merge test

This commit is contained in:
Henry Ault 2015-05-07 14:34:49 -07:00
commit e5a6e84012
15 changed files with 1479 additions and 27 deletions

View File

@ -65,7 +65,7 @@ MDEFINES=-DU3_OS_$(OS) -DU3_OS_ENDIAN_$(ENDIAN) -D U3_LIB=\"$(LIB)\"
# NOTFORCHECKIN - restore -O3
# -DGHETTO
CFLAGS= $(COSFLAGS) -g -msse3 -ffast-math \
CFLAGS= $(COSFLAGS) -O3 -msse3 -ffast-math \
-funsigned-char \
-I/usr/local/include \
-I/opt/local/include \
@ -78,6 +78,7 @@ CFLAGS= $(COSFLAGS) -g -msse3 -ffast-math \
-Ioutside/ed25519/src \
-Ioutside/commonmark/src \
-Ioutside/commonmark/build/src \
-Ioutside/scrypt \
$(DEFINES) \
$(MDEFINES)
@ -201,6 +202,7 @@ J_E_OFILES=\
j/e/repg.o \
j/e/rexp.o \
j/e/rub.o \
j/e/scr.o \
j/e/shax.o \
j/e/lore.o \
j/e/loss.o \
@ -350,6 +352,8 @@ LIBANACHRONISM=outside/anachronism/build/libanachronism.a
LIBCOMMONMARK=outside/commonmark/build/src/libcmark.a
LIBSCRYPT=outside/scrypt/scrypt.a
all: vere
.MAKEFILE-VERSION: Makefile .make.conf
@ -380,25 +384,28 @@ $(LIBANACHRONISM):
$(LIBCOMMONMARK):
$(MAKE) -C outside/commonmark
$(LIBSCRYPT):
$(MAKE) -C outside/scrypt MDEFINES="$(MDEFINES)"
$(CRE2_OFILES): outside/cre2/src/src/cre2.cpp outside/cre2/src/src/cre2.h $(LIBRE2)
$(CXX) $(CXXFLAGS) -c $< -o $@
$(V_OFILES): i/v/vere.h
ifdef NO_SILENT_RULES
$(BIN)/vere: $(LIBCRE) $(LIBCOMMONMARK) $(VERE_OFILES) $(LIBUV) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM)
$(BIN)/vere: $(LIBCRE) $(LIBCOMMONMARK) $(VERE_OFILES) $(LIBUV) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBSCRYPT)
mkdir -p $(BIN)
$(CLD) $(CLDOSFLAGS) -o $(BIN)/vere $(VERE_OFILES) $(LIBUV) $(LIBCRE) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBS) $(LIBCOMMONMARK)
$(CLD) $(CLDOSFLAGS) -o $(BIN)/vere $(VERE_OFILES) $(LIBUV) $(LIBCRE) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBS) $(LIBCOMMONMARK) $(LIBSCRYPT)
else
$(BIN)/vere: $(LIBCRE) $(LIBCOMMONMARK) $(VERE_OFILES) $(LIBUV) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM)
$(BIN)/vere: $(LIBCRE) $(LIBCOMMONMARK) $(VERE_OFILES) $(LIBUV) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBSCRYPT)
@echo " CCLD $(BIN)/vere"
@mkdir -p $(BIN)
@$(CLD) $(CLDOSFLAGS) -o $(BIN)/vere $(VERE_OFILES) $(LIBUV) $(LIBCRE) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBS) $(LIBCOMMONMARK)
@$(CLD) $(CLDOSFLAGS) -o $(BIN)/vere $(VERE_OFILES) $(LIBUV) $(LIBCRE) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBS) $(LIBCOMMONMARK) $(LIBSCRYPT)
endif
$(BIN)/meme: $(LIBCRE) $(LIBCOMMONMARK) $(MEME_OFILES) $(LIBUV) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM)
$(BIN)/meme: $(LIBCRE) $(LIBCOMMONMARK) $(MEME_OFILES) $(LIBUV) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBSCRYPT)
mkdir -p $(BIN)
$(CLD) $(CLDOSFLAGS) -o $(BIN)/meme $(MEME_OFILES) $(LIBUV) $(LIBCRE) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBS) $(LIBCOMMONMARK)
$(CLD) $(CLDOSFLAGS) -o $(BIN)/meme $(MEME_OFILES) $(LIBUV) $(LIBCRE) $(LIBRE2) $(LIBED25519) $(LIBANACHRONISM) $(LIBS) $(LIBCOMMONMARK) $(LIBSCRYPT)
tags:
ctags -R -f .tags --exclude=root
@ -433,5 +440,6 @@ distclean: clean $(LIBUV_MAKEFILE)
$(MAKE) -C outside/re2 clean
$(MAKE) -C outside/ed25519 clean
$(MAKE) -C outside/anachronism clean
$(MAKE) -C outside/scrypt clean
.PHONY: clean debbuild debinstalldistclean etags osxpackage tags

