are pre-hashed (and thus not needed anymore), and the entire memory
*****
* Simplest situation: you have output array out[8], password is stored in
* pwd[32], salt is stored in salt[16], you do not have keys nor associated
* data. You need to spend 1 GB of RAM and you run 5 passes of Argon2d with
* 4 parallel lanes.
* You want to erase the password, but you're OK with last pass not being
* erased. You want to use the default memory allocator.
* Then you initialize:
Argon2_Context(out,8,pwd,32,salt,16,NULL,0,NULL,0,5,1<<20,4,4,NULL,NULL,true,false,false,false)
*/
typedef struct Argon2_Context {
uint8_t *out; /* output array */
uint32_t outlen; /* digest length */
uint8_t *pwd; /* password array */
uint32_t pwdlen; /* password length */
uint8_t *salt; /* salt array */
uint32_t saltlen; /* salt length */
uint8_t *secret; /* key array */
uint32_t secretlen; /* key length */
uint8_t *ad; /* associated data array */
uint32_t adlen; /* associated data length */
uint32_t t_cost; /* number of passes */
uint32_t m_cost; /* amount of memory requested (KB) */
uint32_t lanes; /* number of lanes */
uint32_t threads; /* maximum number of threads */
uint32_t version; /* version number */
allocate_fptr allocate_cbk; /* pointer to memory allocator */
deallocate_fptr free_cbk; /* pointer to memory deallocator */
uint32_t flags; /* array of bool options */
} argon2_context;
/* Argon2 primitive type */
typedef enum Argon2_type {
Argon2_d = 0,
Argon2_i = 1,
Argon2_id = 2,
Argon2_u = 10
} argon2_type;
/* Version of the algorithm */
typedef enum Argon2_version {
ARGON2_VERSION_10 = 0x10,
ARGON2_VERSION_13 = 0x13,
ARGON2_VERSION_NUMBER = ARGON2_VERSION_13
} argon2_version;
/*
* Function that gives the string representation of an argon2_type.
* @param type The argon2_type that we want the string for
* @param uppercase Whether the string should have the first letter uppercase
* @return NULL if invalid type, otherwise the string representation.
*/
ARGON2_PUBLIC const char *argon2_type2string(argon2_type type, int uppercase);
/*
* Function that performs memory-hard hashing with certain degree of parallelism
* @param context Pointer to the Argon2 internal structure
* @return Error code if smth is wrong, ARGON2_OK otherwise
*/
ARGON2_PUBLIC int argon2_ctx(argon2_context *context, argon2_type type);
/**
* Hashes a password with Argon2i, producing an encoded hash
* @param t_cost Number of iterations
* @param m_cost Sets memory usage to m_cost kibibytes
* @param parallelism Number of threads and compute lanes
* @param pwd Pointer to password
* @param pwdlen Password size in bytes
* @param salt Pointer to salt
* @param saltlen Salt size in bytes
* @param hashlen Desired length of the hash in bytes
* @param encoded Buffer where to write the encoded hash
* @param encodedlen Size of the buffer (thus max size of the encoded hash)
* @pre Different parallelism levels will give different results
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2i_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
/**
* Hashes a password with Argon2i, producing a raw hash at @hash
* @param t_cost Number of iterations
* @param m_cost Sets memory usage to m_cost kibibytes
* @param parallelism Number of threads and compute lanes
* @param pwd Pointer to password
* @param pwdlen Password size in bytes
* @param salt Pointer to salt
* @param saltlen Salt size in bytes
* @param hash Buffer where to write the raw hash - updated by the function
* @param hashlen Desired length of the hash in bytes
* @pre Different parallelism levels will give different results
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
ARGON2_PUBLIC int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
ARGON2_PUBLIC int argon2id_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
ARGON2_PUBLIC int argon2id_hash_raw(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
ARGON2_PUBLIC int argon2u_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
ARGON2_PUBLIC int argon2u_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen, char *encoded,
const size_t encodedlen, argon2_type type,
const uint32_t version);
/**
* Verifies a password against an encoded string
* Encoded string is restricted as in validate_inputs()
* @param encoded String encoding parameters, salt, hash
* @param pwd Pointer to password
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2i_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
ARGON2_PUBLIC int argon2d_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
ARGON2_PUBLIC int argon2id_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
ARGON2_PUBLIC int argon2u_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_verify(const char *encoded, const void *pwd,
const size_t pwdlen, argon2_type type);
/**
* Argon2d: Version of Argon2 that picks memory blocks depending
* on the password and salt. Only for side-channel-free
* environment!!
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2d_ctx(argon2_context *context);
/**
* Argon2i: Version of Argon2 that picks memory blocks
* independent on the password and salt. Good for side-channels,
* but worse w.r.t. tradeoff attacks if only one pass is used.
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2i_ctx(argon2_context *context);
/**
* Argon2id: Version of Argon2 where the first half-pass over memory is
* password-independent, the rest are password-dependent (on the password and
* salt). OK against side channels (they reduce to 1/2-pass Argon2i), and
* better with w.r.t. tradeoff attacks (similar to Argon2d).
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2id_ctx(argon2_context *context);
/**
* Argon2u: Version of Argon2 where the first three-quarter-pass over memory is
* password-independent, the rest are password-dependent (on the password and
* salt). OK against side channels (they reduce to 3/4-pass Argon2i), and
* better with w.r.t. tradeoff attacks (similar to Argon2d).
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2u_ctx(argon2_context *context);
/**
* Verify if a given password is correct for Argon2d hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2d_verify_ctx(argon2_context *context, const char *hash);
/**
* Verify if a given password is correct for Argon2i hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2i_verify_ctx(argon2_context *context, const char *hash);
/**
* Verify if a given password is correct for Argon2id hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2id_verify_ctx(argon2_context *context,
const char *hash);
/**
* Verify if a given password is correct for Argon2u hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2u_verify_ctx(argon2_context *context, const char *hash);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_verify_ctx(argon2_context *context, const char *hash,
argon2_type type);
/**
* Get the associated error message for given error code
* @return The error message associated with the given error code
*/
ARGON2_PUBLIC const char *argon2_error_message(int error_code);
/**
* Returns the encoded hash length for the given input parameters
* @param t_cost Number of iterations
* @param m_cost Memory usage in kibibytes
* @param parallelism Number of threads; used to compute lanes
* @param saltlen Salt size in bytes
* @param hashlen Hash size in bytes
* @param type The argon2_type that we want the encoded length for
* @return The encoded hash length in bytes
*/
ARGON2_PUBLIC size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost,
uint32_t parallelism, uint32_t saltlen,
uint32_t hashlen, argon2_type type);
#if defined(__cplusplus)
}
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
73619cfe0f35e52fdd1ca2595ffaa359879467407f98b61f4969c2861cc329ce argon2d

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
4ec4569a016c3accc6a25a34252b03a6135939b3c452389917a3f3b65878165b argon2d_v16

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
40a3aeafb092d10cf457a8ee0139c114c911ecf97bd5accf5a99c7ddd6917061 argon2i

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
334f03e627afb67b946a530b90d2e11fb2e6abb44df992c0fb3198c7bacf5930 argon2i_v16

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
ba05643e504fc5778dda99e2d9f42ebe7d22ebb3923cc719fd591b1b14a8d28d argon2id

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
680774be1d3ad2e74bbc56ee715dd6eb97a58279bf22edc57d00e840ca1ae469 argon2id_v16

View File

@ -0,0 +1,42 @@
Set-Variable tempfile -option Constant -value "tempfile"
function hash($path) {
$fullPath = Resolve-Path $path
$hash = new-object -TypeName System.Security.Cryptography.SHA256CryptoServiceProvider
$contents = [IO.File]::ReadAllText($fullPath) -replace "`r`n?", "`n"
# create UTF-8 encoding without signature
$utf8 = New-Object System.Text.UTF8Encoding $false
# write the text back
[IO.File]::WriteAllText($tempfile, $contents, $utf8)
$file = [System.IO.File]::Open($tempfile,[System.IO.Filemode]::Open, [System.IO.FileAccess]::Read)
$result = [System.BitConverter]::ToString($hash.ComputeHash($file))
$file.Dispose()
if (Test-Path $tempfile) {
Remove-Item $tempfile
}
return $result
}
function main() {
$files = $(Get-ChildItem * | Where-Object { $_.Name -match '^[a-z2]*(_v)?[0-9]*$' } | select -ExpandProperty name)
foreach ($file in $files) {
$new = $(hash $file).replace("-","")
$new = $new.ToLower()
$old=$(Get-Content $file".shasum")
$old = $old.Substring(0, $old.IndexOf(" "))
if ($new -eq $old) {
Write-Host $file "`tOK"
} else {
Write-Host $file "`tERROR"
}
}
}
main

View File

@ -0,0 +1,13 @@
#!/bin/sh
for file in `ls | grep '^[a-z2]*\(_v\)\?[0-9]*$' | xargs`
do
new=`shasum -a 256 $file`
old=`cat $file.shasum`
if [ "$new" = "$old" ]
then
echo $file "\t" OK
else
echo $file "\t" ERROR
fi
done

View File

@ -0,0 +1,50 @@
$ErrorActionPreference = "Stop"
Set-Variable tempfile -option Constant -value "tempfile"
function CompareFiles($f1, $f2, $i) {
$f1_content = $(Get-Content $f1)
$f2_content = $(Get-Content $f2)
if (Compare-Object $f1_content $f2_content) {
Write-Host -NoNewline "ERROR"
exit $i
} else {
Write-Host -NoNewline "OK"
}
}
function main() {
$i = 0
foreach ($opt in @("Ref", "Opt")) {
Write-Output "$opt"
foreach ($version in @(16, 19)) {
foreach ($type in @("i", "d", "id")) {
$i++
if ("Ref" -eq $opt) {
vs2015\build\Argon2RefGenKAT.exe $type $version > $tempfile
} else {
vs2015\build\Argon2OptGenKAT.exe $type $version > $tempfile
}
if (19 -eq $version) {
$kats = "kats\argon2" + $type
} else {
$kats = "kats\argon2" + $type + "_v" + $version
}
Write-Host -NoNewline "Argon2$type v=$version : "
CompareFiles $tempfile $kats $i
Write-Output ""
}
}
}
if (Test-Path $tempfile) {
Remove-Item $tempfile
}
}
main

49
pkg/urcrypt/argon2/kats/test.sh Executable file
View File

@ -0,0 +1,49 @@
#!/bin/sh
for opttest in "" "OPTTEST=1"
do
if [ "" = "$opttest" ]
then
printf "Default build\n"
else
printf "Force OPTTEST=1\n"
fi
make genkat $opttest > /dev/null
if [ $? -ne 0 ]
then
exit $?
fi
i=0
for version in 16 19
do
for type in i d id
do
i=$(($i+1))
printf "argon2$type v=$version: "
if [ 19 -eq $version ]
then
kats="kats/argon2"$type
else
kats="kats/argon2"$type"_v"$version
fi
./genkat $type $version > tmp
if diff tmp $kats
then
printf "OK"
else
printf "ERROR"
exit $i
fi
printf "\n"
done
done
done
rm -f tmp
exit 0

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,18 @@
TEX = pdflatex
BIB = bibtex
PROJECT = argon2-specs
.PHONY: all clean update
all:
$(TEX) $(PROJECT).tex
$(BIB) $(PROJECT).aux
$(TEX) $(PROJECT).tex
$(TEX) $(PROJECT).tex
clean:
rm -rf *.aux *.bbl *.blg *.log *.out *.pdf *.toc *~
update:
mv $(PROJECT).pdf ./../$(PROJECT).pdf

