Merge branch 'vere_build_warnings' of https://github.com/BernardoDeLaPlaz/urbit into vere_build_warnings

This commit is contained in:
BernardoDeLaPlaz 2019-04-25 18:07:06 -04:00
commit e9a2784982
8 changed files with 816 additions and 837 deletions

View File

@ -10,7 +10,7 @@ let
libs = libs =
with pkgs; with pkgs;
[ openssl zlib curl gmp scrypt libsigsegv ncurses openssl zlib ]; [ openssl zlib curl gmp scrypt libsigsegv ncurses openssl zlib lmdb ];
osx = osx =
with pkgs; with pkgs;

View File

@ -11,7 +11,7 @@ let
deps = deps =
with pkgs; with pkgs;
[ curl gmp libsigsegv ncurses openssl zlib ]; [ curl gmp libsigsegv ncurses openssl zlib lmdb ];
vendor = vendor =
[ argon2 softfloat3 ed25519 ent h2o scrypt uv murmur3 secp256k1 sni ]; [ argon2 softfloat3 ed25519 ent h2o scrypt uv murmur3 secp256k1 sni ];

View File

@ -6,7 +6,7 @@ let
crossdeps = crossdeps =
with env; with env;
[ curl libgmp libsigsegv ncurses openssl zlib ]; [ curl libgmp libsigsegv ncurses openssl zlib lmdb ];
vendor = vendor =
with deps; with deps;

2
pkg/urbit/configure vendored
View File

@ -6,7 +6,7 @@ URBIT_VERSION=0.8.0
deps=" \ deps=" \
curl gmp sigsegv argon2 ed25519 ent h2o scrypt sni uv murmur3 secp256k1 \ curl gmp sigsegv argon2 ed25519 ent h2o scrypt sni uv murmur3 secp256k1 \
softfloat3 ncurses ssl crypto z \ softfloat3 ncurses ssl crypto z lmdb \
" "
echo '#pragma once' >include/config.h echo '#pragma once' >include/config.h

View File

@ -4,6 +4,7 @@
*/ */
#include "h2o.h" #include "h2o.h"
#include <lmdb.h>
/** Quasi-tunable parameters. /** Quasi-tunable parameters.
**/ **/
@ -306,15 +307,6 @@
struct _u3_moor* nex_u; struct _u3_moor* nex_u;
} u3_moor; } u3_moor;
/* u3_foil: abstract chub-addressed file.
*/
typedef struct _u3_foil {
uv_file fil_u; // libuv file handle
struct _u3_dire* dir_u; // parent directory
c3_c* nam_c; // name within parent
c3_d end_d; // end of file
} u3_foil;
/* u3_dent: directory entry. /* u3_dent: directory entry.
*/ */
typedef struct _u3_dent { typedef struct _u3_dent {
@ -646,9 +638,9 @@
u3_dire* dir_u; // main pier directory u3_dire* dir_u; // main pier directory
u3_dire* urb_u; // urbit system data u3_dire* urb_u; // urbit system data
u3_dire* com_u; // log directory u3_dire* com_u; // log directory
u3_foil* fol_u; // logfile
c3_o liv_o; // live c3_o liv_o; // live
c3_d end_d; // byte end of file c3_d end_d; // byte end of file
MDB_env* db_u; // lmdb environment.
c3_d moc_d; // commit requested c3_d moc_d; // commit requested
c3_d com_d; // committed c3_d com_d; // committed
struct _u3_pier* pir_u; // pier backpointer struct _u3_pier* pir_u; // pier backpointer
@ -862,69 +854,6 @@
u3_dire* u3_dire*
u3_foil_folder(const c3_c* pax_c); // directory object, or 0 u3_foil_folder(const c3_c* pax_c); // directory object, or 0
/* u3_foil_create(): create a new, empty file, not syncing.
*/
void
u3_foil_create(void (*fun_f)(void*, // context pointer
u3_foil*),// file object
void* vod_p, // context pointer
u3_dire* dir_u, // directory
const c3_c* nam_c); // name of new file
/* u3_foil_absorb(): absorb logfile, truncating to last good frame; block.
*/
u3_foil*
u3_foil_absorb(u3_dire* dir_u, // directory
c3_c* nam_c); // filename
/* u3_foil_delete(): delete a file; free descriptor.
*/
void
u3_foil_delete(void (*fun_f)(void*), // context pointer
void* vod_p, // context pointer
u3_foil* fol_u); // file to delete
/* u3_foil_append(): write a frame at the end of a file, freeing buffer.
*/
void
u3_foil_append(void (*fun_f)(void*), // context pointer
void* vod_p, // context pointer
u3_foil* fol_u, // file
c3_d* buf_d, // buffer to write from
c3_d len_d); // length in chubs
/* u3_foil_reveal(): read the frame before a position, blocking.
*/
c3_d*
u3_foil_reveal(u3_foil* fol_u, // file from
c3_d* pos_d, // end position/prev end
c3_d* len_d); // length return
/* u3_foil_commit(): reveal from one file, append to another.
*/
void
u3_foil_commit(void (*fun_f)(void*, // context pointer
u3_foil*, // file from
c3_d, // previous from
u3_foil*, // file to
c3_d), // end of to
void* vod_p, // context pointer
u3_foil* del_u, // file from
c3_d del_d, // end of from frame
u3_foil* unt_u, // file to
c3_d unt_d); // end of to frame
/* u3_foil_invent(): make new file with one frame; free buffer, sync.
*/
void
u3_foil_invent(void (*fun_f)(void*, // context pointer
u3_foil*), // new file
void* vod_p, // context pointer
u3_dire* dir_u, // directory
c3_c* nam_c, // filename
c3_d* buf_d, // buffer (to free)
c3_d len_d); // length
/** Output. /** Output.
**/ **/
/* u3_reck_kick(): handle effect. /* u3_reck_kick(): handle effect.
@ -1344,5 +1273,63 @@
void void
u3_daemon_grab(void* vod_p); u3_daemon_grab(void* vod_p);
c3_w c3_w
u3_readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result); u3_readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);
/* Database
*/
/* u3_lmdb_init(): Initializes lmdb inside log_path
*/
MDB_env* u3_lmdb_init(const char* log_path);
/* u3_lmdb_shutdown(): Shuts down the entire logging system
*/
void u3_lmdb_shutdown(MDB_env* env);
/* u3_lmdb_get_latest_event_number(): Gets last event id persisted
*/
c3_o u3_lmdb_get_latest_event_number(MDB_env* environment,
c3_d* event_number);
/* u3_lmdb_write_event(): Persists an event to the database
*/
void u3_lmdb_write_event(MDB_env* environment,
u3_writ* event_u,
void (*on_complete)(c3_o success, u3_writ*));
/* u3_lmdb_read_events(): Reads events back from the database
**
** Reads back up to |len_d| events starting with |first_event_d|. For
** each event, the event will be passed to |on_event_read| and further
** reading will be aborted if the callback returns c3n.
**
** Returns c3y on complete success; c3n on any error.
*/
c3_o u3_lmdb_read_events(u3_pier* pir_u,
c3_d first_event_d,
c3_d len_d,
c3_o(*on_event_read)(u3_pier* pir_u,
c3_d id,
u3_noun mat,
u3_noun ovo));
/* u3_lmdb_write_identity(): Writes log identity
**
** Returns c3y on complete success; c3n on any error.
*/
c3_o u3_lmdb_write_identity(MDB_env* environment,
u3_noun who,
u3_noun is_fake,
u3_noun life);
/* u3_lmdb_read_identity(): Reads log identity
**
** Returns c3y on complete success; c3n on any error.
*/
c3_o u3_lmdb_read_identity(MDB_env* environment,
u3_noun* who,
u3_noun* is_fake,
u3_noun* life);