View File

@ -652,6 +652,7 @@
# define c3__map c3_s3('m','a','p')
# define c3__marg c3_s4('m','a','r','g')
# define c3__mark c3_s4('m','a','r','k')
# define c3__mass c3_s4('m','a','s','s')
# define c3__marn c3_s4('m','a','r','n')
# define c3__mash c3_s4('m','a','s','h')
# define c3__mast c3_s4('m','a','s','t')

View File

@ -93,6 +93,12 @@
u3_noun u3qea_de(u3_atom, u3_atom);
u3_noun u3qea_en(u3_atom, u3_atom);
u3_noun u3qes_hsh(u3_atom, u3_atom, u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qes_hsl(u3_atom, u3_atom, u3_atom, u3_atom, u3_atom,
u3_atom, u3_atom, u3_atom);
u3_noun u3qes_pbk(u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qes_pbl(u3_atom, u3_atom, u3_atom, u3_atom, u3_atom, u3_atom);
u3_noun u3qe_shax(u3_atom);
u3_noun u3qe_shay(u3_atom, u3_atom);
u3_noun u3qe_shas(u3_atom, u3_atom);

View File

@ -105,6 +105,11 @@
u3_noun u3wea_de(u3_noun);
u3_noun u3wea_en(u3_noun);
u3_noun u3wes_hsh(u3_noun);
u3_noun u3wes_hsl(u3_noun);
u3_noun u3wes_pbk(u3_noun);
u3_noun u3wes_pbl(u3_noun);
u3_noun u3we_shax(u3_noun);
u3_noun u3we_shay(u3_noun);
u3_noun u3we_shas(u3_noun);