View File

@ -0,0 +1,920 @@
\documentclass[a4paper]{article}
\usepackage[hmargin=2cm,vmargin=2cm]{geometry}
\pagestyle{plain}
\usepackage{amssymb,amsthm,amsfonts,longtable, comment,array, ifpdf, hyperref,cite,url}
\usepackage{graphicx}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newcommand{\Tag}{\mathrm{Tag}}
% *** MATH PACKAGES ***
%
\usepackage[cmex10]{amsmath}
% *** SPECIALIZED LIST PACKAGES ***
%
\usepackage{algorithmic}
\begin{document}
%FINISHED
\title{\textsf{Argon2: the memory-hard function for password hashing and other applications}}
\author{Designers: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich\\University of Luxembourg, Luxembourg
\\[10pt]
%Submitters: Alex Biryukov and Dmitry Khovratovich
%\\
{\tt alex.biryukov@uni.lu, dumitru-daniel.dinu@uni.lu, khovratovich@gmail.com}\\[10 pt]
\url{https://www.cryptolux.org/index.php/Argon2}\\
\url{https://github.com/P-H-C/phc-winner-argon2}\\
\url{https://github.com/khovratovich/Argon2}\\[10pt]
Version 1.3 of Argon2: PHC release}
\maketitle
\tableofcontents
\section{Introduction}
Passwords, despite all their drawbacks, remain the primary form of authentication on various web-services. Passwords are usually stored in a hashed form in a server's database. These databases are quite often captured by the adversaries, who then apply dictionary attacks since passwords tend to have low entropy. Protocol designers use a number of tricks to mitigate these issues. Starting from the late 70's, a password is hashed together with a random \emph{salt} value to prevent detection of identical passwords across different users and services. The hash function computations, which became faster and faster due to Moore's law have been called multiple times to increase the cost of password trial for the attacker.
In the meanwhile, the password crackers migrated to new architectures, such as FPGAs, multiple-core GPUs and dedicated ASIC modules, where the amortized cost of a multiple-iterated hash function is much lower. It was quickly noted that these new environments are great when the computation is almost memoryless, but they experience difficulties when operating on a large amount of memory. The defenders responded by designing \emph{memory-hard} functions, which require a large amount of memory to be computed, and impose computational penalties if less memory is used. The password hashing scheme \textsf{scrypt}~\cite{percival2009stronger} is an instance of such function.
Memory-hard schemes also have other applications. They can be used for key derivation from low-entropy sources. Memory-hard schemes are also welcome in cryptocurrency designs~\cite{litecoin} if a creator wants to demotivate the use of GPUs and ASICs for mining and promote the use of standard desktops.
\paragraph{Problems of existing schemes} A trivial solution for password hashing is a keyed hash function such as HMAC. If the protocol designer prefers hashing without secret keys to avoid all the problems with key generation, storage, and update, then he has few alternatives: the generic mode PBKDF2, the Blowfish-based \textsf{bcrypt}, and \textsf{scrypt}. Among those, only
\textsf{scrypt} aims for high memory, but the existence of a trivial time-memory tradeoff~\cite{ForlerLW14} allows compact implementations with the same energy cost.
Design of a memory-hard function proved to be a tough problem. Since early 80's it has been known that many cryptographic problems that seemingly require large memory actually allow for a time-memory tradeoff~\cite{hellman1980cryptanalytic}, where the adversary can trade memory for time and do his job on fast hardware with low memory. In application
to password-hashing schemes, this means that the password crackers can still be implemented on a dedicated hardware even though at some additional cost.
Another problem with the existing schemes is their complexity. The same \textsf{scrypt} calls a stack of subprocedures, whose design rationale has not been fully motivated (e.g, \textsf{scrypt} calls SMix, which calls ROMix, which calls BlockMix, which calls Salsa20/8 etc.). It is hard to analyze and, moreover, hard to achieve confidence. Finally, it is not flexible in separating time and memory costs.
At the same time, the story of cryptographic competitions~\cite{robshaw2008new,sha3} has demonstrated that
the most secure designs come with simplicity, where every element is well motivated and a cryptanalyst has as few entry points as possible.
The Password Hashing Competition, which started in 2014, highlighted the following problems:
\begin{itemize}
\item Should the memory addressing (indexing functions) be input-independent or input-dependent, or hybrid? The first type of schemes, where the memory read location are known in advance, is immediately vulnerable to time-space tradeoff attacks,
since an adversary can precompute the missing block by the time it is needed~\cite{trade-att}. In turn, the input-dependent schemes are vulnerable to side-channel attacks~\cite{RistenpartTSS09}, as the timing information allows for much faster password search.
\item Is it better to fill more memory but suffer from time-space tradeoffs, or make more passes over the memory to be more robust? This question was quite difficult to answer due to absence of generic tradeoff tools, which would analyze the security against tradeoff attacks, and the absence of unified metric to measure adversary's costs.
\item How should the input-independent addresses be computed? Several seemingly secure options have been attacked~\cite{trade-att}.
\item How large a single memory block should be? Reading smaller random-placed blocks is slower (in cycles per byte) due to the spacial locality principle of the CPU cache. In turn, larger
blocks are difficult to process due to the limited number of long registers.
\item If the block is large, how to choose the internal compression function? Should it be cryptographically secure or more lightweight, providing only basic mixing of the inputs? Many candidates simply proposed an iterative construction and argued against cryptographically strong transformations.
\item How to exploit multiple cores of modern CPUs, when they are available? Parallelizing calls to the hashing function without any interaction is subject to simple tradeoff attacks.
\end{itemize}
\paragraph{Our solution} We offer a hashing scheme called \textsf{Argon2}.
\textsf{Argon2} summarizes the state of the art in the design of memory-hard functions. It is a streamlined and simple design. It aims at the highest memory filling rate and effective use of multiple computing units, while still
providing defense against tradeoff attacks. \textsf{Argon2} is optimized for the x86 architecture and exploits the cache and memory organization of the recent Intel and AMD processors. \textsf{Argon2} has two variants: \textsf{Argon2d} and \textsf{Argon2i}. \textsf{Argon2d} is faster and uses data-depending memory access, which makes it suitable for cryptocurrencies and applications with no threats from side-channel timing attacks. \textsf{Argon2i} uses data-independent memory access, which is preferred for password hashing and password-based key derivation. \textsf{Argon2i} is slower as it makes more passes over the memory to protect from tradeoff attacks.
We recommend \textsf{Argon2} for the applications that aim for high performance. Both versions of \textsf{Argon2} allow to fill 1 GB of RAM in a fraction of second, and smaller amounts even faster. It scales easily to the arbitrary number of parallel computing units. Its design is also optimized for clarity to ease analysis and implementation.
Our scheme provides more features and better tradeoff resilience than pre-PHC designs and equals in performance with the PHC finalists~\cite{broz15}.
\section{Definitions}
\subsection{Motivation}\label{sec:costs}
We aim to maximize the cost of password cracking on ASICs. There can be different approaches to measure this cost, but we turn to one of the most popular -- the time-area product~\cite{Thompson79,BernsteinL13}. We assume that the password $P$ is hashed with salt $S$ but without secret keys, and the hashes may leak to the adversaries together with salts:
$$
\begin{aligned}
\mathrm{Tag} &\leftarrow \mathcal{H}(P,S);\\
\mathrm{Cracker} &\leftarrow \{(\mathrm{Tag}_i, S_i)\}.
\end{aligned}
$$
In the case of the password hashing, we suppose that the defender allocates certain amount of time (e.g., 1 second) per password and a certain number of CPU cores (e.g., 4 cores). Then he hashes the password using the maximum amount $M$ of memory. This memory size translates to certain ASIC area $A$. The running ASIC time $T$ is determined by the length of the longest computational chain and by the ASIC memory latency.
Therefore, we maximize the value $AT$. The other usecases follow a similar procedure.
Suppose that an ASIC designer that wants to reduce the memory and thus the area wants to compute $\mathcal{H}$ using $\alpha M$ memory only for some $\alpha<1$. Using some tradeoff specific to $\mathcal{H}$, he has to spend $C(\alpha)$ times as much computation and his running time increases by at least the factor $D(\alpha)$. Therefore, the maximum possible gain $\mathcal{E}$ in the time-area product is
$$
\mathcal{E}_{max}= \max_{\alpha}\frac{1}{\alpha D(\alpha)}.
$$
The hash function is called \emph{memory-hard} if $D(\alpha) >1/\alpha$ as $\alpha\rightarrow 0$. Clearly, in this case the time-area product does not decrease. Moreover, the following aspects may further increase it:
\begin{itemize}
\item Computing cores needed to implement the $C(\alpha)$ penalty may occupy significant area.
\item If the tradeoff requires significant communication between the computing cores, the memory bandwidth limits may impose additional restrictions on the running time.
\end{itemize}
In the following text, we will not attempt to estimate time and area with large precision. However, an interested reader may use the following implementations as reference:
\begin{itemize}
\item The 50-nm DRAM implementation~\cite{giridhar2013dram} takes 550 mm${}^2$ per GByte;
\item The Blake2b implementation in the 65-nm process should take about 0.1 mm${}^2$ (using Blake-512 implementation in~\cite{gurkaynak2012sha3});
\item The maximum memory bandwidth achieved by modern GPUs is around 400 GB/sec.
\end{itemize}
\subsection{Model for memory-hard functions}
The memory-hard functions that we explore use the following mode of operation. The memory array $B[]$ is filled with the compression function $G$:
\begin{equation}\label{eq:class}
\begin{array}{rl}
B[0] &= H(P,S);\\
\text{for $j$ }&\text{from 1 to } t\\
&B[j] = G \bigl(B[\phi_1(j)] , B[\phi_2(j)] ,\cdots , B[\phi_k(j)]\bigr),
\end{array}
\end{equation}
where $\phi_i()$ are some \emph{indexing functions}.
We distinguish two types of indexing functions:
\begin{itemize}
\item Independent of the password and salt, but possibly dependent on other public parameters (thus called \emph{data-independent}). The addresses can be calculated by the memory-saving adversaries. We suppose that the dedicated hardware can handle parallel memory access, so that the cracker can prefetch the data from the memory. Moreover, if she implements a time-space tradeoff, then the missing blocks can be also precomputed without losing time. Let the single $G$ core occupy the area equivalent to the $\beta$ of the entire memory. Then if we use $\alpha M$ memory, then the gain in the time-area product is
$$
\mathcal{E}(\alpha) = \frac{1}{\alpha + C(\alpha)\beta}.
$$
\item Dependent on the password (\emph{data-dependent}), in our case: $\phi(j) = g(B[j-1])$. This choice prevents the adversary from prefetching and precomputing missing data. The adversary figures out what he has to recompute only at the time the element is needed. If an element is recomputed as a tree of $F$ calls of average depth $D$, then the total processing time is multiplied by $D$. The gain in the time-area product is
$$
\mathcal{E}(\alpha) = \frac{1}{(\alpha + C(\alpha)\beta)D(\alpha)}.
$$
\end{itemize}
The maximum bandwidth $Bw_{max}$ is a hypothetical upper bound on the memory bandwidth on the adversary's architecture. Suppose that for each call to $G$ an adversary has to load
$R(\alpha)$ blocks from the memory on average. Therefore, the adversary can keep the execution time the same as long as
$$
R(\alpha) Bw \leq Bw_{max},
$$
where $Bw$ is the bandwidth achieved by a full-space implementation. In the tradeoff attacks that we apply the following holds:
$$
R(\alpha) = C(\alpha).
$$
\section{Specification of Argon2}
There are two flavors of \textsf{Argon2}\ -- \textsf{Argon2d} and \textsf{Argon2i}. The former one uses data-dependent memory access to thwart tradeoff attacks. However, this makes it vulnerable for side-channel attacks, so \textsf{Argon2d} is recommended primarily for cryptocurrencies and backend servers. \textsf{Argon2i} uses data-independent memory access, which is recommended for password hashing and password-based key derivation.
\subsection{Inputs}
\textsf{Argon2}\ has two types of inputs: primary inputs and secondary inputs, or parameters. Primary inputs are message $P$ and nonce $S$, which are password and salt, respectively, for the password hashing. Primary inputs must always be given by the user such that
\begin{itemize}
\item Message $P$ may have any length from $0$ to $2^{32}-1$ bytes;
\item Nonce $S$ may have any length from $8$ to $2^{32}-1$ bytes (16 bytes is recommended for password hashing).
\end{itemize}
Secondary inputs have the following restrictions:
\begin{itemize}
\item Degree of parallelism $p$ determines how many independent (but synchronizing) computational chains can be run. It may take any integer value from 1 to $2^{24}-1$.
\item Tag length $\tau$ may be any integer number of bytes from 4 to $2^{32}-1$.
\item Memory size $m$ can be any integer number of kilobytes from $8p$ to $2^{32}-1$. The actual number of blocks is $m'$, which is $m$ rounded down to the nearest multiple of $4p$.
\item Number of iterations $t$ (used to tune the running time independently of the memory size) can be any integer number from 1 to $2^{32}-1$;
\item Version number $v$ is one byte $0x13$;
\item Secret value $K$ (serves as key if necessary, but we do not assume any key use by default) may have any length from $0$ to $2^{32}-1$ bytes.
\item Associated data $X$ may have any length from $0$ to $2^{32}-1$ bytes.
\item Type $y$ of \textsf{Argon2}: 0 for \textsf{Argon2d}, 1 for \textsf{Argon2i}, 2 for \textsf{Argon2id}.
\end{itemize}
\textsf{Argon2}\ uses internal compression function ${G}$ with two 1024-byte inputs and a 1024-byte output, and internal hash function ${H}$. Here ${H}$ is the Blake2b hash function, and ${G}$ is based on its internal permutation. The mode of operation of \textsf{Argon2} is quite simple when no parallelism is used: function ${G}$ is iterated $m$ times. At step $i$ a block with index $\phi(i)<i$ is taken from the memory (Figure~\ref{fig:generic}), where $\phi(i)$ is either determined by the previous block in \textsf{Argon2d}, or is a fixed value in \textsf{Argon2i}.
\begin{figure}[ht]
\ifpdf
\begin{center}
\includegraphics[scale=0.6]{pics/generic.pdf}
\caption{Argon2 mode of operation with no parallelism. }\label{fig:generic}
\end{center}
\fi
\end{figure}
\subsection{Operation}
\textsf{Argon2}\ follows the extract-then-expand concept. First, it extracts entropy from message and nonce by hashing it. All the other parameters are also added to the input. The variable length inputs $P,S,K,X$ are prepended with their lengths:
$$
%H_0 = \mathcal{H}(p,\tau,m,t,v,y,\langle P \rangle,P,\langle S \rangle,S,\langle K \rangle,K, \langle X \rangle,X).
H_0 = H(p,\tau,m,t,v,y,\langle P \rangle,P,\langle S \rangle,S,\langle K \rangle,K, \langle X \rangle,X).
$$
Here $H_0$ is 64-byte value, and the parameters $p,\tau,m,t,v,y,
\langle P \rangle,\langle S \rangle, \langle K \rangle,\langle X \rangle$ are treated as little-endian 32-bit integers.
\textsf{Argon2}\ then fills the memory with $m' = \lfloor \frac{m}{4p} \rfloor\cdot 4p$ 1024-byte blocks. For tunable parallelism with $p$ threads, the memory is organized in a matrix $B[i][j]$ of blocks
with $p$ rows (\emph{lanes}) and $q=m'/p$ columns. We denote the block produced in pass $t$ by $B^t[i][j],t>0$. Blocks are computed as follows:
\begin{align*}
B^1[i][0] &= H'(H_0||\underbrace{0}_{\text{4 bytes}}||\underbrace{i}_{\text{4 bytes}}),\quad 0 \leq i < p; \\
B^1[i][1] &= H'(H_0||\underbrace{1}_{\text{4 bytes}}||\underbrace{i}_{\text{4 bytes}}),\quad 0 \leq i < p;\\
B^1[i][j] &= G(B^1[i][j-1], B^1[i'][j']),\quad 0 \leq i < p,\; 2\leq j <q.