View File

@ -168,462 +168,3 @@ u3_foil_folder(const c3_c* pax_c)
} }
return dir_u; return dir_u;
} }
/* u3_foil_create(): create a new, empty, open file, not syncing.
*/
struct _foil_create_request {
uv_fs_t ruq_u;
void (*fun_f)(void*, u3_foil*);
void* vod_p;
u3_dire* dir_u;
c3_c* nam_c;
c3_c* pax_c;
};
static void
_foil_create_cb(uv_fs_t* ruq_u)
{
struct _foil_create_request* req_u = (void *)ruq_u;
u3_foil* fol_u;
fol_u = c3_malloc(sizeof(*fol_u));
fol_u->fil_u = ruq_u->result;
fol_u->dir_u = req_u->dir_u;
fol_u->nam_c = req_u->nam_c;
fol_u->end_d = 0;
req_u->fun_f(req_u->vod_p, fol_u);
c3_free(req_u->pax_c);
uv_fs_req_cleanup(ruq_u);
c3_free(req_u);
}
void
u3_foil_create(void (*fun_f)(void*, // context pointer
u3_foil*),// file object
void* vod_p, // context pointer
u3_dire* dir_u, // directory
const c3_c* nam_c) // name of new file
{
c3_c* pax_c;
c3_i err_i;
/* construct full path
*/
pax_c = _foil_path(dir_u, nam_c);
/* perform create
*/
{
struct _foil_create_request* req_u;
req_u = c3_malloc(sizeof(*req_u));
req_u->fun_f = fun_f;
req_u->vod_p = vod_p;
req_u->dir_u = dir_u;
req_u->nam_c = c3_malloc(1 + strlen(nam_c));
strcpy(req_u->nam_c, nam_c);
req_u->pax_c = pax_c;
if ( 0 != (err_i = uv_fs_open(u3L,
&req_u->ruq_u,
pax_c,
O_CREAT | O_WRONLY,
0600,
_foil_create_cb)) )
{
_foil_fail("uv_fs_open", err_i);
}
}
}
/* u3_foil_absorb(): open logfile, truncating to last good frame; blocking.
*/
u3_foil*
u3_foil_absorb(u3_dire* dir_u, // directory
c3_c* nam_c) // filename
{
u3_foil* fol_u;
uv_fs_t ruq_u;
c3_i err_i;
/* open file and create wrapper
*/
{
c3_c* pax_c = _foil_path(dir_u, nam_c);
if ( 0 > (err_i = uv_fs_open(u3L,
&ruq_u,
pax_c,
O_RDWR | O_CREAT,
0600,
0)) )
{
_foil_fail(pax_c, err_i);
c3_free(pax_c);
return 0;
}
c3_free(pax_c);
fol_u = c3_malloc(sizeof(*fol_u));
fol_u->dir_u = dir_u;
fol_u->fil_u = ruq_u.result;
fol_u->nam_c = c3_malloc(1 + strlen(nam_c));
strcpy(fol_u->nam_c, nam_c);
uv_fs_req_cleanup(&ruq_u);
}
/* measure file
*/
{
if ( 0 != (err_i = uv_fs_fstat(u3L, &ruq_u, fol_u->fil_u, 0)) ) {
_foil_fail("uv_fs_fstat", err_i);
return 0;
}
if ( 0 != (7 & ruq_u.statbuf.st_size) ) {
_foil_fail("logfile size corrupt", 0);
return 0;
}
fol_u->end_d = (ruq_u.statbuf.st_size >> 3ULL);
}
/* XX: scan for good frame.
*/
return fol_u;
}
/* u3_foil_delete(): delete a file; free descriptor.
*/
struct _foil_delete_request {
uv_fs_t ruq_u;
void (*fun_f)(void*);
void* vod_p;
u3_foil* fol_u;
c3_c* pax_c;
};
static void
_foil_delete_cb(uv_fs_t* ruq_u)
{
struct _foil_delete_request* req_u = (void *)ruq_u;
if ( req_u->fun_f ) {
req_u->fun_f(req_u->vod_p);
}
c3_free(req_u->pax_c);
c3_free(req_u->fol_u->nam_c);
c3_free(req_u->fol_u);
uv_fs_req_cleanup(ruq_u);
c3_free(req_u);
}
void
u3_foil_delete(void (*fun_f)(void*), // context pointer
void* vod_p, // context pointer
u3_foil* fol_u) // file to delete
{
c3_i err_i;
c3_c* pax_c;
/* construct full path
*/
pax_c = _foil_path(fol_u->dir_u, fol_u->nam_c);
/* perform delete
*/
{
struct _foil_delete_request* req_u;
req_u = c3_malloc(sizeof(*req_u));
req_u->fun_f = fun_f;
req_u->vod_p = vod_p;
req_u->fol_u = fol_u;
req_u->pax_c = pax_c;
if ( 0 != (err_i = uv_fs_unlink(u3L,
&req_u->ruq_u,
pax_c,
_foil_delete_cb)) )
{
_foil_fail("uv_fs_unlink", err_i);
}
}
}
/* u3_foil_append(): write a frame at the end of a file, freeing the buffer.
*/
struct _foil_append_request {
uv_fs_t ruq_u;
void (*fun_f)(void*);
void* vod_p;
u3_foil* fol_u;
c3_d* fam_d;
c3_d* buf_d;
};
static void
_foil_append_cb_2(uv_fs_t* ruq_u)
{
struct _foil_append_request* req_u = (void*) ruq_u;
req_u->fun_f(req_u->vod_p);
uv_fs_req_cleanup(ruq_u);
c3_free(req_u);
}
static void
_foil_append_cb_1(uv_fs_t* ruq_u)
{
struct _foil_append_request* req_u = (void*) ruq_u;
uv_fs_req_cleanup(ruq_u);
c3_free(req_u->buf_d);
uv_fs_fsync(u3L, &req_u->ruq_u,
req_u->fol_u->fil_u,
_foil_append_cb_2);
}
void
u3_foil_append(void (*fun_f)(void*), // context pointer
void* vod_p, // context pointer
u3_foil* fol_u, // file
c3_d* buf_d, // buffer to write from
c3_d len_d) // length in chubs
{
c3_d pos_d = fol_u->end_d;