277
j/e/scr.c Normal file
View File

@ -0,0 +1,277 @@
/* j/5/scr.c
**
*/
#include "all.h"
#include <stdint.h>
#include <errno.h>
#include <crypto_scrypt.h>
int _crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint32_t, uint32_t, uint8_t *, size_t);
/* functions
*/
u3_noun
u3qes_hsl(u3_atom p, u3_atom pl, u3_atom s, u3_atom sl, u3_atom n,
u3_atom r, u3_atom z, u3_atom d)
{
// asserting that n is power of 2 in _crypto_scrypt
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(pl)) && _(u3a_is_cat(sl)) &&
_(u3a_is_cat(n)) && _(u3a_is_cat(r)) &&
_(u3a_is_cat(z)) && _(u3a_is_cat(d)) &&
(r != 0) && (z != 0) &&
(((c3_d)r * 128 * ((c3_d)n + z - 1)) <= (1 << 30))))
return u3m_bail(c3__exit);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(sl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
if (_crypto_scrypt(b_p, pl, b_s, sl, n, r, z, buf, d) != 0)
return u3m_bail(c3__exit);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
}
u3_noun
u3wes_hsl(u3_noun cor)
{
u3_noun p, pl, s, sl, n, r, z, d;
u3_noun q;
u3x_quil(u3r_at(u3x_sam, cor), &p, &pl, &s, &sl, &q);
u3x_qual(q, &n, &r, &z, &d);
return u3qes_hsl(p, pl, s, sl, n, r, z, d);
}
u3_noun
u3qes_hsh(u3_atom p, u3_atom s, u3_atom n, u3_atom r, u3_atom z, u3_atom d)
{
// asserting that n is power of 2 in _crypto_scrypt
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(n)) && _(u3a_is_cat(r)) &&
_(u3a_is_cat(z)) && _(u3a_is_cat(d)) &&
(r != 0) && (z != 0) &&
(((c3_d)r * 128 * ((c3_d)n + z - 1)) <= (1 << 30))))
return u3m_bail(c3__exit);
c3_w pl = u3r_met(3, p); c3_w sl = u3r_met(3, s);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(sl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
if (_crypto_scrypt(b_p, pl, b_s, sl, n, r, z, buf, d) != 0)
return u3m_bail(c3__exit);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
}
u3_noun
u3wes_hsh(u3_noun cor)
{
u3_noun p, s, n, r, z, d;
u3_noun q;
u3x_quil(u3r_at(u3x_sam, cor), &p, &s, &n, &r, &q);
u3x_cell(q, &z, &d);
return u3qes_hsh(p, s, n, r, z, d);
}
u3_noun
u3qes_pbl(u3_atom p, u3_atom pl, u3_atom s, u3_atom sl,
u3_atom c, u3_atom d)
{
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(pl)) && _(u3a_is_cat(sl)) &&
_(u3a_is_cat(c)) && _(u3a_is_cat(d)) &&
(d <= (1 << 30)) && (c <= (1 << 28)) &&
(c != 0)))
return u3m_bail(c3__exit);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(pl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
PBKDF2_SHA256(b_p, pl, b_s, sl, c, buf, d);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
}
u3_noun
u3wes_pbl(u3_noun cor)
{
u3_noun p, pl, s, sl, c, d;
u3_noun q;
u3x_quil(u3r_at(u3x_sam, cor), &p, &pl, &s, &sl, &q);
u3x_cell(q, &c, &d);
return u3qes_pbl(p, pl, s, sl, c, d);
}
u3_noun
u3qes_pbk(u3_atom p, u3_atom s, u3_atom c, u3_atom d)
{
if (!(_(u3a_is_atom(p)) && _(u3a_is_atom(s)) &&
_(u3a_is_cat(c)) && _(u3a_is_cat(d)) &&
(d <= (1 << 30)) && (c <= (1 << 28)) &&
(c != 0)))
return u3m_bail(c3__exit);
c3_w pl = u3r_met(3, p); c3_w sl = u3r_met(3, s);
c3_y* b_p = u3a_malloc(pl + 1); c3_y* b_s= u3a_malloc(pl + 1);
u3r_bytes(0, pl, b_p, p); u3r_bytes(0, sl, b_s, s);
b_p[pl] = 0; b_s[sl]=0;
c3_y* buf = u3a_malloc(d);
PBKDF2_SHA256(b_p, pl, b_s, sl, c, buf, d);
u3_noun res = u3i_bytes(d, buf);
u3a_free(b_p); u3a_free(b_s); u3a_free(buf);
return res;
}
u3_noun
u3wes_pbk(u3_noun cor)
{
u3_noun p, s, c, d;
u3x_qual(u3r_at(u3x_sam, cor), &p, &s, &c, &d);
return u3qes_pbk(p, s, c, d);
}
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error.
*/
int
_crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
{
void * B0, * V0, * XY0;
uint8_t * B;
uint32_t * V;
uint32_t * XY;
uint32_t i;
if (((N & (N-1)) != 0) || N == 0)
goto err0;
/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
goto err0;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
goto err0;
}
if (((N & (N - 1)) != 0) || (N == 0)) {
errno = EINVAL;
goto err0;
}
if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > (SIZE_MAX - 64) / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
goto err0;
}
/* Allocate memory. */
if ((B0 = u3a_malloc(128 * r * p + 63)) == NULL)
goto err0;
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
if ((XY0 = u3a_malloc(256 * r + 64 + 63)) == NULL)
goto err1;
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
if ((V0 = u3a_malloc(128 * r * N + 63)) == NULL)
goto err2;
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
smix(&B[i * 128 * r], r, N, V, XY);
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
/* Free memory. */
u3a_free(V0);
u3a_free(XY0);
u3a_free(B0);
/* Success! */
return (0);
err2:
u3a_free(XY0);
err1:
u3a_free(B0);
err0:
/* Failure! */
return (-1);
}