\end{align*}
where block index $[i'][j']$ is determined differently for \textsf{Argon2d/2ds} and \textsf{Argon2i}, $G$ is the compression function, and $H'$ is a variable-length hash function built upon $H$. Both $G$ and $H'$ will be fully defined in the further text.
If $t>1$, we repeat the procedure, but we XOR the new blocks to the old ones instead of overwriting them.
%The first two blocks of a lane are now computed in the same way:
\begin{align*}
B^t[i][0] &=G(B^{t-1}[i][q-1], B[i'][j']) \oplus B^{t-1}[i][0];\\
B^t[i][j] &= G(B^{t}[i][j-1], B[i'][j'])\oplus B^{t-1}[i][j].
\end{align*}
Here the block $B[i'][j']$ may be either $B^t[i'][j']$ for $j'<j$ or $B^{t-1}[i'][j']$ for $j>j'$.
After we have done $T$ iterations over the memory, we compute the final block $B_{\mathrm{final}}$ as the XOR of the last column:
$$
B_{\mathrm{final}} = B^T[0][q-1] \oplus B^T[1][q-1]\oplus \cdots\oplus B^T[p-1][q-1].
$$
Then we apply $H'$ to $B_{\mathrm{final}}$ to get the output tag.
$$
\text{Tag} \leftarrow H'(B_{\mathrm{final}}).
$$
\paragraph{Variable-length hash function.} Let $H_x$ be a hash function with $x$-byte output (in our case $H_x$ is Blake2b, which supports $1\leq x \leq 64$). We define $H'$ as follows. Let $V_i$ be a 64-byte block, and $A_i$ be its first 32 bytes,
and $\tau<2^{32}$ be the 32-bit tag length (viewed little-endian) in bytes.
Then we define
$$
\begin{array}{rl}
\text{if }\tau \leq 64&\\& H'(X) \overset{\text{def}}{=} H_{\tau}(\tau ||X).\\
\text{else}&\\
& r = \lceil\tau/32\rceil-2;\\
&V_1\leftarrow H_{64}(\tau||X);\\
&V_2 \leftarrow H_{64}(V_1);\\
&\cdots\\
&V_r \leftarrow H_{64}(V_{r-1}),\\
&V_{r+1} \leftarrow H_{\tau - 32r}(V_{r}).\\
&H'(X) \overset{\text{def}}{=} A_1||A_2||\ldots A_r||V_{r+1}.
\end{array}
$$
\begin{figure}[ht]
\ifpdf
\begin{center}
\includegraphics[scale=0.5]{pics/argon2-par.pdf}
\caption{Single-pass \textsf{Argon2} with $p$ lanes and 4 slices. }\label{fig:argon2}
\end{center}
\fi
\end{figure}
\subsection{Indexing}\label{sec:index}
To enable parallel block computation, we further partition the memory matrix into $S=4$ vertical \emph{slices}. The intersection of a slice and a lane is a \emph{segment} of length $q/S$. Segments of the same slice
are computed in parallel, and may not reference blocks from each other. All other blocks can be referenced, and now we explain the procedure in detail.
\paragraph{Getting two 32-bit values.} In Argon2d we select the first 32 bits of block $B[i][j-1]$ and denote this value by $J_1$. Then we take the next 32 bits of $B[i][j-1]$ and denote this value by $J_2$. In \textsf{Argon2i} we run $G^2$ --- the 2-round compression function $G$ --- in the counter mode, where the first input is all-zero block, and the second input is constructed as
$$
(\underbrace{r}_{\text{8 bytes}}||\underbrace{l}_{\text{8 bytes}}||\underbrace{s}_{\text{8 bytes}}||\underbrace{m'}_{\text{8 bytes}}||\underbrace{t}_{\text{8 bytes}}||\underbrace{x}_{\text{8 bytes}}||\underbrace{i}_{\text{8 bytes}}||\underbrace{0}_{\text{968 bytes}}),
$$ where
\begin{itemize}
\item $r$ is the pass number;
\item $l$ is the lane number;
\item $s$ is the slice number;
\item $m'$ is the total number of memory blocks;
\item $t$ is the total number of passes;
\item $x$ is the type of the Argon function (equals $1$ for \textsf{Argon2i});
\item $i$ is the counter starting in each segment from 1.
\end{itemize} All the numbers are put as little-endian. We increase the counter so that each application of $G^2$ gives 128 64-bit values $J_1||J_2$.
\paragraph{Mapping $J_1,J_2$ to the reference block index} The value $l = J_2 \bmod p$ determines the index of the lane from which the block will be taken. If we work with the first slice and the first pass ($r=s=0$), then $l$ is set to the current lane index.
Then we determine the set of indices $\mathcal{R}$ that can be referenced for given $[i][j]$ according to the following rules:
\begin{enumerate}
\item If $l$ is the current lane, then $\mathcal{R}$ includes all blocks computed in this lane, that are not overwritten yet, excluding $B[i][j-1]$.
\item If $l$ is not the current lane, then $\mathcal{R}$ includes all blocks in the last $S-1=3$ segments computed and finished in lane $l$. If $B[i][j]$ is the first block of a segment, then the very last block from $\mathcal{R}$ is excluded.
\end{enumerate}
We are going to take a block from $\mathcal{R}$ with a non-uniform distribution over $[0..|\mathcal{R}|)$:
$$
J_1\in [0..2^{32}) \rightarrow |\mathcal{R}|\left(1-\frac{(J_1)^2}{2^{64}}\right).
$$ To avoid floating-point computation, we use the following integer approximation:
\begin{align*}
x &= (J_1)^2/2^{32};\\
y &= (|\mathcal{R}|*x)/2^{32};\\
z & = |\mathcal{R}|-1-y.
\end{align*}
Then we enumerate the blocks in $\mathcal{R}$ in the order of construction and select $z$-th block from it as the reference block.
\subsection{Compression function \texorpdfstring{$G$}{G}}\label{sec:compr}
Compression function $G$ is built upon the Blake2b round function $\mathcal{P}$ (fully defined in Section~\ref{sec:blakeround}). $\mathcal{P}$ operates on the 128-byte input, which can be viewed as 8 16-byte registers (see details below):
$$
\mathcal{P}(A_0,A_1,\ldots, A_7) = (B_0,B_1,\ldots, B_7).
$$
Compression function ${G}(X,Y)$ operates on two 1024-byte blocks $X$ and $Y$. It first computes $R=X\oplus Y$. Then $R$ is viewed as a $8\times 8$-matrix of 16-byte registers $R_0, R_1,\ldots, R_{63}.$ Then
$\mathcal{P}$ is first applied rowwise, and then columnwise to get $Z$:
\begin{align*}
(Q_0,Q_1,\ldots,Q_7) &\leftarrow \mathcal{P}(R_0,R_1,\ldots,R_7);\\
(Q_8,Q_9,\ldots,Q_{15})&\leftarrow \mathcal{P}(R_8,R_9,\ldots,R_{15});\\
\ldots&\\
(Q_{56},Q_{57},\ldots,Q_{63})&\leftarrow \mathcal{P}(R_{56},R_{57},\ldots,R_{63});\\[10pt]
(Z_0,Z_8,Z_{16},\ldots,Z_{56})&\leftarrow \mathcal{P}(Q_0,Q_8,Q_{16},\ldots,Q_{56});\\
(Z_1,Z_9,Z_{17},\ldots,Z_{57})&\leftarrow \mathcal{P}(Q_1,Q_9,Q_{17},\ldots,Q_{57});\\
\ldots&\\
(Z_7,Z_{15},Z_{23},\ldots,Z_{63})&\leftarrow \mathcal{P}(Q_7,Q_{15},Q_{23},\ldots,Q_{63}).
\end{align*}
Finally, $G$ outputs $Z\oplus R$:
$$
G:\quad (X,Y)\; \rightarrow\; R = X\oplus Y\; \xrightarrow{\mathcal{P}}\;Q\;\xrightarrow{\mathcal{P}}\;Z\;
\rightarrow \;Z\oplus R.
$$
\begin{figure}[ht]
\ifpdf
\begin{center}
\includegraphics[scale=0.6]{pics/compression.pdf}
\caption{Argon2 compression function $G$. }\label{fig:compression}
\end{center}
\fi
\end{figure}
\section{Features}
\textsf{Argon2} is a multi-purpose family of hashing schemes, which is suitable for password hashing, key derivation, cryptocurrencies and other applications that require provably high memory use. \textsf{Argon2} is optimized for the x86 architecture, but it does not slow much on older processors. The key feature of \textsf{Argon2} is its performance and the ability to use multiple computational cores in a way that prohibits time-memory tradeoffs. Several features are not included into this version, but can be easily added later.
\subsection{Available features}
Now we provide an extensive list of features of Argon2.
\textbf{Performance}. \textsf{Argon2} fills memory very fast, thus increasing the area multiplier in the time-area product for ASIC-equipped adversaries. Data-independent version \textsf{Argon2i} securely fills the memory spending about 2 CPU cycles per byte, and \textsf{Argon2d} is three times as fast. This makes it suitable for applications that need memory-hardness but can not allow much CPU time, like cryptocurrency peer software.
\textbf{Tradeoff resilience}. Despite high performance, \textsf{Argon2} provides reasonable level of tradeoff resilience. Our tradeoff attacks previously applied to Catena and Lyra2 show the following. With default number of passes over memory (1 for \textsf{Argon2d}, 3 for \textsf{Argon2i}, an ASIC-equipped adversary can not decrease the time-area product if the memory is reduced by the factor of 4 or more. Much higher penalties apply if more passes over the memory are made.
\textbf{Scalability}. \textsf{Argon2} is scalable both in time and memory dimensions. Both parameters can be changed independently provided that a certain amount of time is always needed to fill the memory.
\textbf{Parallelism}. \textsf{Argon2} may use up to $2^{24}$ threads in parallel, although in our experiments 8 threads already exhaust the available bandwidth and computing power of the machine.
\textbf{GPU/FPGA/ASIC-unfriendly}. \textsf{Argon2} is heavily optimized for the x86 architecture, so that implementing it on dedicated cracking hardware should be neither cheaper nor faster. Even specialized ASICs would require significant area and would not allow reduction in the time-area product.
\textbf{Additional input support}. \textsf{Argon2} supports additional input, which is syntactically separated from the message and nonce, such as secret key, environment parameters, user data, etc..
\subsection{Possible future extensions}\label{sec:future2}
Argon2\ can be rather easily tuned to support other compression functions, hash functions and block sizes.
ROM can be easily integrated into \textsf{Argon2} by simply including it into the area where the blocks are referenced from.
\section{Security analysis}
All the attacks detailed below apply to one-lane version of Argon2, but can be carried to the multi-lane version with the same efficiency.
\subsection{Ranking tradeoff attack}\label{sec:tradeoff} To figure out the costs of the ASIC-equipped adversary, we first need to calculate the time-space tradeoffs for \textsf{Argon2}. To the best of our knowledge, the first generic
tradeoffs attacks were reported in~\cite{trade-att}, and they apply to both data-dependent and data-independent schemes. The idea of the ranking method~\cite{trade-att} is as follows. When we generate a memory block $B[l]$, we make a decision, to store it or not. If we do not store it, we calculate the access complexity of this block --- the number of calls to $F$ needed to compute the block, which is based on the access complexity of $B[l-1]$ and $B[\phi(l)]$. The detailed strategy is as follows:
\begin{enumerate}
\item Select an integer $q$ (for the sake of simplicity let $q$ divide $T$).
\item Store $B[kq]$ for all $k$;
\item Store all $r_i$ and all access complexities;
\item Store the $T/q$ highest access complexities. If $B[i]$ refers to a vertex from this top, we store $B[i]$.
\end{enumerate}
The memory reduction is a probabilistic function of $q$. We applied the algorithm to the indexing function of \textsf{Argon2} and obtained the results in Table~\ref{tab:generic3}. Each recomputation is a tree of certain depth, also given in the table.
We conclude that for data-dependent one-pass schemes the adversary is always able to reduce the memory by the factor of 3 and still keep the time-area product the same.
\begin{table}[hb]
\renewcommand{\arraystretch}{1.3}
$$
\begin{array}{|c||c|c|c|c|c|c|c|c|}
\hline
\text{$\alpha$ } &\frac{1}{2} &\frac{1}{3} &\frac{1}{4} &\frac{1}{5} &\frac{1}{6} &\frac{1}{7} \\
\hline
\text{$C(\alpha)$} &1.5& 4& 20.2& 344& 4660 & 2^{18}\\
\text{$D(\alpha)$} & 1.5 & 2.8 & 5.5 & 10.3 & 17 &27 \\
\hline
\end{array}
$$
\caption{Time and computation penalties for the ranking tradeoff attack for the Argon2 indexing function.}\label{tab:generic3}
\end{table}
\subsection{Memory optimization attack}
As reported in~\cite{Corrigan-GibbsB16}, it is possible to optimize the memory use in the earlier version 1.2.1 of Argon2, concretely for Argon2i. The memory blocks produced in the version 1.2.1 at second and later passes replaced, not overwrote the blocks at earlier passes. Therefore, for each block $B[i]$ there is a time gap (let us call it a \emph{no-use gap}) between the moment the block is used for the last time (as a reference or as a fresh new block) and the moment it is overwritten. We formalize this issue as follows. Let us denote by $\phi^r(i)$ the reference block index for block $B^r[i]$.
\begin{itemize}
\item For $t$-pass Argon2i the block $B^r[i], r<t$ is not used between step
$l_i^r = \max\left(i,\max_{\phi(j^r) = i} j\right)$ and step $i$ of pass $r+1$, where it is overwritten.
\item For $t$-pass Argon2i the block $B^t[i]$ is not used between step
$l_i^t = \max\left(i,\max_{\phi(j^r) = i} j\right)$ and step $m'$ of pass $t$, where it is discarded.
\end{itemize}
Since
addresses $l_i$ can be precomputed, an attacker can figure out for each block $B^r[i]$ when it can be discarded.
A separate data structure will be needed though to keep the address of newly produced blocks as they land up at pseudo-random locations at the memory.
This saving strategy uses the fraction
$$
L^t = \sum_i\left(1 - \frac{l_i^t}{m'}\right)
$$
of memory for the last pass, and
$$
L^r = \sum_i\left(\frac{m'+i-l_i^r}{m'}\right)
$$
for the previous passes.
Our experiments show that in 1-pass Argon2i $L^1\approx 0.15$, i.e. on average 1/7-th of memory is used. Since in the straightforward application on average 1/2 of memory is used, the advantage in the time-area product is about 3.5.
For $t>1$ this strategy uses $0.25$ of memory on average, so the time-area product advantage is close to 4. If we use the peak memory amount in the time-area calculations, then the advantage would be 5 and 2.7, respectively.
The version 1.3 of Argon2 replaces overwriting operation with the XOR. This gives minimal overhead on the performance: for memory requirements of 8 MB and higher the performance difference is between 5\% and 15\% depending on the operating system and hardware. For instance, the highest speed of 3-pass Argon2d v.1.2.1 on 1.8 GHz CPU with Ubuntu is 1.61 cycles per byte, whereas for v.1.3 it is 1.7 cpb (both measured for 2 GB of RAM, 4 threads).
In the version 1.3 this saving strategy applies to the one-pass Argon2i only, where it brings the same time-area product advantage. The multi-pass versions are safe as all the blocks have to be kept in memory till the overwrite.
\subsection{Attack on iterative compression function}\label{sec:att-iter}
Let us consider the following structure of the compression function $F(X,Y)$, where $X$ and $Y$ are input blocks:
\begin{itemize}
\item The input blocks of size $t$ are divided into shorter subblocks of length $t'$ (for instance, 128 bits) $X_0$, $X_1$, $X_2,\ldots$ and $Y_0$, $Y_1$, $Y_2,\ldots$.
\item The output block $Z$ is computed subblockwise:
\begin{align*}
Z_0 = G(X_0,Y_0);\\
Z_i = G(X_i,Y_i,Z_{i-1}),\;i>0.
\end{align*}
\end{itemize}
This scheme resembles the duplex authenticated encryption mode, which is secure under certain assumptions on $G$. However, it is totally insecure against tradeoff adversaries, as shown below.
Suppose that an adversary computes $Z = F(X,Y)$ but $Y$ is not stored. Suppose that $Y$ is a tree function of stored elements of depth $D$. The adversary starts with computing $Z_0$, which requires only $Y_0$. In turn, $Y_0 = G(X_0', Y_0')$ for some $X',Y'$.
Therefore, the adversary computes the tree of the same depth $D$, but with the function $G$ instead of $F$. $Z_1$ is then a tree function of depth $D+1$, $Z_2$ of depth $D+2$, etc. In total, the recomputation takes $(D+s)L_G$ time, where $s$ is the number of subblocks and $L_G$ is the latency of $G$. This should be compared to the full-space implementation, which takes time
$sL_G$. Therefore, if the memory is reduced by the factor $q$, then the time-area product is changed as
$$
AT_{new} = \frac{D(q)+s}{sq}AT.
$$
Therefore, if
\begin{equation}\label{att:iter}
D(q) \leq s(q-1),
\end{equation}
the adversary wins.
One may think of using the $Z_{m-1}[l-1]$ as input to computing $Z_0[l]$. Clearly, this changes little in adversary's strategy, who could simply store all $Z_{m-1}$, which is feasible for large $m$. In concrete proposals, $s$ can be 64, 128, 256 and even larger.
We conclude that $F$ with an iterative structure is insecure. We note that this attack applies also to other PHC candidates with iterative compression function.
\subsection{Security of Argon2 to generic attacks}\label{sec:generic}
Now we consider preimage and collision resistance of both versions of \textsf{Argon2}. Variable-length inputs are prepended with their lengths, which shall ensure
the absence of equal input strings. Inputs are processed by a cryptographic hash function, so no collisions should occur at this stage.
\paragraph{Internal collision resistance.} The compression function $G$ is not claimed to be collision resistant, so it may happen that distinct inputs produce identical outputs. Recall
that $G$ works as follows:
$$
G(X,Y) = P(Z)\oplus (Z), \quad Z = X\oplus Y.
$$
where $P$ is a permutation based on the 2-round Blake2b permutation. Let us prove that all $Z$ are different under certain assumptions.