struct _foil_append_request* req_u;
c3_i err_i;
/* set up request
*/
{
req_u = c3_malloc(sizeof(*req_u));
req_u->fun_f = fun_f;
req_u->vod_p = vod_p;
req_u->fol_u = fol_u;
req_u->buf_d = buf_d;
req_u->fam_d = c3_malloc(16);
}
/* framing
*/
{
c3_w top_w, bot_w;
fol_u->end_d = pos_d + len_d + 2;
/* XX: assumes "little-endian won", 32-bit frame length.
*/
top_w = u3r_mug_words((c3_w *)(void *) buf_d, (2 * len_d));
bot_w = (req_u->fol_u->end_d & 0xffffffff);
bot_w = u3r_mug_words(&bot_w, 1);
req_u->fam_d[0] = len_d;
req_u->fam_d[1] = ((c3_d)top_w) << 32ULL | ((c3_d) bot_w);
}
/* do it
*/
{
uv_buf_t buf_u[2];
buf_u[0] = uv_buf_init((void *)buf_d, (len_d * 8));
buf_u[1] = uv_buf_init((void *)req_u->fam_d, 16);
if ( 0 != (err_i = uv_fs_write(u3L,
&req_u->ruq_u,
fol_u->fil_u,
buf_u,
2,
(8ULL * pos_d),
_foil_append_cb_1)) )
{
_foil_fail("uv_fs_write", err_i);
}
}
}
/* u3_foil_reveal(): read the frame before a position, blocking.
*/
c3_d*
u3_foil_reveal(u3_foil* fol_u, // file from
c3_d* sop_d, // end position/prev end
c3_d* len_d) // length return
{
c3_d pos_d = *sop_d;
c3_d fam_d[2];
c3_l mug_l;
uv_fs_t ruq_u;
c3_i err_i;
c3_assert(pos_d >= 2);
c3_assert(pos_d <= fol_u->end_d);
/* read frame data
*/
{
uv_buf_t buf_u = uv_buf_init((void *)fam_d, 16);
fam_d[0] = fam_d[1] = 0;
if ( 0 > (err_i = uv_fs_read(u3L,
&ruq_u,
fol_u->fil_u,
&buf_u, 1,
(8ULL * (pos_d - 2ULL)),
0)) )
{
_foil_fail("uv_fs_read", err_i);
return 0;
}
uv_fs_req_cleanup(&ruq_u);
}
/* validate frame
*/
{
c3_w top_w, bot_w;
c3_l chk_l;
*len_d = fam_d[0];
if ( *len_d > (pos_d - 2ULL) ) {
_foil_fail("corrupt frame a", 0);
return 0;
}
top_w = fam_d[1] >> 32ULL;
mug_l = top_w;
bot_w = fam_d[1] & 0xffffffff;
chk_l = (pos_d & 0xffffffff);
chk_l = u3r_mug_words(&chk_l, 1);
if ( bot_w != chk_l ) {
_foil_fail("corrupt frame b", 0);
}
}
/* read frame
*/
{
c3_d* buf_d = c3_malloc(8 * *len_d);
uv_buf_t buf_u = uv_buf_init((void *)buf_d, 8 * *len_d);
c3_l gum_l;
if ( 0 > (err_i = uv_fs_read(u3L,
&ruq_u,
fol_u->fil_u,
&buf_u, 1,
(8ULL * (pos_d - (*len_d + 2ULL))),
0) ) )
{
_foil_fail("uv_fs_read", err_i);
return 0;
}
uv_fs_req_cleanup(&ruq_u);
gum_l = u3r_mug_words((c3_w *)(void *) buf_d, (2 * *len_d));
if ( mug_l != gum_l ) {
_foil_fail("corrupt frame c", 0);
return 0;
}
*sop_d = (pos_d - (*len_d + 2ULL));
return buf_d;
}
}
/* u3_foil_invent(): create a new file with one frame, freeing buffer; sync.
*/
struct _foil_invent_request {
uv_fs_t ruq_u;
void (*fun_f)(void*, u3_foil*);
u3_foil* fol_u;
void* vod_p;
c3_d* buf_d;
c3_d len_d;
c3_d num_d;
#if 0
struct timeval bef_u;
#endif
};
static void
_foil_invent_cb_2a(void* req_p)
{
struct _foil_invent_request* req_u = req_p;
if ( 1 == req_u->num_d ) {
#if 0
{
struct timeval aft_u, gap_u;
c3_w mls_w;
gettimeofday(&aft_u, 0);
timersub(&aft_u, &req_u->bef_u, &gap_u);
mls_w = (gap_u.tv_sec * 1000) + (gap_u.tv_usec / 1000);
u3l_log("invent ms: %d\r\n", mls_w);
}
#endif
req_u->fun_f(req_u->vod_p, req_u->fol_u);
_foil_close(req_u->fol_u->fil_u);
c3_free(req_u);
}
else {
req_u->num_d++;
}
}
static void
_foil_invent_cb_2b(uv_fs_t* ruq_u)
{
struct _foil_invent_request* req_u = (void *)ruq_u;
uv_fs_req_cleanup(ruq_u);
_foil_invent_cb_2a(req_u);
}
static void
_foil_invent_cb_1(void* req_p,
u3_foil* fol_u)
{
struct _foil_invent_request* req_u = req_p;
req_u->fol_u = fol_u;
/* fsync the parent directory, since we just created a file.
*/
uv_fs_fsync(u3L, &req_u->ruq_u,
req_u->fol_u->dir_u->fil_u,
_foil_invent_cb_2b);
u3_foil_append(_foil_invent_cb_2a,
req_u,
fol_u,
req_u->buf_d,
req_u->len_d);
}
void
u3_foil_invent(void (*fun_f)(void*, // context pointer
u3_foil*), // new file
void* vod_p, // context pointer
u3_dire* dir_u, // directory
c3_c* nam_c, // filename
c3_d* buf_d, // buffer (to free)
c3_d len_d) // length
{
struct _foil_invent_request* req_u;
req_u = malloc(sizeof(*req_u));
req_u->fun_f = fun_f;
req_u->fol_u = 0;
req_u->vod_p = vod_p;
req_u->buf_d = buf_d;
req_u->len_d = len_d;
req_u->num_d = 0;
#if 0
gettimeofday(&req_u->bef_u, 0);
#endif
u3_foil_create(_foil_invent_cb_1, req_u, dir_u, nam_c);
}