View File

@ -231,6 +231,18 @@ static u3j_core _mood__hoon__coed_d[] =
{}
};
static u3j_harm _mood__hoon__scr_hsh_a[] = {{".2", u3wes_hsh}, {}};
static u3j_harm _mood__hoon__scr_hsl_a[] = {{".2", u3wes_hsl}, {}};
static u3j_harm _mood__hoon__scr_pbk_a[] = {{".2", u3wes_pbk}, {}};
static u3j_harm _mood__hoon__scr_pbl_a[] = {{".2", u3wes_pbl}, {}};
static u3j_core _mood__hoon__scr_d[] =
{ { "hsh", _mood__hoon__scr_hsh_a },
{ "hsl", _mood__hoon__scr_hsl_a },
{ "pbk", _mood__hoon__scr_pbk_a },
{ "pbl", _mood__hoon__scr_pbl_a },
{}
};
static u3j_harm _mood__hoon_pfix_a[] = {{".2", u3we_pfix}, {}};
static u3j_harm _mood__hoon_plug_a[] = {{".2", u3we_plug}, {}};
static u3j_harm _mood__hoon_pose_a[] = {{".2", u3we_pose}, {}};
@ -449,6 +461,8 @@ static u3j_core _mood__hoon_d[] =
{ "rd", 0, _mood__hoon__rd_d },
{ "coed", 0, _mood__hoon__coed_d },
{ "scr", 0, _mood__hoon__scr_d },
{ "pfix", _mood__hoon_pfix_a },
{ "plug", _mood__hoon_plug_a },
{ "pose", _mood__hoon_pose_a },

16
outside/scrypt/Makefile Normal file
View File

@ -0,0 +1,16 @@
default: all
CC?=gcc
CFLAGS?=-O2 -msse3 -ffast-math \
-Wall -g -D_FORTIFY_SOURCE=2 -fPIC
CFLAGS_EXTRA?=-Wl,-rpath=.
all: scrypt.a
OBJS= crypto_scrypt-sse.o sha256.o
scrypt.a: $(OBJS)
ar rcs scrypt.a $(OBJS)
clean:
rm -f *.o scrypt.a

View File

@ -0,0 +1,357 @@
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include <sys/types.h>
#include <sys/mman.h>
#include <emmintrin.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
#include "sysendian.h"
#include "crypto_scrypt.h"
static void
blkcpy(void * dest, void * src, size_t len)
{
__m128i * D = dest;
__m128i * S = src;
size_t L = len / 16;
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
__m128i * D = dest;
__m128i * S = src;
size_t L = len / 16;
size_t i;
for (i = 0; i < L; i++)
D[i] = _mm_xor_si128(D[i], S[i]);
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
salsa20_8(__m128i B[4])
{
__m128i X0, X1, X2, X3;
__m128i T;
size_t i;
X0 = B[0];
X1 = B[1];
X2 = B[2];
X3 = B[3];
for (i = 0; i < 8; i += 2) {
/* Operate on "columns". */
T = _mm_add_epi32(X0, X3);
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
T = _mm_add_epi32(X1, X0);
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
T = _mm_add_epi32(X2, X1);
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
T = _mm_add_epi32(X3, X2);
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
/* Rearrange data. */
X1 = _mm_shuffle_epi32(X1, 0x93);
X2 = _mm_shuffle_epi32(X2, 0x4E);
X3 = _mm_shuffle_epi32(X3, 0x39);
/* Operate on "rows". */
T = _mm_add_epi32(X0, X1);
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
T = _mm_add_epi32(X3, X0);
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
T = _mm_add_epi32(X2, X3);
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
T = _mm_add_epi32(X1, X2);
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
/* Rearrange data. */
X1 = _mm_shuffle_epi32(X1, 0x39);
X2 = _mm_shuffle_epi32(X2, 0x4E);
X3 = _mm_shuffle_epi32(X3, 0x93);
}
B[0] = _mm_add_epi32(B[0], X0);
B[1] = _mm_add_epi32(B[1], X1);
B[2] = _mm_add_epi32(B[2], X2);
B[3] = _mm_add_epi32(B[3], X3);
}
/**
* blockmix_salsa8(Bin, Bout, X, r):
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
* bytes in length; the output Bout must also be the same size. The
* temporary space X must be 64 bytes.
*/
static void
blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
{
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy(X, &Bin[8 * r - 4], 64);
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < r; i++) {
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 8], 64);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 4], X, 64);
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 8 + 4], 64);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[(r + i) * 4], X, 64);
}
}
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint64_t
integerify(void * B, size_t r)
{
uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
return (((uint64_t)(X[13]) << 32) + X[0]);
}
/**
* smix(B, r, N, V, XY):
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
* the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be a
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
* multiple of 64 bytes.
*/
void
smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
{
__m128i * X = XY;
__m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
__m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
uint32_t * X32 = (void *)X;
uint64_t i, j;
size_t k;
/* 1: X <-- B */
for (k = 0; k < 2 * r; k++) {
for (i = 0; i < 16; i++) {
X32[k * 16 + i] =
le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
}
}
/* 2: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 3: V_i <-- X */
blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
/* 4: X <-- H(X) */
blockmix_salsa8(X, Y, Z, r);
/* 3: V_i <-- X */
blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
Y, 128 * r);
/* 4: X <-- H(X) */
blockmix_salsa8(Y, X, Z, r);
}
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
blockmix_salsa8(X, Y, Z, r);
/* 7: j <-- Integerify(X) mod N */
j = integerify(Y, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
blockmix_salsa8(Y, X, Z, r);
}
/* 10: B' <-- X */
for (k = 0; k < 2 * r; k++) {
for (i = 0; i < 16; i++) {
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
X32[k * 16 + i]);
}
}
}
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error.
*/
int
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
{
void * B0, * V0, * XY0;
uint8_t * B;
uint32_t * V;
uint32_t * XY;
uint32_t i;
/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
goto err0;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
goto err0;
}
if (((N & (N - 1)) != 0) || (N == 0)) {
errno = EINVAL;
goto err0;
}
if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > (SIZE_MAX - 64) / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
goto err0;
}
/* Allocate memory. */
#ifdef HAVE_POSIX_MEMALIGN
if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
goto err0;
B = (uint8_t *)(B0);
if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
goto err1;
XY = (uint32_t *)(XY0);
#ifndef MAP_ANON
if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
goto err2;
V = (uint32_t *)(V0);
#endif
#else
if ((B0 = malloc(128 * r * p + 63)) == NULL)
goto err0;
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
goto err1;
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
#ifndef MAP_ANON
if ((V0 = malloc(128 * r * N + 63)) == NULL)
goto err2;
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
#endif
#endif
#ifdef MAP_ANON
if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
#ifdef MAP_NOCORE
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
#else
MAP_ANON | MAP_PRIVATE,
#endif
-1, 0)) == MAP_FAILED)
goto err2;
V = (uint32_t *)(V0);
#endif
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
smix(&B[i * 128 * r], r, N, V, XY);
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
/* Free memory. */
#ifdef MAP_ANON
if (munmap(V0, 128 * r * N))
goto err2;
#else
free(V0);
#endif
free(XY0);
free(B0);
/* Success! */
return (0);
err2:
free(XY0);
err1:
free(B0);
err0:
/* Failure! */
return (-1);
}