\begin{theorem}
Let $\Pi$ be \textsf{Argon2d} or \textsf{Argon2i} with $d$ lanes, $s$ slices, and $t$ passes over memory. Assume that
\begin{itemize}
\item $P(Z)\oplus Z$ is collision-resistant, i.e. it is hard to find $a,b$ such that $P(a)\oplus a = P(b)\oplus b$.
\item $P(Z)\oplus Z$ is 4-generalized-birthday-resistant, i.e. it is hard to find distinct $a,b,c,d$ such that $P(a)\oplus P(b)\oplus P(c)\oplus P(d) = a\oplus b\oplus c \oplus d$.
\end{itemize}Then all the blocks $B[i]$ generated in those $t$ passes are different.
\end{theorem}
\begin{proof}
By specification, the value of $Z$ is different for the first two blocks of each segment in the first slice in the first pass. Consider the other blocks.
Let us enumerate the blocks according to the moment they are computed. Within a slice, where segments can be computed in parallel, we enumerate lane 0 fully first, then lane 1, etc.. Slices are then computed and enumerated sequentially.
Suppose the proposition is wrong, and let $(B[x],B[y])$ be a block collision such that $x<y$ and $y$ is the smallest among all such collisions. As $F(Z)\oplus Z$ is collision resistant,
the collision occurs in $Z$, i.e.
$$
Z_x = Z_y.
$$
Let $r_x, r_y$ be reference block indices for $B[x]$ and $B[y]$, respectively, and let $p_x, p_y$ be previous block indices for $B[x],B[y].$ Then we get
$$
B[r_x] \oplus B[p_x] = B[r_y] \oplus B[p_y].
$$
As we assume 4-generalized-birthday-resistance, some arguments are equal. Consider three cases:
\begin{itemize}
\item $r_x=p_x$. This is forbidden by the rule 3 in Section~\ref{sec:index}.
\item $r_x=r_y$. We get $B[p_x] = B[p_y]$. As $p_x,p_y <y$, and $y$ is the smallest yielding such a collision, we get $p_x = p_y$. However, by construction $p_x \neq p_y$ for $x\neq y$.
\item $r_x = p_y$. Then we get $B[r_y] = B[p_x]$. As $r_y <y$ and $p_x<x<y$, we obtain $r_y = p_x$. Since $p_y=r_x<x<y$, we get that $x$ and $y$ are in the same slice, we have two options:
\begin{itemize}
\item $p_y$ is the last block of a segment. Then $y$ is the first block of a segment in the next slice. Since $r_x$ is the last block of a segment, and $x<y$, $x$ must be in the same slice as $y$, and $x$ can not be the first block in a segment by the rule 4 in Section~\ref{sec:index}. Therefore, $r_y=p_x = x-1$. However, this is impossible, as $r_y$ can not belong to the same slice as $y$.
\item $p_y$ is not the last block of a segment. Then $r_x = p_y = y-1$, which implies that $r_x \geq x$. The latter is forbidden.
\end{itemize}
\end{itemize}
Thus we get a contradiction in all cases. This ends the proof.
\end{proof}
The compression function $G$ is not claimed to be collision resistant nor preimage-resistant. However, as the attacker has no control over its input, the collisions are highly unlikely. We only take care that the starting blocks are not identical by producing the first two blocks with a counter and forbidding to reference from the memory the last block as (pseudo)random.
\textsf{Argon2d} does not overwrite the memory, hence it is vulnerable to garbage-collector attacks and similar ones, and is not recommended to use in the setting where these threats are possible. \textsf{Argon2i} with 3 passes overwrites the memory twice, thus thwarting the memory-leak attacks. Even if the entire working memory of \textsf{Argon2i} is leaked after the hash is computed, the adversary would have to compute two passes over the memory to try the password.
\subsection{Security of Argon2 to ranking tradeoff attacks}
Time and computational penalties for 1-pass \textsf{Argon2d} are given in Table~\ref{tab:generic3}. It suggests that the adversary can reduce memory by the factor of 3 at most
while keeping the time-area product the same.
\textsf{Argon2i} is more vulnerable to tradeoff attacks due to its data-independent addressing scheme. We applied the ranking algorithm to 3-pass \textsf{Argon2i} to calculate time and computational penalties. We found out that the memory reduction by the factor of 3 already gives the computational penalty of around $2^{14}$. The $2^{14}$ Blake2b cores would take more area than 1 GB of RAM (Section~\ref{sec:costs}), thus prohibiting the adversary to further reduce the time-area product. We conclude that the time-area product cost for \textsf{Argon2i} can be reduced by 3 at best.
\subsection{Security of Argon2i to generic tradeoff attacks on random graphs}
The recent paper by Alwen and Blocki~\cite{AB16} reports an improved attack on Argon2i (all versions) as an instance of
hash functions based on random graphs.
For $t$-pass Argon2i, Alwen and Blocki explicitly construct a set of $O(T^{3/4})$ nodes so that removing these nodes from the computation graph yields the so called sandwich graph with $O(T^{1/4})$ layers and $O(T^{1/2})$ depth and size. The computation proceeds as follows:
\begin{itemize}
\item Mark certain $v = O(T^{3/4})$ blocks as to be stored.
\item For every segment of length $T^{3/4}$:
\begin{itemize}
\item Compute the reference blocks of the segment blocks in parallel.
\item Compute the segment blocks consecutively, store blocks that needs storing.
\end{itemize}
\end{itemize}
Using $O(T^{1/2})$ cores, the segment computation takes time $O(T^{3/4})$ and the total time is $O(T)$. The cores are used only for $O(T^{1/2})$ time, so it is possible to amortize costs computing $O(T^{1/4})$ instances using these cores in the round-robin fashion. The memory complexity of each step is about to $T\log T$.
A precise formula for the time-area complexity using this tradeoff strategy is given in Corollary\footnote{the authors denote the total number of blocks by $n$ and the number of passes by $k$.} 5.6 of~\cite{AB16}:
$$
AT_{new}= 2 T^{7/4}\left(5+ t + \frac{\ln T}{8} \right),
$$
Since the memory consumption in the standard implementation is $M=T/t$, the standard AT value is $T^2/t$ and the time-area advantage of the Alwen-Blocki attack is
$$
\mathcal{E} = \frac{AT}{AT_{new}} = \frac{T^{1/4}}{2t(5+(\ln t)/2+\frac{\ln T}{8})}\leq
\frac{M^{1/4}}{2t^{3/4}(5+0.625\ln t + 0.125 \ln M)}.
$$
For $t\geq 3$ we get that $\mathcal{E} \leq M^{1/4}/36$. Therefore, for $M$ up to $2^{20}$ (1 GB) the advantage is smaller than 1 (i.e. the attack is not beneficial to the adversary at all), and for $M$ up to $2^{24}$ (16 GB) it is smaller than 2. Therefore, this approach is not better than the ranking attack. However, it is a subject of active research and we'll update this documents if improvements appear.
\subsection{Summary of tradeoff attacks}
The best attack on the 1- and 2-pass Argon2i (v.1.3) is the low-storage attack from~\cite{Corrigan-GibbsB16}, which reduces the time-area product (using the peak memory value) by the factor of 5.
The best attack for $t$-pass ($t>2$) Argon2i is the ranking tradeoff attack, which reduces the time-area product by the factor of 3.
The best attack on the $t$-pass Argon2d is the ranking tradeoff attack, which reduces the time-area product by the factor 1.33.
\section{Design rationale}
\textsf{Argon2}\ was designed with the following primary goal: to maximize the cost of exhaustive search on non-x86 architectures, so that the switch even to dedicated ASICs would not give significant advantage over doing the exhaustive search on defender's machine.
\subsection{Indexing function}
The basic scheme~\eqref{eq:class} was extended to implement:
\begin{itemize}
\item Tunable parallelism;
\item Several passes over memory.
\end{itemize}
For the data-dependent addressing we set $\phi(l) = g(B[l])$, where $g$ simply truncates the block and takes the result modulo $l-1$. We considered
taking the address
not from the block $B[l-1]$ but from the block $B[l-2]$, which should have allowed to prefetch the block earlier. However, not only the gain in our implementations is limited, but also this benefit can be exploited by the adversary. Indeed, the efficient depth $D(q)$ is
now reduced to $D(q)-1$, since the adversary has one extra timeslot. Table~\ref{tab:generic3} implies that then the adversary would be able to reduce the memory by the factor of 5 without increasing the time-area product (which is a 25\% increase in the reduction factor compared to the standard approach).
For the data-independent addressing we use a simple PRNG, in particular the compression function $G$ in the counter mode.
Due to its long output, one call (or two consecutive calls) would produce hundreds of addresses,
thus minimizing the overhead. This approach does not give provable tradeoff bounds, but instead allows
the analysis with the tradeoff algorithms suited for data-dependent addressing.
\paragraph{Motivation for our indexing functions}
Initially, we considered uniform selection of referenced blocks, but then we considered a more generic case:
$$
\phi \leftarrow \lceil(2^{64}-(J_1)^\gamma)\cdot |\mathcal{R}_l|/2^{64} \rceil
$$
We tried to choose the $\gamma$ which would maximize the adversary's costs if he applies the tradeoff based on the ranking method. We also attempted to make the reference block distribution close to uniform, so that each memory block is referenced similar number of times.
For each $1\leq \gamma\leq 5$ with step $0.1$ we applied the ranking method with sliding window and selected the best available tradeoffs. We obtained a set of time penalties $\{D_{\gamma}(\alpha)\}$ and computational penalties $\{C_{\gamma}(\alpha)\}$ for $0.01<\alpha<1$. We also calculated the reference block distribution for all possible $\gamma$. We considered two possible metrics:
\begin{enumerate}
\item Minimum time-area product $$AT_{\gamma} = \min_{\alpha}\{\alpha\cdot D_{\gamma}(\alpha)\}.
$$
\item Maximum memory reduction which reduces the time-area product compared to the original:
$$
\alpha_{\gamma} = \min_{\alpha} \{\alpha\,|\,D_{\gamma}(\alpha)<\alpha\}.
$$
\item The goodness-of-fit value of the reference block distribution w.r.t. the uniform distribution with $n$ bins:
$$
\chi^2 = \sum_i \frac{(p_i-\frac{1}{n})^2}{\frac{1}{n}},
$$
where $p_i$ is the average probability of the block from $i$-th bin to be referenced. For example, if $p_3 = 0.2, \,n=10$ and there are 1000 blocks, then blocks from $201$ to $300$ are referenced $1000\cdot 0.2 =200$ times throughout the computation.
\end{enumerate}
We got the following results for $n=10$:
$$
\begin{array}{|c|c|c|c|}
\hline
\gamma & AT_{\gamma}&\alpha_{\gamma} &\chi^2\\
\hline
1& 0.78 & 3.95&0.89\\
\hline 2 & 0.72 & 3.2& 0.35\\
\hline 3 & 0.67 & 3.48&0.2\\
\hline 4 & 0.63 & 3.9&0.13\\
\hline 5 & 0.59 & 4.38&0.09\\
\hline
\end{array}
$$
We conclude that the time-area product achievable by the attacker slowly decreases as $\gamma$ grows. However, the difference between $\gamma=1$ and $\gamma=5$ is only the factor of $1.3$. We also see that the time-area product can be kept below the original up to $q=3.2$ for $\gamma=2$, whereas for $\gamma=4$ and $\gamma=1$ such $q$ is close to $4$.
To avoid floating-point computations, we restrict to integer $\gamma$. Thus the optimal values are $\gamma=2$ and $\gamma=3$, where the former is slightly better in the first two metrics.
However, if we consider the reference block uniformity, the situation favors larger $\gamma$ considerably. We see that the $\chi^2$ value is decreased by the factor of $2.5$ when going from $\gamma=1$ to $\gamma=2$, and by the factor of $1.8$ further to $\gamma=3$. In concrete probabilities (see also Figure~\ref{fig:histo}),
the first 20\% of blocks accumulate 40\% of all reference hits for $\gamma=2$ and 32\% for $\gamma=3$ (23.8\% vs 19.3\% hit for the first 10\% of blocks).
To summarize, $\gamma=2$ and $\gamma=3$ both are better against one specific attacker and slightly worse against the other. We take $\gamma=2$ as the value that minimizes the AT gain, as we consider this metric more important.
\begin{table}[ht]
\renewcommand{\arraystretch}{1.3}
$$
\begin{array}{|c||c|c|c|c|c|}
\hline
\text{Memory fraction ($1/q$) } &\frac{1}{2} &\frac{1}{3} &\frac{1}{4}&\frac{1}{5} &\frac{1}{6}\\
\hline
\gamma=1 & 1.6 & 2.9 & 7.3 & 16.4 & 59\\
\gamma=2 & 1.5 & 4 & 20.2 & 344 & 4700\\
\gamma=3 &1.4& 4.3& 28.1 &1040 & 2^{17}\\
\hline
\end{array}
$$
\caption{Computational penalties for the ranking tradeoff attack with a sliding window, 1 pass.}\label{tab:comp-alpha}
\end{table}
\begin{table}[ht]
\renewcommand{\arraystretch}{1.3}
$$
\begin{array}{|c||c|c|c|c|c|}
\hline
\text{Memory fraction ($1/q$) } &\frac{1}{2} &\frac{1}{3} &\frac{1}{4}&\frac{1}{5} &\frac{1}{6}\\
\hline
\gamma=1 & 1.6 & 2.5 & 4 & 5.8 & 8.7\\
\gamma=2 & 1.5 & 2.6 & 5.4 & 10.7 & 17\\
\gamma=3 &1.3& 2.5& 5.3 &10.1 & 18\\
\hline
\end{array}
$$
\caption{Depth penalties for the ranking tradeoff attack with a sliding window, 1 pass.}\label{tab:depth-alpha}
\end{table}
\begin{figure}[hb]
\begin{center}
\includegraphics[width=5cm]{pics/power-distribution.jpg}
\end{center}
\caption{Access frequency for different memory segments (10\%-buckets) and different exponents (from $\gamma=1$ to $\gamma=5$) in the indexing functions.}\label{fig:histo}
\end{figure}
\subsection{Implementing parallelism}\label{sec:parall}
As modern CPUs have several cores possibly available for hashing, it is tempting to use these cores to increase the bandwidth, the amount of filled memory, and the CPU load.
The cores of the recent Intel CPU share the L3 cache and the entire memory, which both have large latencies (100 cycles and more). Therefore, the inter-processor communication should be minimal to avoid delays.
The simplest way to use $p$ parallel cores is to compute and XOR $p$ independent calls to $H$:
$$
H'(P,S) = H(P,S, 0)\oplus H(P,S,1)\oplus \cdots \oplus H(P,S,p-1).
$$
If a single call uses $m$ memory units, then $p$ calls use $pm$ units. However, this method admits a trivial tradeoff: an adversary just makes $p$ sequential calls to $H$ using only $m$ memory in total, which keeps the time-area product constant.
We suggest the following solution for $p$ cores: the entire memory is split into $p$ lanes of $l$ equal slices each, which can be viewed as elements of a $(p\times l)$-matrix $Q[i][j]$. Consider the class of
schemes given by Equation~\eqref{eq:class}. We modify it as follows:
\begin{itemize}
\item $p$ invocations to $H$ run in parallel on the first column $Q[*][0]$ of the memory matrix. Their indexing functions refer to their own slices only;
\item For each column $j>0$, $l$ invocations to $H$ continue to run in parallel, but the indexing functions now may refer not only to their own slice, but also to all $jp$ slices of previous columns $Q[*][0],Q[*][1],\ldots,Q[*][j-1]$.
\item The last blocks produced in each slice of the last column are XORed.
\end{itemize}
This idea is easily implemented in software with $p$ threads and $l$ joining points. It is easy to see that the adversary can use less memory when computing the last column, for instance
by computing the slices sequentially and storing only the slice which is currently computed. Then his time is multiplied by $(1+\frac{p-1}{l})$, whereas the memory use is multiplied
by $(1-\frac{p-1}{pl})$, so the time-area product is modified as
$$
AT_{new} = AT \left(1-\frac{p-1}{pl}\right)\left(1+\frac{p-1}{l}\right).
$$
For $2 \leq p,l \leq 10$ this value is always between $1.05$ and $3$. We have selected $l=4$ as this value gives low synchronisation overhead while imposing time-area penalties on the adversary who reduces the memory even by the factor 3/4. We note that values $l=8$ or $l=16$ could be chosen.
If the compression function is collision-resistant, then one may easily prove that block collisions are highly unlikely. However, we employ a weaker compression function, for which the following holds:
$$
G(X,Y) = F(X\oplus Y),
$$
which is invariant to swap of inputs and is not collision-free. We take special care to ensure that the mode of operation does not allow such collisions by introducing additional rule:
\begin{itemize}
\item First block of a segment can not refer to the last block of any segment in the previous slice.
\end{itemize}
We prove that block collisions are unlikely under reasonable conditions on $F$ in Section~\ref{sec:generic}.
\subsection{Compression function design}\label{sec:compression}
\subsubsection{Overview}
In contrast to attacks on regular hash functions, the adversary does not control inputs to the compression function $G$ in our scheme. Intuitively, this should relax the cryptographic properties required from the compression function and allow for a faster primitive. To avoid being the bottleneck, the compression function ideally should be on par with the performance of memcpy() or similar function, which may run at 0.1 cycle per byte or even faster. This much faster than ordinary stream ciphers or hash functions, but we might not need strong properties of those primitives.