602
pkg/urbit/vere/lmdb.c Normal file
View File

@ -0,0 +1,602 @@
/* vere/lmdb.c
*/
#include "all.h"
#include <uv.h>
#include <lmdb.h>
#include "vere/vere.h"
// Event log persistence for Urbit
//
// Persistence works by having an lmdb environment opened on the main
// thread. This environment is used to create read-only transactions
// synchronously when needed.
//
// But the majority of lmdb writes operate asynchronously in the uv worker
// pool. Since individual transactions are bound to threads, we perform all
// blocking writing on worker threads.
//
// We perform the very first metadata writes on the main thread because we
// can't do anything until they persist.
/* u3_lmdb_init(): Opens up a log environment
**
** Precondition: log_path points to an already created directory
*/
MDB_env* u3_lmdb_init(const char* log_path)
{
MDB_env* env = 0;
c3_w ret_w = mdb_env_create(&env);
if (ret_w != 0) {
u3l_log("lmdb: init fail: %s\n", mdb_strerror(ret_w));
return 0;
}
// Our databases have up to three tables: META, EVENTS, and GRAINS.
ret_w = mdb_env_set_maxdbs(env, 3);
if (ret_w != 0) {
u3l_log("lmdb: failed to set number of databases: %s\n", mdb_strerror(ret_w));
return 0;
}
// TODO: Start with a gigabyte for the event log.
//
ret_w = mdb_env_set_mapsize(env, 1024 * 1024 * 1024);
if (ret_w != 0) {
u3l_log("lmdb: failed to set database size: %s\n", mdb_strerror(ret_w));
return 0;
}
ret_w = mdb_env_open(env, log_path, 0, 0664);
if (ret_w != 0) {
u3l_log("lmdb: failed to open event log: %s\n", mdb_strerror(ret_w));
return 0;
}
return env;
}
/* u3_lmdb_shutdown(): Shuts down lmdb
*/
void u3_lmdb_shutdown(MDB_env* env)
{
mdb_env_close(env);
}
/* _perform_put_on_database_raw(): Writes a key/value pair to a specific
** database as part of a transaction.
**
** The raw version doesn't take ownership of either key/value and performs no
** nock calculations, so it is safe to call from any thread.
*/
static
c3_o _perform_put_on_database_raw(MDB_txn* transaction_u,
MDB_dbi database_u,
c3_w flags,
void* key,
size_t key_len,
void* value,
size_t value_len) {
MDB_val key_val, value_val;
key_val.mv_size = key_len;
key_val.mv_data = key;
value_val.mv_size = value_len;
value_val.mv_data = value;
c3_w ret_w = mdb_put(transaction_u, database_u, &key_val, &value_val, flags);
if (ret_w != 0) {
u3l_log("lmdb: write failed: %s\n", mdb_strerror(ret_w));
return c3n;
}
return c3y;
}
/* _perform_get_on_database_raw(): Reads a key/value pair to a specific
** database as part of a transaction.
*/
static
c3_o _perform_get_on_database_raw(MDB_txn* transaction_u,
MDB_dbi database_u,
void* key,
size_t key_len,
MDB_val* value) {
MDB_val key_val;
key_val.mv_size = key_len;
key_val.mv_data = key;
c3_w ret_w = mdb_get(transaction_u, database_u, &key_val, value);
if (ret_w != 0) {
u3l_log("lmdb: read failed: %s\n", mdb_strerror(ret_w));
return c3n;
}
return c3y;
}
/* _perform_put_on_database_noun(): Writes a noun to the database.
**
** This requires access to the loom so it must only be run from the libuv
** thread.
*/
static
c3_o _perform_put_on_database_noun(MDB_txn* transaction_u,
MDB_dbi database_u,
c3_c* key,
u3_noun noun) {
// jam noun into an atom representation
u3_atom mat = u3ke_jam(noun);
// copy the jammed noun into a byte buffer we can hand to lmdb
c3_w len_w = u3r_met(3, mat);
c3_y* bytes_y = (c3_y*) malloc(len_w);
u3r_bytes(0, len_w, bytes_y, mat);
c3_o ret = _perform_put_on_database_raw(
transaction_u,
database_u,
0,
key, strlen(key),
bytes_y, len_w);
free(bytes_y);
u3z(mat);
return ret;
}
/* _perform_get_on_database_noun(): Reads a noun from the database.
**
** This requires access to the loom so it must only be run from the libuv
** thread.
*/
static
c3_o _perform_get_on_database_noun(MDB_txn* transaction_u,
MDB_dbi database_u,
c3_c* key,
u3_noun* noun) {
MDB_val value_val;
c3_o ret = _perform_get_on_database_raw(transaction_u,
database_u,
key, strlen(key),
&value_val);
if (ret == c3n) {
return c3y;
}
// Take the bytes and cue them.
u3_atom raw_atom = u3i_bytes(value_val.mv_size, value_val.mv_data);
*noun = u3qe_cue(raw_atom);
return c3y;
}
/* _write_request_data: callback struct for u3_lmdb_write_event()
*/
struct _write_request_data {
// The database environment to write to. This object is thread-safe, though
// the transactions and handles opened from it are explicitly not.
MDB_env* environment;
// The original event. Not to be accessed from the worker thread; only used
// in the callback executed on the main loop thread.
u3_writ* event;
// The event number from event separated out so we can access it on the other
// thread.
c3_d event_number;
// The event serialized out of the loom into a malloced structure accessible
// from the worker thread.
void* malloced_event_data;
// The size of the malloced_event_data. We keep track of this for the
// database write.
size_t malloced_event_data_size;
// Whether the write completed successfully.
c3_o success;
// Called on main loop thread on completion.
void (*on_complete)(c3_o, u3_writ*);
};
/* _u3_lmdb_write_event_cb(): Implementation of u3_lmdb_write_event()
**
** This is always run on a libuv background worker thread; actual nouns cannot
** be touched here.
*/
static void _u3_lmdb_write_event_cb(uv_work_t* req) {
struct _write_request_data* data = req->data;
// Creates the write transaction.
MDB_txn* transaction_u;
c3_w ret_w = mdb_txn_begin(data->environment,
(MDB_txn *) NULL,
0, /* flags */
&transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: txn_begin fail: %s\n", mdb_strerror(ret_w));
return;
}
// Opens the database as part of the transaction.
c3_w flags_w = MDB_CREATE | MDB_INTEGERKEY;
MDB_dbi database_u;
ret_w = mdb_dbi_open(transaction_u,
"EVENTS",
flags_w,
&database_u);
if (0 != ret_w) {
u3l_log("lmdb: dbi_open fail: %s\n", mdb_strerror(ret_w));
return;
}
// TODO: We need to detect the database being full, making the database
// maxsize larger, and then retrying this transaction.
//
c3_o success = _perform_put_on_database_raw(
transaction_u,
database_u,
MDB_NOOVERWRITE,
&(data->event_number),
sizeof(c3_d),
data->malloced_event_data,
data->malloced_event_data_size);
ret_w = mdb_txn_commit(transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: failed to commit event %" PRIu64 ": %s\n",
data->event_number,
mdb_strerror(ret_w));
return;
}
data->success = c3y;
}
/* _u3_lmdb_write_event_after_cb(): Implementation of u3_lmdb_write_event()
**
** This is always run on the main loop thread after the worker thread event
** completes.
*/
static void _u3_lmdb_write_event_after_cb(uv_work_t* req, int status) {
struct _write_request_data* data = req->data;
data->on_complete(data->success, data->event);
free(data->malloced_event_data);
free(data);
free(req);
}
/* u3_lmdb_write_event(): Asynchronously writes events to the database.
**
** This writes all the passed in events along with log metadata updates to the
** database as a single transaction on a worker thread. Once the transaction
** is completed, it calls the passed in callback on the main loop thread.
**
** TODO: Make this take multiple events in one commit once we have this
** working one at a time.
*/
void u3_lmdb_write_event(MDB_env* environment,
u3_writ* event_u,
void (*on_complete)(c3_o, u3_writ*))
{
// Serialize the jammed $work into a malloced buffer we can send to the other
// thread.
c3_w siz_w = u3r_met(3, event_u->mat);
c3_y* data_u = c3_calloc(siz_w);
u3r_bytes(0, siz_w, data_u, event_u->mat);
// Structure to pass to the worker thread.
struct _write_request_data* data = c3_malloc(sizeof(struct _write_request_data));
data->environment = environment;