View File

@ -0,0 +1,51 @@
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#ifndef _CRYPTO_SCRYPT_H_
#define _CRYPTO_SCRYPT_H_
#include <stdint.h>
#include <emmintrin.h>
void smix(uint8_t *, size_t, uint64_t, void *, void *);
void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error.
*/
int crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t, uint64_t,
uint32_t, uint32_t, uint8_t *, size_t);
#endif /* !_CRYPTO_SCRYPT_H_ */

411
outside/scrypt/sha256.c Normal file
View File

@ -0,0 +1,411 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "sysendian.h"
#include "sha256.h"
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update(ctx, len, 8);
}
/* SHA-256 initialization. Begins a SHA-256 operation. */
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
void
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}

62
outside/scrypt/sha256.h Normal file
View File

@ -0,0 +1,62 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/libmd/sha256.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef _SHA256_H_
#define _SHA256_H_
#include <sys/types.h>
#include <stdint.h>
typedef struct SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
} SHA256_CTX;
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX *, const void *, size_t);
void SHA256_Final(unsigned char [32], SHA256_CTX *);
void HMAC_SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t);
void HMAC_SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t);
void HMAC_SHA256_Final(unsigned char [32], HMAC_SHA256_CTX *);
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#endif /* !_SHA256_H_ */