However, we first have to determine the optimal block size. When we request a block from a random location in the memory, we most likely get a cache miss. The first bytes would arrive at the CPU from RAM within at best 10 ns, which accounts for 30 cycles. In practice, the latency of a single load instruction may reach 100 cycles and more. However, this number can be amortized if we request a large block of sequentially stored bytes. When the first bytes are requested, the CPU stores the next ones in the L1 cache, automatically or using the \texttt{prefetch} instruction. The data from the L1 cache can be loaded as fast as 64 bytes per cycle on the Haswell architecture, though we did not manage to reach this speed in our application.
Therefore, the larger the block is, the higher the throughput is. We have made a series of experiments with a non-cryptographic compression function, which does little beyond simple XOR of its inputs, and achieved the performance of around 0.7 cycles per byte per core with block sizes of 1024 bits and larger.
\subsubsection{Design criteria}
It was demonstrated that a compression function with a large block size may be vulnerable to tradeoff attacks if it has a simple iterative structure, like modes of operation for a blockcipher~\cite{trade-att} (some details in Section~\ref{sec:att-iter}).
Thus we formulate the following design criteria:
\begin{itemize}
\item \emph{The compression function must require about $t$ bits of storage (excluding inputs) to compute any output bit.}
\item \emph{Each output byte of $F$ must be a nonlinear function of all input bytes, so that the function has differential probability below certain level, for example $\frac{1}{4}$}.
\end{itemize}
These criteria ensure that the attacker is unable to compute an output bit using only a few input bits or a few stored bits. Moreover, the output bits should not be (almost) linear functions of input bits, as otherwise the function tree would collapse.
We have not found any generic design strategy for such large-block compression functions. It is difficult to maintain diffusion on large memory blocks due to the lack of CPU instructions that interleave many registers at once. A naive approach would be to apply a linear transformation with certain branch number. However, even if we operate on 16-byte registers, a 1024-byte block would consist of 64 elements. A $64\times 64$-matrix would require 32 XORs per register to implement, which gives a penalty about 2 cycles per byte.
Instead, we propose to build the compression function on the top of a transformation $P$ that already mixes several registers. We apply $P$ in parallel (having a P-box), then shuffle the output registers and apply it again. If $P$ handles $p$ registers, then the compression function may transform a block of $p^2$ registers with 2 rounds of P-boxes. We do not have to manually shuffle the data, we just change the inputs to P-boxes. As an example, an implementation of the Blake2b~\cite{AumassonNWW13} permutation processes 8 128-bit registers, so with 2 rounds of Blake2b we can design
a compression function that mixes the 8192-bit block. We stress that this approach is not possible with dedicated AES instructions. Even though they are very fast, they apply only to the 128-bit block, and we still have to diffuse its content across other blocks.
We replace the original Blake2b round function
with its modification BlaMka~\cite{cryptoeprint:2015:136}, where the modular additions in $G$ are combined with 32-bit multiplications. Our motivation was to increase the circuit depth (and thus the running time) of a potential ASIC implementation while having roughly the same running time on CPU thanks to parallelism and pipelining. Extra multiplications in the scheme serve well, as the best addition-based circuits for multiplication have latency about 4-5 times the addition latency for 32-bit multiplication (or roughly $\log_n$ for $n$-bit multiplication).
As a result, any output 64-bit word of $\mathcal{P}$ is implemented by a chain of additions, multiplications, XORs, and rotations. The shortest possible chain for the 1 KB-block (e.g, from $v_0$ to $v_0$) consists of 12 MULs, 12 XORs, and 12 rotations.
\subsection{User-controlled parameters}
We have made a number of design choices, which we consider optimal for a wide range of applications. Some parameters can be altered, some should be kept as is. We give a user full control over:
\begin{itemize}
\item Amount $M$ of memory filled by algorithm. This value, evidently, depends on the application and the environment. There is no "insecure" value for this parameter, though clearly the more memory the better.
\item Number $T$ of passes over the memory. The running time depends linearly on this parameter. We expect that the user chooses this number according to the time constraints on the application. Again, there is no "insecure value" for $T$.
\item Degree $d$ of parallelism. This number determines the number of threads used by an optimized implementation of \textsf{Argon2}. We expect that the user is restricted by a number of CPU cores (or half-cores) that can be devoted to the hash function, and chooses $d$ accordingly (double the number of cores).
\item Length of password/message, salt/nonce, and tag (except for some low, insecure values for salt and tag lengths).
\end{itemize}
We allow to choose another compression function $G$, hash function $H$, block size $b$, and number of slices $l$. However, we do not provide this flexibility in a reference implementation as we guess that
the vast majority of the users would prefer as few parameters as possible.
\section{Performance}
\subsection{x86 architecture}
To optimize the data load and store from/to memory, the memory that will be processed has to be alligned on 16-byte boundary when loaded/stored into/from 128-bit registers and on 32-byte boundary when loaded/stored into/from 256-bit registers. If the memory is not aligned on the specified boundaries, then each memory operation may take one extra CPU cycle, which may cause consistent penalties for many memory accesses.
The results presented are obtained using the \texttt{gcc 4.8.2} compiler with the following options: \texttt{-m64 -mavx -std=c++11 -pthread -O3}.
The cycle count value was measured using the \texttt{\_\_rdtscp} Intel intrinsics C function which inlines the \texttt{RDTSCP} assembly instruction that returns the 64-bit Time Stamp Counter (TSC) value. The instruction waits for prevoius instruction to finish and then is executed, but meanwhile the next instructions may begin before the value is read. Although this shortcoming, we used this method because it is the most realiable handy method to measure the execution time and also it is widely used in other cryptographic operations benchmarking.
\begin{table}
\begin{center}
\begin{tabular}{|cc||cc|cc|}
\hline
& & \multicolumn{2}{c|}{\textsf{Argon2d} (1 pass)} & \multicolumn{2}{|c|}{\textsf{Argon2i} (3 passes)} \\
\cline{3-6}
Processor & Threads & Cycles/Byte & Bandwidth & Cycles/Byte & Bandwidth \\
& & & (GB/s) & & (GB/s)\\
\hline
i7-4500U & 1 &1.3 & 2.5 & 4.7 & 2.6 \\
\hline
i7-4500U & 2 &0.9& 3.8&2.8 & 4.5\\
\hline
i7-4500U & 4 &0.6 & 5.4 & 2 & 5.4 \\
\hline
i7-4500U & 8 & 0.6 & 5.4 & 1.9 & 5.8\\
\hline
\end{tabular}
\end{center}
\caption{Speed and memory bandwidth of Argon2(d/i) measured on 1 GB memory filled. Core i7-4500U --- Intel Haswell 1.8 GHz, 4 cores}
\label{table:cycle_per_byte_results}
\end{table}
\section{Applications}
\textsf{Argon2d} is optimized for settings where the adversary does not get regular access to system memory or CPU, i.e. he can not run side-channel attacks based on the timing information, nor he
can recover the password much faster using garbage collection~\cite{cryptoeprint:2014:881}. These settings are more typical for backend servers and cryptocurrency minings. For practice we suggest the following settings:
\begin{itemize}
\item Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz CPU using 1 core --- \textsf{Argon2d} with 2 lanes and 250 MB of RAM;
\item Backend server authentication, that takes 0.5 seconds on a 2 GHz CPU using 4 cores --- \textsf{Argon2d} with 8 lanes and 4 GB of RAM.
\end{itemize}
\textsf{Argon2i} is optimized for more dangerous settings, where the adversary possibly can access the same machine, use its CPU or mount cold-boot attacks. We use three passes to get rid entirely of the password in the memory. We suggest the following settings:
\begin{itemize}
\item Key derivation for hard-drive encryption, that takes 3 seconds on a 2 GHz CPU using 2 cores --- \textsf{Argon2i} with 4 lanes and 6 GB of RAM;
\item Frontend server authentication, that takes 0.5 seconds on a 2 GHz CPU using 2 cores --- \textsf{Argon2i} with 4 lanes and 1 GB of RAM.
\end{itemize}
\section{Recommended parameters}
We recommend the following procedure to select the type and the parameters for practical use of \textsf{Argon2}:
\begin{enumerate}
\item Select the type $y$. If you do not know the difference between them or you consider side-channel attacks as viable threat, choose \textsf{Argon2i}. Otherwise any choice is fine, including optional types.
\item Figure out the maximum number $h$ of threads that can be initiated by each call to \textsf{Argon2}.
\item Figure out the maximum amount $m$ of memory that each call can afford.
\item Figure out the maximum amount $x$ of time (in seconds) that each call can afford.
\item Select the salt length. 128 bits is sufficient for all applications, but can be reduced to 64 bits in the case of space constraints.
\item Select the tag length. 128 bits is sufficient for most applications, including key derivation. If longer keys are needed, select longer tags.
\item If side-channel attacks is a viable threat, enable the memory wiping option in the library call.
\item Run the scheme of type $y$, memory $m$ and $h$ lanes and threads, using different number of passes $t$. Figure out the maximum $t$ such that the running time does not exceed $x$. If it exceeds $x$ even for $t=1$, reduce $m$ accordingly.
\item Hash all the passwords with the just determined values $m$, $h$, and $t$.
\end{enumerate}
\section{Conclusion}
We presented the memory-hard function \textsf{Argon2}, which maximizes the ASIC implementation costs for given CPU computing time. We aimed to make the design clear and compact, so that any feature and operation has certain rationale. The clarity and brevity of the Argon2 design has been confirmed by its eventual selection as the PHC winner.
Further development of tradeoff attacks with dedication to \textsf{Argon2} is the subject of future work. It also remains to be seen how \textsf{Argon2} withstands GPU cracking with low memory requirements.
\bibliographystyle{IEEEtranS}
\bibliography{tradeoff}
\appendix
\section{Permutation \texorpdfstring{$\mathcal{P}$}{P}}\label{sec:blakeround}
Permutation $\mathcal{P}$ is based on the round function of Blake2b and works as follows. Its 8 16-byte inputs $S_0, S_1,\ldots, S_7$ are viewed as a $4\times 4$-matrix of 64-bit words, where $S_i = (v_{2i+1}||v_{2i})$:
$$
\begin{pmatrix}
v_0 & v_1 & v_2 & v_3\\
v_4 & v_5 & v_6 & v_7\\
v_8 & v_9 & v_{10} & v_{11}\\
v_{12} & v_{13} & v_{14} & v_{15}\\
\end{pmatrix}
$$
Then we do
\begin{eqnarray*}
G(v_0, v_4, v_8, v_{12})\quad G(v_1, v_5, v_9, v_{13}) \\ G(v_2, v_6, v_{10}, v_{14}) \quad G(v_3, v_7, v_{11}, v_{15})\\
G(v_0, v_5, v_{10}, v_{15})\quad G(v_1, v_6, v_{11}, v_{12}) \\ G(v_2, v_7, v_{8}, v_{13}) \quad G(v_3, v_4, v_{9}, v_{14}),
\end{eqnarray*}
where $G$ applies to $(a,b,c,d)$ as follows:
\begin{equation}\label{eq:blake-orig}
\begin{aligned}
a &\leftarrow a + b+ 2*a_L*b_L;\\
d &\leftarrow (d\oplus a)\ggg 32;\\
c &\leftarrow c + d+ 2*c_L*d_L;\\
b &\leftarrow (b\oplus c)\ggg 24;\\
a &\leftarrow a + b+ 2*a_L*b_L;\\
d &\leftarrow (d\oplus a)\ggg 16;\\
c &\leftarrow c + d+ 2*c_L*d_L;\\
b &\leftarrow (b\oplus c)\ggg 63;\\
\end{aligned}
\end{equation}
Here $+$ are additions modulo $2^{64}$ and $\ggg$ are 64-bit rotations to the right. $x_L$ is the 64-bit integer $x$ truncated to the 32 least significant bits. The modular additions in $G$ are combined with 64-bit multiplications (that is the only difference to the original Blake2 design).
Our motivation in adding multiplications is to increase the circuit depth (and thus the running time) of a potential ASIC implementation while having roughly the same running time on CPU thanks to parallelism and pipelining. Extra multiplications in the scheme serve well, as the best addition-based circuits for multiplication have latency about 4-5 times the addition latency for 32-bit multiplication (or roughly $\log_n$ for $n$-bit multiplication).
As a result, any output 64-bit word of $\mathcal{P}$ is implemented by a chain of additions, multiplications, XORs, and rotations. The shortest possible chain for the 1 KB-block (e.g, from $v_0$ to $v_0$) consists of 12 MULs, 12 XORs, and 12 rotations.
\section{Additional functionality}
The following functionality is enabled in the extended implementation\footnote{\url{https://github.com/khovratovich/Argon2}} but is
not officially included in the PHC release\footnote{\url{https://github.com/P-H-C/phc-winner-argon2}}:
\begin{itemize}
\item Hybrid construction \textsf{Argon2id}, which has type $y=2$ (used in the pre-hashing and address generation). In the first two slices of the first pass it generates reference addresses data-independently as in \textsf{Argon2i}, whereas in later slices and next passes it generates them data-dependently as in \textsf{Argon2d}.
\item Sbox-hardened version \textsf{Argon2ds}, which has type $y=4$. In this version the compression function $G$ includes the 64-bit transformation $\mathcal{T}$, which is a chain of S-boxes, multiplications, and additions. In terms of Section~\ref{sec:compr}, we additionally compute
\begin{align*}
W&= LSB_{64}(R_0\oplus R_{63});\\
Z_0 &+= \mathcal{T}(W);\\
Z_{63}&+=\mathcal{T}(W)\ll 32.
\end{align*}
The transformation $\mathcal{T}$, on the 64-bit word $W$ is defined as follows:
\begin{itemize}
\item Repeat 96 times:
\begin{enumerate}
\item $y\leftarrow S[W[8:0]]$;
\item $z\leftarrow S[512+W[40:32]]$;
\item $W \leftarrow ((W[31:0]\circ W[63:32])+y)\oplus z$.
\end{enumerate}
\item $T(W)\leftarrow W$.
\end{itemize}
All the operations are performed modulo $2^{64}$. $\circ$ is the 64-bit multiplication, $S[]$ is the Sbox (lookup table) that maps 10-bit indices to 64-bit values. $W[i:j]$ is the subset of bits of $W$ from $i$ to $j$ inclusive.
The S-box is generated in the start of every pass in the following procedure. In total we specify $2^{10}\cdot 8$ bytes, or 8 KBytes. We take block $B[0][0]$ and apply $F$ (the core of $G$) to it 16 times. After each two iterations we use the entire 1024-byte value and initialize 128 lookup values.
The properties of $\mathcal{T}$ and its initialization procedure is subject to change.
\end{itemize}
\section{Change log}
\subsection{v.1.3}
\begin{itemize}
\item The blocks are XORed with, not overwritten in the second pass and later;
\item The version number byte is now $0x13$.
\end{itemize}
\subsection{v1.2.1 -- February 1st, 2016}
\begin{itemize}
\item The total number of blocks can reach $2^{32}-1$;
\item The reference block index now requires 64 bits; the lane number is computed separately.
\item New modes \textsf{Argon2id} and \textsf{Argon2ds} are added as optional.
\end{itemize}
The specification of v1.2.1 released on 26th August, 2015, had incorrect description of the first block generation. The version released on 2d September, 2015, had incorrect description of the counter used in generating addresses for \textsf{Argon2i}. The version released on September 8th, 2015, lacked the "Recommended parameters" section. The version released on October 1st, 2015,
had the maximal parallelism level of 255 lanes. The version released on November 3d, 2015, had a typo. The versions released on November 5th and December 26th, had incorrect description of the first block generation and the variable-length hash function.
\subsection{v1.2 -- 21th June, 2015}
Non-uniform indexing rule, the compression function gets multiplications.
\subsection{v1.1 -- 6th February, 2015}
\begin{itemize}
\item New indexing rule added to avoid collision with a proof.
\item New rule to generate first two blocks in each lane.
\item Non-zero constant added to the input block used to generate addresses in \textsf{Argon2i}.
\end{itemize}
\end{document}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