data->event = event_u;
data->event_number = event_u->evt_d;
data->malloced_event_data = data_u;
data->malloced_event_data_size = siz_w;
data->on_complete = on_complete;
data->success = c3n;
// Queue asynchronous work to happen on the other thread.
uv_work_t* req = c3_malloc(sizeof(uv_work_t));
req->data = data;
uv_queue_work(uv_default_loop(),
req,
_u3_lmdb_write_event_cb,
_u3_lmdb_write_event_after_cb);
}
/* u3_lmdb_read_events(): Synchronously reads events from the database.
**
** Reads back up to |len_d| events starting with |first_event_d|. For
** each event, the event will be passed to |on_event_read| and further
** reading will be aborted if the callback returns c3n.
**
** Returns c3y on complete success; c3n on any error.
*/
c3_o u3_lmdb_read_events(u3_pier* pir_u,
c3_d first_event_d,
c3_d len_d,
c3_o(*on_event_read)(u3_pier* pir_u, c3_d id,
u3_noun mat, u3_noun ovo))
{
// Creates the read transaction.
MDB_txn* transaction_u;
c3_w ret_w = mdb_txn_begin(pir_u->log_u->db_u,
//environment,
(MDB_txn *) NULL,
MDB_RDONLY, /* flags */
&transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: txn_begin fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Opens the database as part of the transaction.
c3_w flags_w = MDB_CREATE | MDB_INTEGERKEY;
MDB_dbi database_u;
ret_w = mdb_dbi_open(transaction_u,
"EVENTS",
flags_w,
&database_u);
if (0 != ret_w) {
u3l_log("lmdb: dbi_open fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Creates a cursor to iterate over keys starting at first_event_d.
MDB_cursor* cursor_u;
ret_w = mdb_cursor_open(transaction_u, database_u, &cursor_u);
if (0 != ret_w) {
u3l_log("lmdb: cursor_open fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Sets the cursor to the position of first_event_d.
MDB_val key;
MDB_val val;
key.mv_size = sizeof(c3_d);
key.mv_data = &first_event_d;
ret_w = mdb_cursor_get(cursor_u, &key, &val, MDB_SET_KEY);
if (0 != ret_w) {
u3l_log("lmdb: could not find initial event %" PRIu64 ": %s\r\n",
first_event_d, mdb_strerror(ret_w));
mdb_cursor_close(cursor_u);
return c3n;
}
// Load up to len_d events, iterating forward across the cursor.
for (c3_d loaded = 0; (ret_w != MDB_NOTFOUND) && (loaded < len_d); ++loaded) {
// As a sanity check, we make sure that there aren't any discontinuities in
// the sequence of loaded events.
c3_d current_id = first_event_d + loaded;
if (key.mv_size != sizeof(c3_d) ||
*(c3_d*)key.mv_data != current_id) {
u3l_log("lmdb: invalid cursor key\r\n");
return c3n;
}
// Now build the atom version and then the cued version from the raw data
u3_noun mat = u3i_bytes(val.mv_size, val.mv_data);
u3_noun ovo = u3ke_cue(u3k(mat));
if (on_event_read(pir_u, current_id, mat, ovo) == c3n) {
u3z(ovo);
u3z(mat);
u3l_log("lmdb: aborting replay due to error.\r\n");
return c3n;
}
u3z(ovo);
u3z(mat);
ret_w = mdb_cursor_get(cursor_u, &key, &val, MDB_NEXT);
if (ret_w != 0 && ret_w != MDB_NOTFOUND) {
u3l_log("lmdb: error while loading events: %s\r\n",
mdb_strerror(ret_w));
return c3n;
}
}
mdb_cursor_close(cursor_u);
// Read-only transactions are aborted since we don't need to record the fact
// that we performed a read.
mdb_txn_abort(transaction_u);
return c3y;
}
/* u3_lmdb_get_latest_event_number(): Gets last event id persisted
**
** Reads the last key in order from the EVENTS table as the latest event
** number. On table empty, returns c3y but doesn't modify event_number.
*/
c3_o u3_lmdb_get_latest_event_number(MDB_env* environment, c3_d* event_number)
{
// Creates the read transaction.
MDB_txn* transaction_u;
c3_w ret_w = mdb_txn_begin(environment,
(MDB_txn *) NULL,
0, /* flags */
&transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: txn_begin fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Opens the database as part of the transaction.
c3_w flags_w = MDB_CREATE | MDB_INTEGERKEY;
MDB_dbi database_u;
ret_w = mdb_dbi_open(transaction_u,
"EVENTS",
flags_w,
&database_u);
if (0 != ret_w) {
u3l_log("lmdb: dbi_open fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Creates a cursor to point to the last event
MDB_cursor* cursor_u;
ret_w = mdb_cursor_open(transaction_u, database_u, &cursor_u);
if (0 != ret_w) {
u3l_log("lmdb: cursor_open fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Set the cursor at the end of the line.
MDB_val key;
MDB_val val;
ret_w = mdb_cursor_get(cursor_u, &key, &val, MDB_LAST);
if (MDB_NOTFOUND == ret_w) {
// Clean up, but don't error out.
mdb_cursor_close(cursor_u);
mdb_txn_abort(transaction_u);
return c3y;
}
if (0 != ret_w) {
u3l_log("lmdb: could not find last event: %s\r\n", mdb_strerror(ret_w));
mdb_cursor_close(cursor_u);
mdb_txn_abort(transaction_u);
return c3n;
}
*event_number = *(c3_d*)key.mv_data;
mdb_cursor_close(cursor_u);
// Read-only transactions are aborted since we don't need to record the fact
// that we performed a read.
mdb_txn_abort(transaction_u);
return c3y;
}
/* u3_lmdb_write_identity(): Writes the event log identity information
**
** We have a secondary database (table) in this environment named META where we
** read/write identity information from/to.
*/
c3_o u3_lmdb_write_identity(MDB_env* environment,
u3_noun who,
u3_noun is_fake,
u3_noun life)
{
// Creates the write transaction.
MDB_txn* transaction_u;
c3_w ret_w = mdb_txn_begin(environment,
(MDB_txn *) NULL,
0, /* flags */
&transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: txn_begin fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Opens the database as part of the transaction.
c3_w flags_w = MDB_CREATE;
MDB_dbi database_u;
ret_w = mdb_dbi_open(transaction_u,
"META",
flags_w,
&database_u);
if (0 != ret_w) {
u3l_log("lmdb: dbi_open fail: %s\n", mdb_strerror(ret_w));
mdb_txn_abort(transaction_u);
return c3n;
}
c3_o ret;
ret = _perform_put_on_database_noun(transaction_u, database_u, "who", who);
if (ret == c3n) {
mdb_txn_abort(transaction_u);
return c3n;
}
ret = _perform_put_on_database_noun(transaction_u, database_u, "is-fake",
is_fake);
if (ret == c3n) {
mdb_txn_abort(transaction_u);
return c3n;
}
ret = _perform_put_on_database_noun(transaction_u, database_u, "life", life);
if (ret == c3n) {
mdb_txn_abort(transaction_u);
return c3n;
}
ret_w = mdb_txn_commit(transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: failed to commit transaction: %s\n", mdb_strerror(ret_w));
return c3n;
}
return c3y;
}
/* u3_lmdb_read_identity(): Reads the event log identity information.
*/
c3_o u3_lmdb_read_identity(MDB_env* environment,
u3_noun* who,
u3_noun* is_fake,
u3_noun* life) {
// Creates the write transaction.
MDB_txn* transaction_u;
c3_w ret_w = mdb_txn_begin(environment,
(MDB_txn *) NULL,
MDB_RDONLY, /* flags */
&transaction_u);
if (0 != ret_w) {
u3l_log("lmdb: txn_begin fail: %s\n", mdb_strerror(ret_w));
return c3n;
}
// Opens the database as part of the transaction.
MDB_dbi database_u;
ret_w = mdb_dbi_open(transaction_u,
"META",
0,
&database_u);
if (0 != ret_w) {
u3l_log("lmdb: dbi_open fail: %s\n", mdb_strerror(ret_w));
mdb_txn_abort(transaction_u);
return c3n;
}
c3_o ret;
ret = _perform_get_on_database_noun(transaction_u, database_u, "who", who);
if (ret == c3n) {
mdb_txn_abort(transaction_u);
return c3n;
}
ret = _perform_get_on_database_noun(transaction_u, database_u, "is-fake",
is_fake);
if (ret == c3n) {
mdb_txn_abort(transaction_u);
return c3n;
}
ret = _perform_get_on_database_noun(transaction_u, database_u, "life", life);
if (ret == c3n) {
mdb_txn_abort(transaction_u);
return c3n;
}
// Read-only transactions are aborted since we don't need to record the fact
// that we performed a read.
mdb_txn_abort(transaction_u);
return c3y;
}