129
outside/scrypt/sysendian.h Normal file
View File

@ -0,0 +1,129 @@
/*-
* Copyright 2007-2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#ifndef _SYSENDIAN_H_
#define _SYSENDIAN_H_
#if defined(U3_OS_bsd)
#include <sys/endian.h>
#else
#include <stdint.h>
static inline uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static inline uint64_t
be64dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint64_t)(p[7]) + ((uint64_t)(p[6]) << 8) +
((uint64_t)(p[5]) << 16) + ((uint64_t)(p[4]) << 24) +
((uint64_t)(p[3]) << 32) + ((uint64_t)(p[2]) << 40) +
((uint64_t)(p[1]) << 48) + ((uint64_t)(p[0]) << 56));
}
static inline void
be64enc(void *pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[7] = x & 0xff;
p[6] = (x >> 8) & 0xff;
p[5] = (x >> 16) & 0xff;
p[4] = (x >> 24) & 0xff;
p[3] = (x >> 32) & 0xff;
p[2] = (x >> 40) & 0xff;
p[1] = (x >> 48) & 0xff;
p[0] = (x >> 56) & 0xff;
}
static inline uint32_t
le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void
le32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
static inline uint64_t
le64dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint64_t)(p[0]) + ((uint64_t)(p[1]) << 8) +
((uint64_t)(p[2]) << 16) + ((uint64_t)(p[3]) << 24) +
((uint64_t)(p[4]) << 32) + ((uint64_t)(p[5]) << 40) +
((uint64_t)(p[6]) << 48) + ((uint64_t)(p[7]) << 56));
}
static inline void
le64enc(void *pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
p[4] = (x >> 32) & 0xff;
p[5] = (x >> 40) & 0xff;
p[6] = (x >> 48) & 0xff;
p[7] = (x >> 56) & 0xff;
}
#endif
#endif /* !_SYSENDIAN_H_ */

127
v/reck.c
View File

@ -66,6 +66,120 @@ _reck_lily(u3_noun fot, u3_noun txt, c3_l* tid_l)
}
}
/* _reck_spac(): print n spaces.
*/
void _reck_spac(c3_w n)
{
for (; n > 0; n--)
uL(fprintf(uH," "));
}
/* _reck_print_memory: print memory amount. cf u3a_print_memory().
*/
void
_reck_print_memory(c3_w wor_w)
{
c3_w byt_w = (wor_w * 4);
c3_w gib_w = (byt_w / 1000000000);
c3_w mib_w = (byt_w % 1000000000) / 1000000;
c3_w kib_w = (byt_w % 1000000) / 1000;
c3_w bib_w = (byt_w % 1000);
if ( gib_w ) {
uL(fprintf(uH, "GB/%d.%03d.%03d.%03d\r\n",
gib_w, mib_w, kib_w, bib_w));
}
else if ( mib_w ) {
uL(fprintf(uH, "MB/%d.%03d.%03d\r\n", mib_w, kib_w, bib_w));
}
else if ( kib_w ) {
uL(fprintf(uH, "KB/%d.%03d\r\n", kib_w, bib_w));
}
else {
uL(fprintf(uH, "B/%d\r\n", bib_w));
}
}
/* _reck_meme_noun(): get memory usage, in words, of noun. RETAIN.
*/
c3_w
_reck_meme_noun(u3p(u3h_root) hax, u3_noun non, c3_t dud)
{
u3_weak got = u3h_git(hax, dud ? non & 0x7fffffff : non);
if (u3_none != got) {
return 0; // I think? maybe 1
}
else {
c3_w res;
if (!(non & 0x80000000)) {
res = 1;
}
if (_(u3ud(non))) {
res = 2 + u3r_met(5, non);
}
else {
res = 1
+ _reck_meme_noun(hax, u3h(non), dud)
+ _reck_meme_noun(hax, u3t(non), dud);
}
u3h_put(hax, dud ? non & 0x7fffffff : non, res);
return res;
}
}
/* _reck_meme_prof(): print memory profile. RETAIN.
*/
void
_reck_meme_prof(u3p(u3h_root) hax, c3_w den, u3_noun mas)
{
u3_noun h_mas, t_mas;
if (c3n == u3r_cell(mas, &h_mas, &t_mas)) {
_reck_spac(den);
uL(fprintf(uH, "mistyped mass\r\n"));
return;
}
if (c3y == h_mas) {
_reck_spac(den);
_reck_print_memory(_reck_meme_noun(hax, t_mas, false));
_reck_spac(den);
_reck_print_memory(_reck_meme_noun(hax, t_mas, true));
}
else if (c3n == h_mas) {
u3_noun it_mas, tt_mas, pit_mas, qit_mas;
while (u3_nul != t_mas)
{
_reck_spac(den);
if (c3n == u3r_cell(t_mas, &it_mas, &tt_mas)) {
uL(fprintf(uH, "mistyped mass list\r\n"));
return;
}
else if (c3n == u3r_cell(it_mas, &pit_mas, &qit_mas)) {
uL(fprintf(uH, "mistyped mass list element\r\n"));
return;
}
else {
c3_c* pit_c = u3m_pretty(pit_mas);
uL(fprintf(uH, "%s\r\n", pit_c));
free(pit_c);
_reck_meme_prof(hax, den+2, qit_mas);
t_mas = tt_mas;
}
}
}
else {
_reck_spac(den);
uL(fprintf(uH, "mistyped mass head\r\n"));
return;
}
}
/* _reck_kick_term(): apply terminal outputs.
*/
static u3_noun
@ -110,6 +224,19 @@ _reck_kick_term(u3_noun pox, c3_l tid_l, u3_noun fav)
uL(fprintf(uH, "kick: init: %s\n", nam_c));
free(nam_c); u3z(pox); u3z(hox); u3z(fav); return c3y;
} break;
case c3__mass: p_fav = u3t(fav);
{
uL(fprintf(uH, "memory profile:\r\n"));
u3p(u3h_root) hax = u3h_new();
_reck_meme_prof(hax, 0, p_fav);
u3h_free(hax);
u3z(pox); u3z(fav); return c3y;
} break;
}
c3_assert(!"not reached"); return 0;
}