View File

@ -0,0 +1,822 @@
@article{hellman1980cryptanalytic,
title={A cryptanalytic time-memory trade-off},
author={Hellman, Martin E},
journal={Information Theory, IEEE Transactions on},
volume={26},
number={4},
pages={401--406},
year={1980},
publisher={IEEE}
}
@inproceedings{DworkN92,
author = {Cynthia Dwork and
Moni Naor},
title = {Pricing via Processing or Combatting Junk Mail},
booktitle = {CRYPTO'92},
series = {Lecture Notes in Computer Science},
volume = {740},
pages = {139--147},
publisher = {Springer},
year = {1992},
timestamp = {Fri, 18 Sep 2009 10:18:29 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/conf/crypto/DworkN92},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@article{Sudan97,
author = {Madhu Sudan},
title = {Decoding of {Reed Solomon} Codes beyond the Error-Correction Bound},
journal = {J. Complexity},
volume = {13},
number = {1},
pages = {180--193},
year = {1997},
url = {http://dx.doi.org/10.1006/jcom.1997.0439},
doi = {10.1006/jcom.1997.0439},
timestamp = {Thu, 10 Nov 2005 11:26:57 +0100},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/jc/Sudan97},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@article{OorschotW99,
author = {Paul C. van Oorschot and
Michael J. Wiener},
title = {Parallel Collision Search with Cryptanalytic Applications},
journal = {J. Cryptology},
volume = {12},
number = {1},
pages = {1--28},
year = {1999},
url = {http://dx.doi.org/10.1007/PL00003816},
doi = {10.1007/PL00003816},
timestamp = {Tue, 24 May 2011 14:18:06 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/joc/OorschotW99},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@inproceedings{JakobssonJ99,
author = {Markus Jakobsson and
Ari Juels},
editor = {Bart Preneel},
title = {Proofs of Work and Bread Pudding Protocols},
booktitle = {Secure Information Networks: Communications and Multimedia Security,
{IFIP} {TC6/TC11} Joint Working Conference on Communications and Multimedia
Security {(CMS} '99), September 20-21, 1999, Leuven, Belgium},
series = {{IFIP} Conference Proceedings},
volume = {152},
pages = {258--272},
publisher = {Kluwer},
year = {1999},
timestamp = {Mon, 14 Oct 2002 12:00:15 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/conf/cms/JakobssonJ99},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@MANUAL{FIPS-197,
TITLE = {{FIPS}-197: {Advanced Encryption Standard}},
organization = {{N}ational {I}nstitute of {S}tandards and {T}echnology ({NIST}), available at \url{http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf}},
month = {November},
year = {2001},
}
@BOOK{DR02,
AUTHOR = {Joan Daemen and Vincent Rijmen},
TITLE = {The Design of {Rijndael}. {AES}~--- the {Advanced Encryption Standard}},
PUBLISHER = {Springer},
YEAR = {2002}
}
@misc{back2002hashcash,
title={Hashcash -- a denial of service counter-measure},
author={Back, Adam},
year={2002},
note ={available at \url{http://www.hashcash.org/papers/hashcash.pdf}}
}
@inproceedings{DworkGN03,
author = {Cynthia Dwork and
Andrew Goldberg and
Moni Naor},
title = {On Memory-Bound Functions for Fighting Spam},
booktitle = {CRYPTO'03},
year = {2003},
pages = {426--444},
series = {Lecture Notes in Computer Science},
volume = {2729},
publisher = {Springer}
}
@MANUAL{sha3,
author = {NIST},
title = {SHA-3 competition},
year = {2007},
note = {\url{http://csrc.nist.gov/groups/ST/hash/sha-3/index.html}}
}
@book{robshaw2008new,
title={New stream cipher designs: the eSTREAM finalists},
author={Robshaw, Matthew and Billet, Olivier},
volume={4986},
year={2008},
publisher={Springer}
}
@misc{percival2009stronger,
title={Stronger key derivation via sequential memory-hard functions},
author={Percival, Colin},
note={\url{http://www.tarsnap.com/scrypt/scrypt.pdf}},
year={2009}
}
@misc{litecoin,
title = {Litecoin - Open source P2P digital currency},
author = {Charles Lee},
year = {2011},
note = {\url{https://litecoin.org/}},
howpublished = {\url{https://bitcointalk.org/index.php?topic=47417.0}}
}
@MANUAL{ietf-scrypt,
title = {IETF Draft: The scrypt Password-Based Key Derivation Function},
year = {2012},
note = {\url{
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-02}}
}
@MISC{story,
year=2012,
title = {Password security: past, present, future},
note = {\url{http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/}}
}
@article{DziembowskiFKP13,
author = {Stefan Dziembowski and
Sebastian Faust and
Vladimir Kolmogorov and
Krzysztof Pietrzak},
title = {Proofs of Space},
journal = {IACR Cryptology ePrint Archive 2013/796},
note = {to appear at Crypto'15}
}
@MISC{momentum,
year = {2013},
title = {Momentum: a memory-hard proof-of-work},
note = {\url{http://www.hashcash.org/papers/momentum.pdf}}
}
@MISC{ebay,
year = {2014},
title = {{eBay} hacked, requests all users change passwords},
note = {\url{http://www.cnet.com/news/ebay-hacked-requests-all-users-change-passwords/}}
}
@TECHREPORT{yescrypt,
author = {Alexander Peslyak },
title = {Yescrypt - a Password Hashing Competition submission},
year = {2014},
note = {available at \url{https://password-hashing.net/submissions/specs/yescrypt-v0.pdf}}
}
@MISC{bitasic,
title = {Avalon ASIC's 40nm Chip to Bring Hashing Boost for Less Power},
year = {2014},
note = {\url{ http://www.coindesk.com/avalon-asics-40nm-chip-bring-hashing-boost-less-power/}}
}
@MISC{comp,
title = {{Password Hashing Competition}},
year = 2015,
note = {\url{https://password-hashing.net/}}
}
@MANUAL{vertcoin,
title = {Vertcoin: Lyra2RE reference guide},
year = {2014},
note = {\url{https://vertcoin.org/downloads/Vertcoin_Lyra2RE_Paper_11292014.pdf}}
}
@MANUAL{FIPS-180-4,
TITLE = {{FIPS}-180-4: {Secure Hash Standard}},
organization = {{N}ational {I}nstitute of {S}tandards and {T}echnology ({NIST})},
note={available at \url{http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf}},
month = {March},
year = {2012},
}
@article{gueronaes,
title={AES-GCM software performance on the current high end CPUs as a performance baseline for CAESAR competition},
author={Gueron, Shay},
year={2013},
note={\url{http://2013.diac.cr.yp.to/slides/gueron.pdf}}
}
@inproceedings{norwayTrade,
author = {Donghoon Chang and Arpan Jati and Sweta Mishra and Somitra Kumar Sanadhya},
title = {Time Memory Tradeoff Analysis of Graphs in Password
Hashing Constructions},
booktitle = {Preproceedings of PASSWORDS'14},
year = {2014},
pages = {256-266},
note={available at \url{http://passwords14.item.ntnu.no/Preproceedings_Passwords14.pdf}}
}
@inproceedings{BogdanovKLTVV11,
author = {Andrey Bogdanov and
Miroslav Knezevic and
Gregor Leander and
Deniz Toz and
Kerem Varici and
Ingrid Verbauwhede},
title = {Spongent: A Lightweight Hash Function},
booktitle = {CHES'11},
year = {2011},
pages = {312-325},
publisher = {Springer},
series = {Lecture Notes in Computer Science},
volume = {6917}
}
@misc{cryptoeprint:2014:881,
author = {Christian Forler and Eik List and Stefan Lucks and Jakob Wenzel},
title = {Overview of the Candidates for the Password Hashing Competition - And Their Resistance Against Garbage-Collector Attacks},
howpublished = {Cryptology ePrint Archive, Report 2014/881},
year = {2014},
note = {\url{http://eprint.iacr.org/}},
}
@TECHREPORT{Daemen13,
author = {Joan Daemen},
title = {Permutation-based symmetric cryptography
and
{Keccak}},
institution = {Ecrypt II, Crypto for 2020 Invited Talk},
year = {2013},
note={\url{https://www.cosic.esat.kuleuven.be/ecrypt/cryptofor2020/slides/KeccakEcryptTenerife.pdf}}
}
@inproceedings{AumassonHMN10,
author = {Jean-Philippe Aumasson and
Luca Henzen and
Willi Meier and
Mar\'{\i}a Naya-Plasencia},
title = {Quark: A Lightweight Hash},
booktitle = {CHES'10},
year = {2010},
pages = {1-15},
publisher = {Springer},
series = {Lecture Notes in Computer Science},
volume = {6225},
note= {\url{https://131002.net/quark/quark_full.pdf}}
}
@inproceedings{knudsen1998analysis,
title={Analysis methods for (alleged) {RC4}},
author={Knudsen, Lars R and Meier, Willi and Preneel, Bart and Rijmen, Vincent and Verdoolaege, Sven},
booktitle={Advances in Cryptology—ASIACRYPT98},
pages={327--341},
year={1998},
organization={Springer}
}
@report{Keccak-ref,
author = {Guido Bertoni and
Joan Daemen and
Michael Peeters and
Gilles Van Assche},
title = {The {Keccak} reference, version 3.0},
year = {2011},
note = {\url{http://keccak.noekeon.org/Keccak-reference-3.0.pdf}}
}
@inproceedings{DworkNW05,
author = {Cynthia Dwork and
Moni Naor and
Hoeteck Wee},
title = {Pebbling and Proofs of Work},
booktitle = {{CRYPTO}'05},
year = {2005},
pages = {37--54},
series = {Lecture Notes in Computer Science},
volume = {3621},
publisher = {Springer}
}
@inproceedings{FiatS86,
author = {Amos Fiat and
Adi Shamir},
editor = {Andrew M. Odlyzko},
title = {How to Prove Yourself: Practical Solutions to Identification and Signature
Problems},
booktitle = {Advances in Cryptology - {CRYPTO} '86, Santa Barbara, California,
USA, 1986, Proceedings},
series = {Lecture Notes in Computer Science},
volume = {263},
pages = {186--194},
publisher = {Springer},
year = {1986},
url = {http://dx.doi.org/10.1007/3-540-47721-7_12},
doi = {10.1007/3-540-47721-7_12},
timestamp = {Fri, 18 Sep 2009 08:01:49 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/conf/crypto/FiatS86},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@article{HopcroftPV77,
author = {John E. Hopcroft and
Wolfgang J. Paul and
Leslie G. Valiant},
title = {On Time Versus Space},
journal = {J. ACM},
volume = {24},
number = {2},
year = {1977},
pages = {332-337},
ee = {http://doi.acm.org/10.1145/322003.322015},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@article{PaulTC77,
author = {Wolfgang J. Paul and
Robert Endre Tarjan and
James R. Celoni},
title = {Space Bounds for a Game on Graphs},
journal = {Mathematical Systems Theory},
volume = {10},
year = {1977},
pages = {239-251},
ee = {http://dx.doi.org/10.1007/BF01683275},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@article{LengauerT82,
author = {Thomas Lengauer and
Robert Endre Tarjan},
title = {Asymptotically tight bounds on time-space trade-offs in
a pebble game},
journal = {J. ACM},
volume = {29},
number = {4},
year = {1982},
pages = {1087-1130},
ee = {http://doi.acm.org/10.1145/322344.322354},
bibsource = {DBLP, http://dblp.uni-trier.de}
}
@article{AlwenS14,
author = {Jo{\"e}l Alwen and
Vladimir Serbinenko},
title = {High Parallel Complexity Graphs and Memory-Hard Functions},
journal = {IACR Cryptology ePrint Archive 2014/238}
}
@TECHREPORT{Bernstein05,
author = {Daniel J. Bernstein},
title = {Cache-timing
attacks
on
AES},
year = {2005},
note = {\url{http://cr.yp.to/antiforgery/cachetiming-20050414.pdf}}
}
@inproceedings{trade-att,
author = {Alex Biryukov and
Dmitry Khovratovich},
editor = {Tetsu Iwata and
Jung Hee Cheon},
title = {Tradeoff Cryptanalysis of Memory-Hard Functions},
booktitle = {Advances in Cryptology - {ASIACRYPT} 2015 },
series = {Lecture Notes in Computer Science},
volume = {9453},
pages = {633--657},
publisher = {Springer},
year = {2015},
}
@TECHREPORT{Argon2,
author = {Alex Biryukov and Daniel Dinu and Dmitry Khovratovich},
title = {Argon2},
year = {2015},
note = {\url{https://www.cryptolux.org/images/0/0d/Argon2.pdf}}
}
@MISC{BSTY,
title = {GlobalBoost announces a yescrypt-based cryptocurrency},
note = {\url{https://bitcointalk.org/index.php?topic=775289.0}}
}
@article{ForlerLW13,
author = {Christian Forler and
Stefan Lucks and
Jakob Wenzel},
title = {Catena: A Memory-Consuming Password Scrambler},
journal = {IACR Cryptology ePrint Archive, Report 2013/525},
year = {2013},
note = {non-tweaked version \url{http://eprint.iacr.org/2013/525/20140105:194859}}
}
@misc{broz15,
year = 2015,
author = {Milan Broz},
title = {PHC benchmarks},
note = {\url{https://github.com/mbroz/PHCtest/blob/master/output/phc\_round2.pdf}}
}
@inproceedings{ForlerLW14,
author = {Christian Forler and
Stefan Lucks and
Jakob Wenzel},
title = {Memory-Demanding Password Scrambling},
booktitle = {{ASIACRYPT}'14},
series = {Lecture Notes in Computer Science},
volume = {8874},
pages = {289--305},
publisher = {Springer},
year = {2014},
note = {tweaked version of \cite{ForlerLW13}}
}
@article{ParkPAFG15,
author = {Sunoo Park and
Krzysztof Pietrzak and
Jo{\"{e}}l Alwen and
Georg Fuchsbauer and
Peter Gazi},
title = {Spacecoin: {A} Cryptocurrency Based on Proofs of Space},
journal = {{IACR} Cryptology ePrint Archive},
volume = {2015},
pages = {528},
year = {2015},
url = {http://eprint.iacr.org/2015/528},
timestamp = {Fri, 26 Jun 2015 09:49:58 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/iacr/ParkPAFG15},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@inproceedings{BiryukovS01,
author = {Alex Biryukov and
Adi Shamir},
title = {Structural Cryptanalysis of {SASAS}},
booktitle = {EUROCRYPT'01},
year = {2001}
}
@inproceedings{RistenpartTSS09,
author = {Thomas Ristenpart and
Eran Tromer and
Hovav Shacham and
Stefan Savage},
title = {Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds},
booktitle = {ACM {CCS}'09},
year = {2009},
pages = {199--212}
}
@MISC{bitcoin,
title = {Bitcoin: Mining hardware comparison},
year={2014},
note = {available at \url{https://en.bitcoin.it/wiki/Mining_hardware_comparison}. We compare $2^{32}$ hashes per joule on the best ASICs with $2^{17}$ hashes per joule on the most efficient x86-laptops.}
}
@MISC{litecoin-comp,
title = {Litecoin: Mining hardware comparison},
note = {\url{https://litecoin.info/Mining_hardware_comparison}}
}
@article{AbadiBMW05,
author = {Mart{\'{\i}}n Abadi and
Michael Burrows and
Mark S. Manasse and
Ted Wobber},
title = {Moderately hard, memory-bound functions},
journal = {{ACM} Trans. Internet Techn.},
year = {2005},
volume = {5},
number = {2},
pages = {299--327},
url = {http://doi.acm.org/10.1145/1064340.1064341},
doi = {10.1145/1064340.1064341},
timestamp = {Tue, 09 Sep 2014 16:27:47 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/toit/AbadiBMW05},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@article{Pippenger77,
author = {Nicholas Pippenger},
title = {Superconcentrators},
journal = {{SIAM} J. Comput.},
year = {1977},
volume = {6},
number = {2},
pages = {298--304},
url = {http://dx.doi.org/10.1137/0206022},
doi = {10.1137/0206022},
timestamp = {Tue, 09 Sep 2014 16:52:40 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/siamcomp/Pippenger77},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@TECHREPORT{lyra,
author = {Marcos A. Simplicio Jr and Leonardo C. Almeida and Ewerton R. Andrade and Paulo C. F. dos Santos and Paulo S. L. M. Barreto},
title = {The {Lyra2} reference guide, version 2.3.2},
year = {2014},
month = {april},
note = {available at \url{http://lyra-kdf.net/Lyra2ReferenceGuide_v1.pdf}},
}
@inproceedings{Thompson79,
author = {Clark D. Thompson},
title = {Area-Time Complexity for {VLSI}},
booktitle = {STOC'79},
pages = {81--88},
year = {1979},
publisher = {{ACM}}
}
@TECHREPORT{pomelo,
author = {Hongjun Wu},
title = {{POMELO}:
A Password Hashing Algorithm},
year = {2014},
note = {available at \url{https://password-hashing.net/submissions/specs/POMELO-v1.pdf}},
}
@inproceedings{knudsen1998analysis,
title={Analysis methods for (alleged) {RC4}},
author={Knudsen, Lars R and Meier, Willi and Preneel, Bart and Rijmen, Vincent and Verdoolaege, Sven},
booktitle={Advances in Cryptology—ASIACRYPT98},
pages={327--341},
year={1998},
organization={Springer}
}
@MISC{fpga,
title = {Energy-efficient bcrypt cracking},
author={Katja Malvoni},
note = {Passwords'14 conference, available at \url{http://www.openwall.com/presentations/Passwords14-Energy-Efficient-Cracking/}}
}
@MISC{ripper,
title = {Software tool: {John the Ripper} password cracker},
note = {\url{http://www.openwall.com/john/}}
}
@MISC{sharcs,
title = {{SHARCS} -- Special-purpose Hardware for Attacking Cryptographic Systems},
note = {\url{http://www.sharcs.org/}}
}
@article{Wiener04,
author = {Michael J. Wiener},
title = {The Full Cost of Cryptanalytic Attacks},
journal = {J. Cryptology},
year = {2004},
volume = {17},
number = {2},
pages = {105--124},
url = {http://dx.doi.org/10.1007/s00145-003-0213-5},
doi = {10.1007/s00145-003-0213-5},
timestamp = {Sat, 27 Sep 2014 18:00:09 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/joc/Wiener04},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@inproceedings{MukhopadhyayS06,
author = {Sourav Mukhopadhyay and
Palash Sarkar},
title = {On the Effectiveness of {TMTO} and Exhaustive Search Attacks},
booktitle = {{IWSEC} 2006},
year = {2006},
pages = {337--352},
series = {Lecture Notes in Computer Science},
volume = {4266},
publisher = {Springer}
}
@inproceedings{SprengerB12,
author = {Martijn Sprengers and Lejla Batina},
title = {Speeding up {GPU-based} password cracking},
booktitle = {SHARCS'12},
year = {2012},
note = {available at \url{http://2012.sharcs.org/record.pdf}}
}
@article{nakamoto2012bitcoin,
title={Bitcoin: A peer-to-peer electronic cash system},
author={Nakamoto, Satoshi},
note={\url{http://www. bitcoin.org/bitcoin.pdf}},
year={2009}
}
@inproceedings{BernsteinL13,
author = {Daniel J. Bernstein and
Tanja Lange},
title = {Non-uniform Cracks in the Concrete: The Power of Free Precomputation},
booktitle = {ASIACRYPT'13},
year = {2013},
pages = {321--340},
series = {Lecture Notes in Computer Science},
volume = {8270},
publisher = {Springer}
}
@inproceedings{AumassonNWW13,
author = {Jean{-}Philippe Aumasson and
Samuel Neves and
Zooko Wilcox{-}O'Hearn and
Christian Winnerlein},
title = {{BLAKE2:} Simpler, Smaller, Fast as {MD5}},
booktitle = {{ACNS}'13},
pages = {119--135},
series = {Lecture Notes in Computer Science},
year = {2013},
volume = {7954},
publisher = {Springer}
}
@article{liu2013parallel,
author = {Bin Liu and Bevan M. Baas},
title = {Parallel {AES} Encryption Engines for Many-Core Processor Arrays},
journal = {{IEEE} Transactions on Computers},
year = {2013},
volume = {62},
number = {3},
pages = {536--547},
month = mar,
}
@article{ForlerLLW14,
author = {Christian Forler and
Eik List and
Stefan Lucks and
Jakob Wenzel},
title = {Overview of the Candidates for the Password Hashing Competition -
And their Resistance against Garbage-Collector Attacks},
journal = {{IACR} Cryptology ePrint Archive},
volume = {2014},
pages = {881},
year = {2014},
url = {http://eprint.iacr.org/2014/881},
timestamp = {Sat, 02 Mar 4439591 14:05:04 +},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/iacr/ForlerLLW14},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@inproceedings{gurkaynak2012sha3,
author = {Frank G{\"{u}}rkaynak and Kris Gaj and Beat Muheim and Ekawat Homsirikamol and Christoph Keller and Marcin Rogawski and Hubert Kaeslin and Jens-Peter Kaps},
title = {Lessons Learned from Designing a 65nm {ASIC} for Evaluating Third Round {SHA-3} Candidates},
booktitle = {Third SHA-3 Candidate Conference},
month = mar,
year = {2012}
}
@inproceedings{giridhar2013dram,
author = {Bharan Giridhar and Michael Cieslak and Deepankar Duggal and Ronald G. Dreslinski and Hsing Min Chen and Robert Patti and Betina Hold and Chaitali Chakrabarti and Trevor N. Mudge and David Blaauw},
title = {Exploring {DRAM} organizations for energy-efficient and resilient
exascale memories},
booktitle = {International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2013)},
year = {2013},
pages = {23--35},
publisher = {ACM},
}
@inproceedings{BertoniDPA11,
author = {Guido Bertoni and
Joan Daemen and
Michael Peeters and
Gilles Van Assche},
title = {Duplexing the Sponge: Single-Pass Authenticated Encryption and Other
Applications},
booktitle = {{SAC}'11,},
series = {Lecture Notes in Computer Science},
volume = {7118},
pages = {320--337},
publisher = {Springer},
year = {2011}
}
@inproceedings{Rig,
author = {Donghoon Chang and Arpan Jati and Sweta Mishra and Somitra Sanadhya},
title = {Rig: A simple, secure and flexible design for Password Hashing},
booktitle = {Inscrypt'14},
series = {Lecture Notes in Computer Science, to appear},
publisher = {Springer},
year = {2014}
}
@article{BiryukovP14,
author = {Alex Biryukov and
Ivan Pustogarov},
title = {Proof-of-Work as Anonymous Micropayment: Rewarding a {Tor} Relay},
journal = {{IACR} Cryptology ePrint Archive 2014/1011},
note= {to appear at Financial Cryptography 2015},
url = {http://eprint.iacr.org/2014/1011},
timestamp = {Mon, 19 Jan 2015 11:11:51 +0100},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/iacr/BiryukovP14},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@misc{Andersen14,
author = {David Andersen},
title = {A Public Review of Cuckoo Cycle},
howpublished = {\url{http://www.cs.cmu.edu/~dga/crypto/cuckoo/analysis.pdf}},
year = {2014}
}
@misc{Tromp14,
author = {John Tromp},
title = {Cuckoo Cycle: a memory bound graph-theoretic proof-of-work},
howpublished = {Cryptology ePrint Archive, Report 2014/059},
year = {2014},
note = {\url{http://eprint.iacr.org/2014/059}, project webpage \url{https://github.com/tromp/cuckoo}},
}
@misc{cryptoeprint:2015:136,
author = {Marcos A. Simplicio Jr. and Leonardo C. Almeida and Ewerton R. Andrade and Paulo C. F. dos Santos and Paulo S. L. M. Barreto},
title = {Lyra2: Password Hashing Scheme with improved security against time-memory trade-offs},
howpublished = {Cryptology ePrint Archive, Report 2015/136},
year = {2015},
note = {\url{http://eprint.iacr.org/}},
}
@article{Corrigan-GibbsB16,
author = {Henry Corrigan{-}Gibbs and
Dan Boneh and
Stuart E. Schechter},
title = {Balloon Hashing: Provably Space-Hard Hash Functions with Data-Independent
Access Patterns},
journal = {{IACR} Cryptology ePrint Archive},
volume = {2016},
pages = {27},
year = {2016}
}
@article{AB16,
author = {Joel Alwen and Jeremiah Blocki},
title = {Efficiently Computing Data-Independent Memory-Hard Functions},
journal = {{IACR} Cryptology ePrint Archive},
volume = {2016},
pages = {115},
year = {2016}
}