View File

@ -70,34 +70,37 @@ static void _pier_boot_ready(u3_pier* pir_u);
static void _pier_boot_set_ship(u3_pier* pir_u, u3_noun who, u3_noun fak); static void _pier_boot_set_ship(u3_pier* pir_u, u3_noun who, u3_noun fak);
static void _pier_exit_done(u3_pier* pir_u); static void _pier_exit_done(u3_pier* pir_u);
/* _pier_disk_bail(): bail from disk i/o. /* _pier_db_bail(): bail from disk i/o.
*/ */
static void static void
_pier_disk_bail(void* vod_p, const c3_c* err_c) _pier_db_bail(void* vod_p, const c3_c* err_c)
{ {
// u3_writ* wit_u = vod_p;
u3l_log("disk error: %s\r\n", err_c); u3l_log("disk error: %s\r\n", err_c);
} }
/* _pier_disk_shutdown(): close the log. /* _pier_db_shutdown(): close the log.
*/ */
static void static void
_pier_disk_shutdown(u3_pier* pir_u) _pier_db_shutdown(u3_pier* pir_u)
{ {
u3_lmdb_shutdown(pir_u->log_u->db_u);
} }
/* _pier_disk_commit_complete(): commit complete. /* _pier_db_commit_complete(): commit complete.
*/ */
static void static void
_pier_disk_commit_complete(void* vod_p) _pier_db_commit_complete(c3_o success, u3_writ* wit_u)
{ {
u3_writ* wit_u = vod_p;
u3_pier* pir_u = wit_u->pir_u; u3_pier* pir_u = wit_u->pir_u;
u3_disk* log_u = pir_u->log_u; u3_disk* log_u = pir_u->log_u;
if (success == c3n) {
u3l_log("Failed to persist event. Exiting to prevent corruption.");
u3_pier_bail();
}
#ifdef VERBOSE_EVENTS #ifdef VERBOSE_EVENTS
u3l_log("pier: (%" PRIu64 "): commit: complete\r\n", wit_u->evt_d); u3l_log("pier: (%" PRIu64 "): db commit completed\r\n", wit_u->evt_d);
#endif #endif
/* advance commit counter /* advance commit counter
@ -111,10 +114,10 @@ _pier_disk_commit_complete(void* vod_p)
_pier_apply(pir_u); _pier_apply(pir_u);
} }
/* _pier_disk_commit_request(): start commit. /* _pier_db_commit_request(): start commit.
*/ */
static void static void
_pier_disk_commit_request(u3_writ* wit_u) _pier_db_commit_request(u3_writ* wit_u)
{ {
u3_pier* pir_u = wit_u->pir_u; u3_pier* pir_u = wit_u->pir_u;
u3_disk* log_u = pir_u->log_u; u3_disk* log_u = pir_u->log_u;
@ -123,18 +126,12 @@ _pier_disk_commit_request(u3_writ* wit_u)
u3l_log("pier: (%" PRIu64 "): commit: request\r\n", wit_u->evt_d); u3l_log("pier: (%" PRIu64 "): commit: request\r\n", wit_u->evt_d);
#endif #endif
/* append to logfile /* put it in the database
*/ */
{ {
c3_d len_d = u3r_met(6, wit_u->mat); u3_lmdb_write_event(log_u->db_u,
c3_d* buf_d = c3_malloc(8 * len_d); wit_u,
_pier_db_commit_complete);
u3r_chubs(0, len_d, buf_d, wit_u->mat);
u3_foil_append(_pier_disk_commit_complete,
wit_u,
log_u->fol_u,
buf_d,
len_d);
} }
/* advance commit-request counter /* advance commit-request counter
@ -145,312 +142,144 @@ _pier_disk_commit_request(u3_writ* wit_u)
} }
} }
/* _pier_disk_write_header_complete(): commit complete.
*/
static void static void
_pier_disk_write_header_complete(void* vod_p) _pier_db_write_header(u3_pier* pir_u,
u3_noun who,
u3_noun is_fake,
u3_noun life)
{ {
// no-op, callback required by u3_foil_append() c3_o ret = u3_lmdb_write_identity(pir_u->log_u->db_u,
// who, is_fake, life);
if (ret == c3n) {
u3_pier_bail();
}
} }
/* _pier_disk_write_header(): save boot metadata. /* _pier_db_read_header(): reads the ships metadata from lmdb
*/ */
static void static void
_pier_disk_write_header(u3_pier* pir_u, u3_atom mat) _pier_db_read_header(u3_pier* pir_u)
{ {
// XX deduplicate with _pier_disk_commit_request u3_noun who, is_fake, life;
// c3_o ret = u3_lmdb_read_identity(pir_u->log_u->db_u,
u3_disk* log_u = pir_u->log_u; &who, &is_fake, &life);
if (ret == c3n) {
c3_assert( 0ULL == log_u->fol_u->end_d ); u3l_log("Failed to load identity. Exiting...");
u3_pier_bail();
c3_d len_d = u3r_met(6, mat);
c3_d* buf_d = c3_malloc(8 * len_d);
u3r_chubs(0, len_d, buf_d, mat);
u3_foil_append(_pier_disk_write_header_complete,
(void*)0,
log_u->fol_u,
buf_d,
len_d);
}
/* _pier_disk_read_header_complete():
*/
static void
_pier_disk_read_header_complete(u3_disk* log_u, u3_noun dat)
{
u3_pier* pir_u = log_u->pir_u;
{
u3_noun who, fak, len;
u3x_trel(dat, &who, &fak, &len);
c3_assert( c3y == u3ud(who) );
c3_assert( 1 >= u3r_met(7, who) );
c3_assert( c3y == u3ud(fak) );
c3_assert( 1 >= u3r_met(0, fak) );
c3_assert( c3y == u3ud(len) );
c3_assert( 1 >= u3r_met(3, len) );
_pier_boot_set_ship(pir_u, u3k(who), u3k(fak));
pir_u->lif_d = u3r_chub(0, len);
} }
u3z(dat); _pier_boot_set_ship(pir_u, u3k(who), u3k(is_fake));
pir_u->lif_d = u3r_chub(0, life);
u3z(who);
u3z(is_fake);
u3z(life);
} }
/* _pier_disk_read_header(): static c3_o
*/ _pier_db_on_commit_loaded(u3_pier* pir_u,
static void c3_d id,
_pier_disk_read_header(u3_disk* log_u) u3_noun mat,
u3_noun ovo)
{ {
// XX disabled u3_noun evt = u3h(u3t(ovo));
// u3_noun job = u3k(u3t(u3t(u3t(ovo))));
// This is very, very slow. c3_d evt_d = u3r_chub(0, evt);
// The one situation in which we currently *need* it -
// full log replay - it's unnecessary thanks to the current
// _pier_disk_load_commit.
// In all other situations, we're covered by
// _pier_work_play or u3_pier_boot.
// In the long run, it seems best to always get identity
// from the log for restart/replay.
//
#if 0
c3_assert( 0 != log_u->fol_u );
c3_d pos_d = log_u->fol_u->end_d; if (evt_d != id) {
c3_o got_o = c3n; _pier_db_bail(0, "pier: load: commit: event order");
return c3n;
}
// XX requires that writs be unlinked before effects are released // Need to grab references to the nouns above.
// u3_writ* wit_u = c3_calloc(sizeof(u3_writ));
if ( (0 == pir_u->ent_u) && wit_u->pir_u = pir_u;
(wit_u->evt_d < log_u->com_d) ) wit_u->evt_d = evt_d;
{ wit_u->job = u3k(job);
_pier_disk_load_commit(pir_u, (1ULL + god_u->dun_d), 1000ULL); wit_u->mat = u3k(mat);
}
