mirror of
https://github.com/ilyakooo0/urbit.git
synced 2024-11-28 11:40:11 +03:00
arvo: pill reform
This commit is contained in:
parent
a08e196a95
commit
ea06fbed59
@ -12,145 +12,8 @@
|
|||||||
arg=$@(~ [top=path ~])
|
arg=$@(~ [top=path ~])
|
||||||
~
|
~
|
||||||
==
|
==
|
||||||
::
|
|
||||||
:: we're creating an event series E whose lifecycle can be computed
|
|
||||||
:: with the urbit lifecycle formula L, `[2 [0 3] [0 2]]`. that is:
|
|
||||||
:: if E is the list of events processed by a computer in its life,
|
|
||||||
:: its final state is S, where S is nock(E L).
|
|
||||||
::
|
|
||||||
:: in practice, the first five nouns in E are: two boot formulas,
|
|
||||||
:: a hoon compiler as a nock formula, the same compiler as source,
|
|
||||||
:: and the arvo kernel as source.
|
|
||||||
::
|
|
||||||
:: after the first five special events, we enter an iterative
|
|
||||||
:: sequence of regular events which continues for the rest of the
|
|
||||||
:: computer's life. during this sequence, each state is a function
|
|
||||||
:: that, passed the next event, produces the next state.
|
|
||||||
::
|
|
||||||
:: a regular event is a `[date wire type data]` tuple, where `date` is a
|
|
||||||
:: 128-bit Urbit date; `wire` is an opaque path which output can
|
|
||||||
:: match to track causality; `type` is a symbol describing the type
|
|
||||||
:: of input; and `data` is input data specific to `type`.
|
|
||||||
::
|
|
||||||
:: in real life we don't actually run the lifecycle loop,
|
|
||||||
:: since real life is updated incrementally and also cares
|
|
||||||
:: about things like output. we couple to the internal
|
|
||||||
:: structure of the state machine and work directly with
|
|
||||||
:: the underlying arvo engine.
|
|
||||||
::
|
|
||||||
:: this arvo core, which is at `+7` (Lisp `cddr`) of the state
|
|
||||||
:: function (see its public interface in `sys/arvo`), gives us
|
|
||||||
:: extra features, like output, which are relevant to running
|
|
||||||
:: a real-life urbit vm, but don't affect the formal definition.
|
|
||||||
::
|
|
||||||
:: so a real-life urbit interpreter is coupled to the shape of
|
|
||||||
:: the arvo core. it becomes very hard to change this shape.
|
|
||||||
:: fortunately, it is not a very complex interface.
|
|
||||||
::
|
|
||||||
:- %noun
|
:- %noun
|
||||||
::
|
^- pill:pill
|
||||||
:: boot-one: lifecycle formula
|
|
||||||
::
|
|
||||||
=+ ^= boot-one
|
|
||||||
::
|
|
||||||
:: event 1 is the lifecycle formula which computes the final
|
|
||||||
:: state from the full event sequence.
|
|
||||||
::
|
|
||||||
:: the formal urbit state is always just a gate (function)
|
|
||||||
:: which, passed the next event, produces the next state.
|
|
||||||
::
|
|
||||||
=> [boot-formula=* full-sequence=*]
|
|
||||||
!= ::
|
|
||||||
:: first we use the boot formula (event 1) to set up
|
|
||||||
:: the pair of state function and main sequence. the boot
|
|
||||||
:: formula peels off the first 5 events
|
|
||||||
:: to set up the lifecycle loop.
|
|
||||||
::
|
|
||||||
=+ [state-gate main-sequence]=.*(full-sequence boot-formula)
|
|
||||||
::
|
|
||||||
:: in this lifecycle loop, we replace the state function
|
|
||||||
:: with its product, called on the next event, until
|
|
||||||
:: we run out of events.
|
|
||||||
::
|
|
||||||
|- ?@ main-sequence
|
|
||||||
state-gate
|
|
||||||
%= $
|
|
||||||
main-sequence +.main-sequence
|
|
||||||
state-gate .*(state-gate [%9 2 %10 [6 %1 -.main-sequence] %0 1])
|
|
||||||
==
|
|
||||||
::
|
|
||||||
:: boot-two: startup formula
|
|
||||||
::
|
|
||||||
=+ ^= boot-two
|
|
||||||
::
|
|
||||||
:: event 2 is the startup formula, which verifies the compiler
|
|
||||||
:: and starts the main lifecycle.