View File

@ -0,0 +1,16 @@
# libargon2 info for pkg-config
## Template for downstream installers:
## - replace @HOST_MULTIARCH@ with target arch, eg 'x86_64-linux-gnu'
## - replace @UPSTREAM_VER@ with current version, eg '20160406'
prefix=/usr
exec_prefix=${prefix}
libdir=${prefix}/lib/@HOST_MULTIARCH@
includedir=${prefix}/include
Name: libargon2
Description: Development libraries for libargon2
Version: @UPSTREAM_VER@
Libs: -L${libdir} -largon2 -lrt -ldl
Cflags:
URL: https://github.com/P-H-C/phc-winner-argon2

View File

@ -0,0 +1,60 @@
.TH ARGON2 "1" "April 2016" "argon2 " "User Commands"
.SH NAME
argon2 \- generate argon2 hashes
.SH SYNOPSIS
.B argon2 salt
.RB [ OPTIONS ]
.SH DESCRIPTION
Generate Argon2 hashes from the command line.
The supplied salt (the first argument to the command) must be at least
8 octets in length, and the password is supplied on standard input.
By default, this uses Argon2i variant (where memory access is
independent of secret data) which is the preferred one for password
hashing and password-based key derivation.
.SH OPTIONS
.TP
.B \-h
Display tool usage
.TP
.B \-d
Use Argon2d instead of Argon2i (Argon2i is the default)
.TP
.B \-id
Use Argon2id instead of Argon2i (Argon2i is the default)
.TP
.B \-u
Use Argon2u instead of Argon2i (Argon2i is the default)
.TP
.BI \-t " N"
Sets the number of iterations to N (default = 3)
.TP
.BI \-m " N"
Sets the memory usage of 2^N KiB (default = 12)
.TP
.BI \-p " N"
Sets parallelism to N threads (default = 1)
.TP
.BI \-l " N"
Sets hash output length to N bytes (default = 32)
.TP
.B \-e
Output only encoded hash
.TP
.B \-r
Output only the raw bytes of the hash
.TP
.B \-v (10|13)
Argon2 version (defaults to the most recent version, currently 13)
.SH COPYRIGHT
This manpage was written by \fBDaniel Kahn Gillmor\fR for the Debian
distribution (but may be used by others). It is released, like the
rest of this Argon2 implementation, under a dual license. You may use this work
under the terms of a Creative Commons CC0 1.0 License/Waiver or the Apache
Public License 2.0, at your option.