} // Insert at queue front since we're loading events in order
if ( !pir_u->ent_u ) {
c3_assert(!pir_u->ext_u);
pir_u->ent_u = pir_u->ext_u = wit_u;
} }
else { else {
#ifdef VERBOSE_EVENTS if ( wit_u->evt_d != (1ULL + pir_u->ent_u->evt_d) ) {
u3l_log("pier: (%" PRIu64 "): compute: release\r\n", wit_u->evt_d); fprintf(stderr, "pier: load: commit: event gap: %" PRIx64 ", %"
#endif PRIx64 "\r\n",
wit_u->evt_d,
while ( pos_d ) { pir_u->ent_u->evt_d);
c3_d len_d, evt_d; _pier_db_bail(0, "pier: load: comit: event gap");
c3_d* buf_d; return c3n;
u3_noun mat, ovo, job, evt;
buf_d = u3_foil_reveal(log_u->fol_u, &pos_d, &len_d);
if ( !buf_d ) {
_pier_disk_bail(0, "corrupt header");
return;
} }
if ( 0ULL == pos_d) { pir_u->ent_u->nex_u = wit_u;
u3_noun mat = u3i_chubs(len_d, buf_d); pir_u->ent_u = wit_u;
u3_noun ovo = u3ke_cue(u3k(mat));
c3_assert( c3__boot == u3h(ovo) );
_pier_disk_read_header_complete(log_u, u3k(u3t(ovo)));
u3z(ovo); u3z(mat);
}
c3_free(buf_d);
} }
#endif
return c3y;
} }
/* _pier_disk_load_commit(): load len_d commits >= lav_d; enqueue for replay /* _pier_db_load_commit(): load len_d commits >= lav_d; enqueue for replay
*/ */
static void static void
_pier_disk_load_commit(u3_pier* pir_u, _pier_db_load_commits(u3_pier* pir_u,
c3_d lav_d, c3_d lav_d,
c3_d len_d) c3_d len_d)
{ {
u3_disk* log_u = pir_u->log_u; if (lav_d == 1) {
// We are restarting from event 1. That means we need to set the ship from
c3_d max_d = lav_d + len_d; // the log identity information.
c3_d pos_d = log_u->fol_u->end_d; u3_noun who, fak, len;
c3_d old_d = 0; c3_o ret = u3_lmdb_read_identity(pir_u->log_u->db_u,
&who,
c3_assert ( 0 != log_u->fol_u ); &fak,
&len);
#ifdef VERBOSE_EVENTS if (ret == c3n) {
fprintf(stderr, "pier: load: commit: at %" PRIx64 "\r\n", pos_d); u3l_log("Failed to load identity for replay. Exiting...");
#endif u3_pier_bail();
while ( pos_d ) {
c3_d len_d, evt_d;
c3_d* buf_d;
u3_noun mat, ovo, job, evt;
buf_d = u3_foil_reveal(log_u->fol_u, &pos_d, &len_d);
if ( !buf_d ) {
_pier_disk_bail(0, "pier: load: commit: corrupt");
return;
} }
mat = u3i_chubs(len_d, buf_d); _pier_boot_set_ship(pir_u, u3k(who), u3k(fak));
c3_free(buf_d); pir_u->lif_d = u3r_chub(0, len);
ovo = u3ke_cue(u3k(mat)); u3z(who);
u3z(fak);
u3z(len);
}
// reached header c3_o ret = u3_lmdb_read_events(pir_u,
// lav_d,
if ( 0ULL == pos_d ) { len_d,
c3_assert( 1ULL == lav_d ); _pier_db_on_commit_loaded);
c3_assert( c3__boot == u3h(ovo) ); if (ret == c3n) {
u3l_log("Failed to read event log for replay. Exiting...");
_pier_disk_read_header_complete(log_u, u3k(u3t(ovo))); u3_pier_bail();
u3z(ovo); u3z(mat);
break;
}
c3_assert(c3__work == u3h(ovo));
evt = u3h(u3t(ovo));
job = u3k(u3t(u3t(u3t(ovo))));
evt_d = u3r_chub(0, evt);
u3z(ovo);
// confirm event order
//
if ( (0 != old_d) &&
((old_d - 1ULL) != evt_d) ) {
_pier_disk_bail(0, "pier: load: commit: event order");
return;
}
else {
old_d = evt_d;
}
// done: read past the first event requested
//
if ( evt_d < lav_d ) {
u3z(mat);
u3z(job);
return;
}
// skip: haven't reached the last event requested
//
else if ( evt_d > max_d ) {
u3z(mat);
u3z(job);
continue;
}
// enqueue requested event
//
else {
u3_writ* wit_u = c3_calloc(sizeof(u3_writ));
#ifdef VERBOSE_EVENTS
fprintf(stderr, "pier: load: commit: %" PRIu64 "\r\n", evt_d);
#endif
wit_u->pir_u = pir_u;
wit_u->evt_d = evt_d;
wit_u->job = job;
wit_u->mat = mat;
/* insert at queue exit -- the oldest events run first
*/
if ( !pir_u->ent_u && !pir_u->ext_u ) {
pir_u->ent_u = pir_u->ext_u = wit_u;
}
else {
if ( (1ULL + wit_u->evt_d) != pir_u->ext_u->evt_d ) {
fprintf(stderr, "pier: load: commit: event gap: %" PRIx64 ", %"
PRIx64 "\r\n",
wit_u->evt_d,
pir_u->ext_u->evt_d);
u3z(mat);
u3z(job);
_pier_disk_bail(0, "pier: load: comit: event gap");
return;
}
wit_u->nex_u = pir_u->ext_u;
pir_u->ext_u = wit_u;
}
}
} }
} }
/* _pier_disk_init_complete(): /* _pier_db_init():
*/
static void
_pier_disk_init_complete(u3_disk* log_u, c3_d evt_d)
{
c3_assert( c3n == log_u->liv_o );
log_u->liv_o = c3y;
log_u->com_d = log_u->moc_d = evt_d;
// restore pier identity (XX currently a no-op, see comment)
//
_pier_disk_read_header(log_u);
_pier_boot_ready(log_u->pir_u);
}
/* _pier_disk_init():
*/ */
static c3_o static c3_o
_pier_disk_init(u3_disk* log_u) _pier_db_init(u3_disk* log_u)
{ {
c3_d evt_d = 0; c3_d evt_d = 0;
c3_d pos_d = 0; c3_d pos_d = 0;
c3_assert( c3n == log_u->liv_o ); c3_assert( c3n == log_u->liv_o );
log_u->fol_u = u3_foil_absorb(log_u->com_u, "commit.urbit-log"); // Request from the database the last event
if ( c3n == u3_lmdb_get_latest_event_number(log_u->db_u, &evt_d) ) {
if ( !log_u->fol_u ) { u3l_log("disk init from lmdb failed.");
return c3n; return c3n;
} }
// use the last event in the log to set the commit point. log_u->liv_o = c3y;
// log_u->com_d = log_u->moc_d = evt_d;
if ( 0 != (pos_d = log_u->fol_u->end_d) ) {
c3_d len_d = 0;
c3_d* buf_d = u3_foil_reveal(log_u->fol_u, &pos_d, &len_d); _pier_boot_ready(log_u->pir_u);
if ( !buf_d ) {
fprintf(stderr, "pier: load: commit: corrupt\r\n");
return c3n;
}
{
u3_noun mat = u3i_chubs(len_d, buf_d);
u3_noun ovo = u3ke_cue(u3k(mat));
c3_assert(c3__work == u3h(ovo));
u3_noun evt = u3h(u3t(ovo));
evt_d = u3r_chub(0, evt);
u3z(mat); u3z(ovo); u3z(evt);
}
#ifdef VERBOSE_EVENTS
fprintf(stderr, "pier: load: last %" PRIu64 "\r\n", evt_d);
#endif
c3_free(buf_d);
}
_pier_disk_init_complete(log_u, evt_d);
return c3y; return c3y;
} }
@ -500,10 +329,18 @@ _pier_disk_create(u3_pier* pir_u)
strcpy(log_c, pir_u->pax_c); strcpy(log_c, pir_u->pax_c);
strcat(log_c, "/.urb/log"); strcat(log_c, "/.urb/log");
// Creates the folder
if ( 0 == (log_u->com_u = u3_foil_folder(log_c)) ) { if ( 0 == (log_u->com_u = u3_foil_folder(log_c)) ) {