View File

@ -668,20 +668,6 @@ _term_it_save(u3_noun pax, u3_noun pad)
free(pax_c);
}
/* _term_io_flow(): send flow.
*/
static void
_term_io_flow(u3_utty* uty_u)
{
u3_noun tid = u3dc("scot", c3__ud, uty_u->tid_l);
u3_noun pax = u3nq(u3_blip, c3__term, tid, u3_nul);
u3v_plan(pax, u3nq(c3__flow, c3__seat, c3__talk, u3_nul));
// u3v_plan(pax, u3nt(c3__flow, c3__seat, u3_nul));
// u3v_plan(pax, u3nq(c3__flow, c3__seat, c3__dojo, u3_nul));
// u3v_plan(pax, u3nq(c3__flow, c3__seat, c3__helm, u3_nul));
}
/* _term_io_belt(): send belt.
*/
static void
@ -832,9 +818,11 @@ _term_io_suck_char(u3_utty* uty_u, c3_y cay_y)
else if ( 13 == cay_y ) {
_term_io_belt(uty_u, u3nc(c3__ret, u3_nul));
}
#if 0
else if ( 6 == cay_y ) {
_term_io_flow(uty_u); // XX hack
}
#endif
else if ( cay_y <= 26 ) {
_term_io_belt(uty_u, u3nc(c3__ctl, ('a' + (cay_y - 1))));
}

View File

@ -666,9 +666,9 @@ _unix_dir_update(u3_udir* dir_u, DIR* rid_u)
/* unix_load(): load a file as a cage
*
* return value of c3__none means delete, u3_nul means no change
* return value of u3_none means delete, u3_nul means no change
*/
static u3_noun
static u3_weak
_unix_load(u3_ufil* fil_u)
{
struct stat buf_u;
@ -684,7 +684,7 @@ _unix_load(u3_ufil* fil_u)
if ( ENOENT != errno ) {
uL(fprintf(uH, "error loading %s: %s\n", fil_u->pax_c, strerror(errno)));
}
return c3__none;
return u3_none;
}
fln_w = buf_u.st_size;
pad_y = c3_malloc(fln_w);
@ -779,7 +779,7 @@ _unix_save(c3_c* pax_c, u3_atom oat)
/* _unix_file_load(): load a file by watcher.
*/
static u3_noun
static u3_weak
_unix_file_load(u3_ufil* fil_u)
{
return _unix_load(fil_u);
@ -938,8 +938,8 @@ _unix_dir_khan(u3_udir* dir_u)
for ( fil_u = dir_u->fil_u; fil_u; fil_u = fil_u->nex_u ) {
u3_noun wib = _unix_file_name(fil_u);
u3_noun baw = _unix_file_load(fil_u);
u3_noun wol = (c3__none == baw ? u3nc(u3_nul, u3_nul) :
u3_weak baw = _unix_file_load(fil_u);
u3_noun wol = (u3_none == baw ? u3nc(u3_nul, u3_nul) :
u3_nul == baw ? u3_nul :
u3nt(u3_nul, u3_nul, baw));
pam = _unix_dir_khan_file(pam, wib, wol);