View File

@ -0,0 +1,33 @@
project('argon2', 'c', version : '1')
legacy_meson = false
detect_meson_version = run_command('meson', '--version')
meson_ver = detect_meson_version.stdout()
if(meson_ver == '0.29.0\n')
legacy_meson = true
elif(not meson.version().version_compare('>=0.40.0'))
error('Meson 0.29.0 is last legacy version supported. Otherwise please upgrade to 0.40.0 or higher.')
endif
lib_src = ['src/argon2.c',
'src/bench.c',
'src/blake2/blake2b.c',
'src/core.c',
'src/encoding.c',
'src/genkat.c',
'src/opt.c',
'src/ref.c',
'src/run.c',
'src/test.c',
'src/thread.c']
inc = include_directories(['./include'])
lib = static_library('argon2', sources: lib_src,
include_directories: inc,
c_args: ['-Wall', '-Wno-unused-value', '-Wno-unused-function', '-DARGON2_NO_THREADS'],
install: false)
argon2_dep = declare_dependency(include_directories : inc, link_with : lib)

View File

@ -0,0 +1,490 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "argon2.h"
#include "encoding.h"
#include "core.h"
const char *argon2_type2string(argon2_type type, int uppercase) {
switch (type) {
case Argon2_d:
return uppercase ? "Argon2d" : "argon2d";
case Argon2_i:
return uppercase ? "Argon2i" : "argon2i";
case Argon2_id:
return uppercase ? "Argon2id" : "argon2id";
case Argon2_u:
return uppercase ? "Argon2u" : "argon2u";
}
return NULL;
}
int argon2_ctx(argon2_context *context, argon2_type type) {
/* 1. Validate all inputs */
int result = validate_inputs(context);
uint32_t memory_blocks, segment_length;
argon2_instance_t instance;
if (ARGON2_OK != result) {
return result;
}
if (Argon2_d != type &&
Argon2_i != type &&
Argon2_id != type &&
Argon2_u != type) {
return ARGON2_INCORRECT_TYPE;
}
/* 2. Align memory size */
/* Minimum memory_blocks = 8L blocks, where L is the number of lanes */
memory_blocks = context->m_cost;
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * context->lanes) {
memory_blocks = 2 * ARGON2_SYNC_POINTS * context->lanes;
}
segment_length = memory_blocks / (context->lanes * ARGON2_SYNC_POINTS);
/* Ensure that all segments have equal length */
memory_blocks = segment_length * (context->lanes * ARGON2_SYNC_POINTS);
instance.version = context->version;
instance.memory = NULL;
instance.passes = context->t_cost;
instance.memory_blocks = memory_blocks;
instance.segment_length = segment_length;
instance.lane_length = segment_length * ARGON2_SYNC_POINTS;
instance.lanes = context->lanes;
instance.threads = context->threads;
instance.type = type;
if (instance.threads > instance.lanes) {
instance.threads = instance.lanes;
}
/* 3. Initialization: Hashing inputs, allocating memory, filling first
* blocks
*/
result = initialize(&instance, context);
if (ARGON2_OK != result) {
return result;
}
/* 4. Filling memory */
result = fill_memory_blocks(&instance);
if (ARGON2_OK != result) {
return result;
}
/* 5. Finalization */
finalize(context, &instance);
return ARGON2_OK;
}
int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt, const size_t saltlen,
void *hash, const size_t hashlen, char *encoded,
const size_t encodedlen, argon2_type type,
const uint32_t version){
argon2_context context;
int result;
uint8_t *out;
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
return ARGON2_PWD_TOO_LONG;
}
if (saltlen > ARGON2_MAX_SALT_LENGTH) {
return ARGON2_SALT_TOO_LONG;
}
if (hashlen > ARGON2_MAX_OUTLEN) {
return ARGON2_OUTPUT_TOO_LONG;
}
if (hashlen < ARGON2_MIN_OUTLEN) {
return ARGON2_OUTPUT_TOO_SHORT;
}
out = malloc(hashlen);
if (!out) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
context.out = (uint8_t *)out;
context.outlen = (uint32_t)hashlen;
context.pwd = CONST_CAST(uint8_t *)pwd;
context.pwdlen = (uint32_t)pwdlen;
context.salt = CONST_CAST(uint8_t *)salt;
context.saltlen = (uint32_t)saltlen;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.t_cost = t_cost;
context.m_cost = m_cost;
context.lanes = parallelism;
context.threads = parallelism;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = ARGON2_DEFAULT_FLAGS;
context.version = version;
result = argon2_ctx(&context, type);
if (result != ARGON2_OK) {
clear_internal_memory(out, hashlen);
free(out);
return result;
}
/* if raw hash requested, write it */
if (hash) {
memcpy(hash, out, hashlen);
}
/* if encoding requested, write it */
if (encoded && encodedlen) {
if (encode_string(encoded, encodedlen, &context, type) != ARGON2_OK) {
clear_internal_memory(out, hashlen); /* wipe buffers if error */
clear_internal_memory(encoded, encodedlen);
free(out);
return ARGON2_ENCODING_FAIL;
}
}
clear_internal_memory(out, hashlen);
free(out);
return ARGON2_OK;
}
int argon2i_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_i,
ARGON2_VERSION_NUMBER);
}
int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_i, ARGON2_VERSION_NUMBER);
}
int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_d,
ARGON2_VERSION_NUMBER);
}
int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_d, ARGON2_VERSION_NUMBER);
}
int argon2id_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_id,
ARGON2_VERSION_NUMBER);
}
int argon2id_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_id,
ARGON2_VERSION_NUMBER);
}
int argon2u_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_u,
ARGON2_VERSION_NUMBER);
}
int argon2u_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_u, ARGON2_VERSION_NUMBER);
}
static int argon2_compare(const uint8_t *b1, const uint8_t *b2, size_t len) {
size_t i;
uint8_t d = 0U;
for (i = 0U; i < len; i++) {
d |= b1[i] ^ b2[i];
}
return (int)((1 & ((d - 1) >> 8)) - 1);
}
int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen,
argon2_type type) {
argon2_context ctx;
uint8_t *desired_result = NULL;
int ret = ARGON2_OK;
size_t encoded_len;
uint32_t max_field_len;
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
return ARGON2_PWD_TOO_LONG;
}
if (encoded == NULL) {
return ARGON2_DECODING_FAIL;
}
encoded_len = strlen(encoded);
if (encoded_len > UINT32_MAX) {
return ARGON2_DECODING_FAIL;
}
/* No field can be longer than the encoded length */
max_field_len = (uint32_t)encoded_len;
ctx.saltlen = max_field_len;
ctx.outlen = max_field_len;
ctx.salt = malloc(ctx.saltlen);
ctx.out = malloc(ctx.outlen);
if (!ctx.salt || !ctx.out) {
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
ctx.pwd = (uint8_t *)pwd;
ctx.pwdlen = (uint32_t)pwdlen;
ret = decode_string(&ctx, encoded, type);
if (ret != ARGON2_OK) {
goto fail;
}
/* Set aside the desired result, and get a new buffer. */
desired_result = ctx.out;
ctx.out = malloc(ctx.outlen);
if (!ctx.out) {
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
ret = argon2_verify_ctx(&ctx, (char *)desired_result, type);
if (ret != ARGON2_OK) {
goto fail;
}
fail:
free(ctx.salt);
free(ctx.out);
free(desired_result);
return ret;
}
int argon2i_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_i);
}
int argon2d_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_d);
}
int argon2id_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_id);
}
int argon2u_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_u);
}
int argon2d_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_d);
}
int argon2i_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_i);
}
int argon2id_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_id);
}
int argon2u_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_u);
}
int argon2_verify_ctx(argon2_context *context, const char *hash,
argon2_type type) {
int ret = argon2_ctx(context, type);
if (ret != ARGON2_OK) {
return ret;
}
if (argon2_compare((uint8_t *)hash, context->out, context->outlen)) {
return ARGON2_VERIFY_MISMATCH;
}
return ARGON2_OK;
}
int argon2d_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_d);
}
int argon2i_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_i);
}
int argon2id_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_id);
}
int argon2u_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_u);
}
const char *argon2_error_message(int error_code) {
switch (error_code) {
case ARGON2_OK:
return "OK";
case ARGON2_OUTPUT_PTR_NULL:
return "Output pointer is NULL";
case ARGON2_OUTPUT_TOO_SHORT:
return "Output is too short";
case ARGON2_OUTPUT_TOO_LONG:
return "Output is too long";
case ARGON2_PWD_TOO_SHORT:
return "Password is too short";
case ARGON2_PWD_TOO_LONG:
return "Password is too long";
case ARGON2_SALT_TOO_SHORT:
return "Salt is too short";
case ARGON2_SALT_TOO_LONG:
return "Salt is too long";
case ARGON2_AD_TOO_SHORT:
return "Associated data is too short";
case ARGON2_AD_TOO_LONG:
return "Associated data is too long";
case ARGON2_SECRET_TOO_SHORT:
return "Secret is too short";
case ARGON2_SECRET_TOO_LONG:
return "Secret is too long";
case ARGON2_TIME_TOO_SMALL:
return "Time cost is too small";
case ARGON2_TIME_TOO_LARGE:
return "Time cost is too large";
case ARGON2_MEMORY_TOO_LITTLE:
return "Memory cost is too small";
case ARGON2_MEMORY_TOO_MUCH:
return "Memory cost is too large";
case ARGON2_LANES_TOO_FEW:
return "Too few lanes";
case ARGON2_LANES_TOO_MANY:
return "Too many lanes";
case ARGON2_PWD_PTR_MISMATCH:
return "Password pointer is NULL, but password length is not 0";
case ARGON2_SALT_PTR_MISMATCH:
return "Salt pointer is NULL, but salt length is not 0";
case ARGON2_SECRET_PTR_MISMATCH:
return "Secret pointer is NULL, but secret length is not 0";
case ARGON2_AD_PTR_MISMATCH:
return "Associated data pointer is NULL, but ad length is not 0";
case ARGON2_MEMORY_ALLOCATION_ERROR:
return "Memory allocation error";
case ARGON2_FREE_MEMORY_CBK_NULL:
return "The free memory callback is NULL";
case ARGON2_ALLOCATE_MEMORY_CBK_NULL:
return "The allocate memory callback is NULL";
case ARGON2_INCORRECT_PARAMETER:
return "Argon2_Context context is NULL";
case ARGON2_INCORRECT_TYPE:
return "There is no such version of Argon2";
case ARGON2_OUT_PTR_MISMATCH:
return "Output pointer mismatch";
case ARGON2_THREADS_TOO_FEW:
return "Not enough threads";
case ARGON2_THREADS_TOO_MANY:
return "Too many threads";
case ARGON2_MISSING_ARGS:
return "Missing arguments";
case ARGON2_ENCODING_FAIL:
return "Encoding failed";
case ARGON2_DECODING_FAIL:
return "Decoding failed";
case ARGON2_THREAD_FAIL:
return "Threading failure";
case ARGON2_DECODING_LENGTH_FAIL:
return "Some of encoded parameters are too long or too short";
case ARGON2_VERIFY_MISMATCH:
return "The password does not match the supplied hash";
default:
return "Unknown error code";
}
}
size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism,
uint32_t saltlen, uint32_t hashlen, argon2_type type) {
return strlen("$$v=$m=,t=,p=$$") + strlen(argon2_type2string(type, 0)) +
numlen(t_cost) + numlen(m_cost) + numlen(parallelism) +
b64len(saltlen) + b64len(hashlen) + numlen(ARGON2_VERSION_NUMBER) + 1;
}

View File

@ -0,0 +1,111 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include "argon2.h"
static uint64_t rdtsc(void) {
#ifdef _MSC_VER
return __rdtsc();
#else
#if defined(__amd64__) || defined(__x86_64__)
uint64_t rax, rdx;
__asm__ __volatile__("rdtsc" : "=a"(rax), "=d"(rdx) : :);
return (rdx << 32) | rax;
#elif defined(__i386__) || defined(__i386) || defined(__X86__)
uint64_t rax;
__asm__ __volatile__("rdtsc" : "=A"(rax) : :);
return rax;
#else
#error "Not implemented!"
#endif
#endif
}
/*
* Benchmarks Argon2 with salt length 16, password length 16, t_cost 3,
and different m_cost and threads
*/
static void benchmark() {
#define BENCH_OUTLEN 16
#define BENCH_INLEN 16
const uint32_t inlen = BENCH_INLEN;
const unsigned outlen = BENCH_OUTLEN;
unsigned char out[BENCH_OUTLEN];
unsigned char pwd_array[BENCH_INLEN];
unsigned char salt_array[BENCH_INLEN];
#undef BENCH_INLEN
#undef BENCH_OUTLEN
uint32_t t_cost = 3;
uint32_t m_cost;
uint32_t thread_test[4] = {1, 2, 4, 8};
argon2_type types[3] = {Argon2_i, Argon2_d, Argon2_id};
memset(pwd_array, 0, inlen);
memset(salt_array, 1, inlen);
for (m_cost = (uint32_t)1 << 10; m_cost <= (uint32_t)1 << 22; m_cost *= 2) {
unsigned i;
for (i = 0; i < 4; ++i) {
double run_time = 0;
uint32_t thread_n = thread_test[i];
unsigned j;
for (j = 0; j < 3; ++j) {
clock_t start_time, stop_time;
uint64_t start_cycles, stop_cycles;
uint64_t delta;
double mcycles;
argon2_type type = types[j];
start_time = clock();
start_cycles = rdtsc();
argon2_hash(t_cost, m_cost, thread_n, pwd_array, inlen,
salt_array, inlen, out, outlen, NULL, 0, type,
ARGON2_VERSION_NUMBER);
stop_cycles = rdtsc();
stop_time = clock();
delta = (stop_cycles - start_cycles) / (m_cost);
mcycles = (double)(stop_cycles - start_cycles) / (1UL << 20);
run_time += ((double)stop_time - start_time) / (CLOCKS_PER_SEC);
printf("%s %d iterations %d MiB %d threads: %2.2f cpb %2.2f "
"Mcycles \n", argon2_type2string(type, 1), t_cost,
m_cost >> 10, thread_n, (float)delta / 1024, mcycles);
}
printf("%2.4f seconds\n\n", run_time);
}
}
}
int main() {
benchmark();
return ARGON2_OK;
}

View File

@ -0,0 +1,156 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef PORTABLE_BLAKE2_IMPL_H
#define PORTABLE_BLAKE2_IMPL_H
#include <stdint.h>
#include <string.h>
#if defined(_MSC_VER)
#define BLAKE2_INLINE __inline
#elif defined(__GNUC__) || defined(__clang__)
#define BLAKE2_INLINE __inline__
#else
#define BLAKE2_INLINE
#endif
/* Argon2 Team - Begin Code */
/*
Not an exhaustive list, but should cover the majority of modern platforms
Additionally, the code will always be correct---this is only a performance
tweak.
*/
#if (defined(__BYTE_ORDER__) && \
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \
defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || defined(__MIPSEL__) || \
defined(__AARCH64EL__) || defined(__amd64__) || defined(__i386__) || \
defined(_M_IX86) || defined(_M_X64) || defined(_M_AMD64) || \
defined(_M_ARM)
#define NATIVE_LITTLE_ENDIAN
#endif
/* Argon2 Team - End Code */
static BLAKE2_INLINE uint32_t load32(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint32_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint32_t w = *p++;
w |= (uint32_t)(*p++) << 8;
w |= (uint32_t)(*p++) << 16;
w |= (uint32_t)(*p++) << 24;
return w;
#endif
}
static BLAKE2_INLINE uint64_t load64(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint64_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
w |= (uint64_t)(*p++) << 48;
w |= (uint64_t)(*p++) << 56;
return w;
#endif
}
static BLAKE2_INLINE void store32(void *dst, uint32_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE void store64(void *dst, uint64_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE uint64_t load48(const void *src) {
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
return w;
}
static BLAKE2_INLINE void store48(void *dst, uint64_t w) {
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
}
static BLAKE2_INLINE uint32_t rotr32(const uint32_t w, const unsigned c) {
return (w >> c) | (w << (32 - c));
}
static BLAKE2_INLINE uint64_t rotr64(const uint64_t w, const unsigned c) {
return (w >> c) | (w << (64 - c));
}
void clear_internal_memory(void *v, size_t n);
#endif

Some files were not shown because too many files have changed in this diff Show More