c3_free(log_c); c3_free(log_c);
return c3n; return c3n;
} }
// Inits the database
if ( 0 == (log_u->db_u = u3_lmdb_init(log_c)) ) {
c3_free(log_c);
return c3n;
}
c3_free(log_c); c3_free(log_c);
} }
@ -526,7 +363,7 @@ _pier_disk_create(u3_pier* pir_u)
// create/load event log // create/load event log
// //
if ( c3n == _pier_disk_init(log_u) ) { if ( c3n == _pier_db_init(log_u) ) {
return c3n; return c3n;
} }
@ -637,7 +474,7 @@ _pier_work_bail(void* vod_p,
fprintf(stderr, "pier: work error: %s\r\n", err_c); fprintf(stderr, "pier: work error: %s\r\n", err_c);
} }
/* _pier_work_boot(): prepare serf boot. /* _pier_work_boot(): prepare for boot.
*/ */
static void static void
_pier_work_boot(u3_pier* pir_u, c3_o sav_o) _pier_work_boot(u3_pier* pir_u, c3_o sav_o)
@ -648,13 +485,13 @@ _pier_work_boot(u3_pier* pir_u, c3_o sav_o)
u3_noun who = u3i_chubs(2, pir_u->who_d); u3_noun who = u3i_chubs(2, pir_u->who_d);
u3_noun len = u3i_chubs(1, &pir_u->lif_d); u3_noun len = u3i_chubs(1, &pir_u->lif_d);
u3_noun msg = u3nq(c3__boot, who, pir_u->fak_o, len);
u3_atom mat = u3ke_jam(msg);
if ( c3y == sav_o ) { if ( c3y == sav_o ) {
_pier_disk_write_header(pir_u, u3k(mat)); _pier_db_write_header(pir_u, who, u3k(pir_u->fak_o), len);
} }
u3_noun msg = u3nq(c3__boot, who, pir_u->fak_o, len);
u3_atom mat = u3ke_jam(msg);
u3_newt_write(&god_u->inn_u, mat, 0); u3_newt_write(&god_u->inn_u, mat, 0);
} }
@ -748,7 +585,7 @@ _pier_work_release(u3_writ* wit_u)
if ( (0 == pir_u->ent_u) && if ( (0 == pir_u->ent_u) &&
(wit_u->evt_d < log_u->com_d) ) (wit_u->evt_d < log_u->com_d) )
{ {
_pier_disk_load_commit(pir_u, (1ULL + god_u->dun_d), 1000ULL); _pier_db_load_commits(pir_u, (1ULL + god_u->dun_d), 1000ULL);
} }
} }
} }
@ -896,7 +733,7 @@ _pier_work_play(u3_pier* pir_u,
c3_assert( c3n == god_u->liv_o ); c3_assert( c3n == god_u->liv_o );
god_u->liv_o = c3y; god_u->liv_o = c3y;
// all events in the serf are complete // all events in the worker are complete
// //
god_u->rel_d = god_u->dun_d = god_u->sen_d = (lav_d - 1ULL); god_u->rel_d = god_u->dun_d = god_u->sen_d = (lav_d - 1ULL);
@ -975,7 +812,7 @@ _pier_work_exit(uv_process_t* req_u,
u3l_log("pier: exit: status %" PRIu64 ", signal %d\r\n", sas_i, sig_i); u3l_log("pier: exit: status %" PRIu64 ", signal %d\r\n", sas_i, sig_i);
uv_close((uv_handle_t*) req_u, 0); uv_close((uv_handle_t*) req_u, 0);
_pier_disk_shutdown(pir_u); _pier_db_shutdown(pir_u);
_pier_work_shutdown(pir_u); _pier_work_shutdown(pir_u);
} }
@ -1108,6 +945,7 @@ _pier_work_poke(void* vod_p,
c3_d evt_d = u3r_chub(0, p_jar); c3_d evt_d = u3r_chub(0, p_jar);
u3_writ* wit_u = _pier_writ_find(pir_u, evt_d); u3_writ* wit_u = _pier_writ_find(pir_u, evt_d);
// Unlike slog, we always reprint interpreter errors during replay.
_pier_work_stdr(wit_u, q_jar); _pier_work_stdr(wit_u, q_jar);
} }
break; break;
@ -1123,11 +961,19 @@ _pier_work_poke(void* vod_p,
goto error; goto error;
} }
else { else {
// XXX: The wit_u pointer will almost always be 0 because of how the
// worker process manages the difference between u3V.evt_d vs
// u3A->ent_d. Either stop communicating the evt_d in the wire protocol
// or fix the worker to keep track of and communicate the correct event
// number.
c3_d evt_d = u3r_chub(0, p_jar); c3_d evt_d = u3r_chub(0, p_jar);
c3_w pri_w = u3r_word(0, q_jar); c3_w pri_w = u3r_word(0, q_jar);
u3_writ* wit_u = _pier_writ_find(pir_u, evt_d); u3_writ* wit_u = _pier_writ_find(pir_u, evt_d);
_pier_work_slog(wit_u, pri_w, u3k(r_jar)); // Only print this slog if the event is uncommitted.
if ( u3_psat_pace != pir_u->sat_e ) {
_pier_work_slog(wit_u, pri_w, u3k(r_jar));
}
} }
break; break;
} }
@ -1667,7 +1513,7 @@ _pier_boot_ready(u3_pier* pir_u)
_pier_boot_vent(pir_u->bot_u); _pier_boot_vent(pir_u->bot_u);
_pier_boot_dispose(pir_u->bot_u); _pier_boot_dispose(pir_u->bot_u);
// prepare serf for boot sequence, write log header // prepare worker for boot sequence, write log header
// //
_pier_work_boot(pir_u, c3y); _pier_work_boot(pir_u, c3y);
@ -1690,13 +1536,13 @@ _pier_boot_ready(u3_pier* pir_u)
// begin queuing batches of committed events // begin queuing batches of committed events
// //
_pier_disk_load_commit(pir_u, (1ULL + god_u->dun_d), 1000ULL); _pier_db_load_commits(pir_u, (1ULL + god_u->dun_d), 1000ULL);
if ( 0 == god_u->dun_d ) { if ( 0 == god_u->dun_d ) {
fprintf(stderr, "pier: replaying events 1 through %" PRIu64 "\r\n", fprintf(stderr, "pier: replaying events 1 through %" PRIu64 "\r\n",
log_u->com_d); log_u->com_d);
// prepare serf for replay of boot sequence, don't write log header // prepare worker for replay of boot sequence, don't write log header
// //
_pier_work_boot(pir_u, c3n); _pier_work_boot(pir_u, c3n);
} }
@ -1770,7 +1616,8 @@ start:
(wit_u->evt_d == (1 + log_u->moc_d)) && (wit_u->evt_d == (1 + log_u->moc_d)) &&
(wit_u->evt_d == (1 + log_u->com_d)) ) (wit_u->evt_d == (1 + log_u->com_d)) )
{ {
_pier_disk_commit_request(wit_u); // TODO(erg): This is the place where we build up things into a queue.
_pier_db_commit_request(wit_u);
act_o = c3y; act_o = c3y;
} }
@ -1877,6 +1724,7 @@ _pier_exit_done(u3_pier* pir_u)
{ {
u3l_log("pier: exit\r\n"); u3l_log("pier: exit\r\n");
_pier_db_shutdown(pir_u);
_pier_work_shutdown(pir_u); _pier_work_shutdown(pir_u);
_pier_loop_exit(pir_u); _pier_loop_exit(pir_u);
@ -1917,7 +1765,8 @@ u3_pier_snap(u3_pier* pir_u)
// save eagerly if all computed events are already committed // save eagerly if all computed events are already committed
// //
if ( log_u->com_d >= top_d ) { if ( (log_u->com_d >= top_d) &&
(god_u->dun_d == top_d) ) {
_pier_work_save(pir_u); _pier_work_save(pir_u);
} }
} }