|
|
||||||
::
|
|
||||||
=> :* :: event 3: a formula producing the hoon compiler
|
|
||||||
::
|
|
||||||
compiler-formula=**
|
|
||||||
::
|
|
||||||
:: event 4: hoon compiler source, compiling to event 2
|
|
||||||
::
|
|
||||||
compiler-source=*@t
|
|
||||||
::
|
|
||||||
:: event 5: arvo kernel source
|
|
||||||
::
|
|
||||||
arvo-source=*@t
|
|
||||||
::
|
|
||||||
:: events 6..n: main sequence with normal semantics
|
|
||||||
::
|
|
||||||
main-sequence=**
|
|
||||||
==
|
|
||||||
!= :_ main-sequence
|
|
||||||
::
|
|
||||||
:: activate the compiler gate. the product of this formula
|
|
||||||
:: is smaller than the formula. so you might think we should
|
|
||||||
:: save the gate itself rather than the formula producing it.
|
|
||||||
:: but we have to run the formula at runtime, to register jets.
|
|
||||||
::
|
|
||||||
:: as always, we have to use raw nock as we have no type.
|
|
||||||
:: the gate is in fact ++ride.
|
|
||||||
::
|
|
||||||
~> %slog.[0 leaf+"1-b"]
|
|
||||||
=+ ^= compiler-gate
|
|
||||||
.*(0 compiler-formula)
|
|
||||||
::
|
|
||||||
:: compile the compiler source, producing (pair span nock).
|
|
||||||
:: the compiler ignores its input so we use a trivial span.
|
|
||||||
::
|
|
||||||
~> %slog.[0 leaf+"1-c (compiling compiler, wait a few minutes)"]
|
|
||||||
=+ ^= compiler-tool
|
|
||||||
.*(compiler-gate [%9 2 %10 [6 %1 [%noun compiler-source]] %0 1])
|
|
||||||
::
|
|
||||||
:: switch to the second-generation compiler. we want to be
|
|
||||||
:: able to generate matching reflection nouns even if the
|
|
||||||
:: language changes -- the first-generation formula will
|
|
||||||
:: generate last-generation spans for `!>`, etc.
|
|
||||||
::
|
|
||||||
~> %slog.[0 leaf+"1-d"]
|
|
||||||
=. compiler-gate .*(0 +:compiler-tool)
|
|
||||||
::
|
|
||||||
:: get the span (type) of the kernel core, which is the context
|
|
||||||
:: of the compiler gate. we just compiled the compiler,
|
|
||||||
:: so we know the span (type) of the compiler gate. its
|
|
||||||
:: context is at tree address `+>` (ie, `+7` or Lisp `cddr`).
|
|
||||||
:: we use the compiler again to infer this trivial program.
|
|
||||||
::
|
|
||||||
~> %slog.[0 leaf+"1-e"]
|
|
||||||
=+ ^= kernel-span
|
|
||||||
-:.*(compiler-gate [%9 2 %10 [6 %1 [-.compiler-tool '+>']] %0 1])
|
|
||||||
::
|
|
||||||
:: compile the arvo source against the kernel core.
|
|
||||||
::
|
|
||||||
~> %slog.[0 leaf+"1-f"]
|
|
||||||
=+ ^= kernel-tool
|
|
||||||
.*(compiler-gate [%9 2 %10 [6 %1 [kernel-span arvo-source]] %0 1])
|
|
||||||
::
|
|
||||||
:: create the arvo kernel, whose subject is the kernel core.
|
|
||||||
::
|
|
||||||
~> %slog.[0 leaf+"1-g"]
|
|
||||||
.*(+>:compiler-gate +:kernel-tool)
|
|
||||||
::
|
::
|
||||||
:: sys: root path to boot system, `/~me/[desk]/now/sys`
|
:: sys: root path to boot system, `/~me/[desk]/now/sys`
|
||||||
::
|
::
|
||||||
@ -165,7 +28,7 @@
|
|||||||
:: compiler-twig: compiler as hoon expression
|
:: compiler-twig: compiler as hoon expression
|
||||||
::
|
::
|
||||||
~& %brass-parsing
|
~& %brass-parsing
|
||||||
=+ compiler-twig=(ream compiler-source)
|
=+ compiler-twig=(rain /sys/hoon/hoon compiler-source)
|
||||||
~& %brass-parsed
|
~& %brass-parsed
|
||||||
::
|
::
|
||||||
:: compiler-formula: compiler as nock formula
|
:: compiler-formula: compiler as nock formula
|
||||||
@ -180,22 +43,19 @@
|
|||||||
::
|
::
|
||||||
:: boot-ova: startup events
|
:: boot-ova: startup events
|
||||||
::
|
::
|
||||||
=+ ^= boot-ova ^- (list *)
|
=/ boot-ova=(list)
|
||||||
:~ boot-one
|
:~ aeon:eden:part
|
||||||
boot-two
|
boot:eden:part
|
||||||
compiler-formula
|
compiler-formula
|
||||||
compiler-source
|
compiler-source
|
||||||
arvo-source
|
arvo-source
|
||||||
==
|
==
|
||||||
:: a pill is a 3-tuple of event-lists: [boot kernel userspace]
|
:: a pill is a 3-tuple of event-lists: [boot kernel userspace]
|
||||||
::
|
::
|
||||||
=/ bas=path (flop (tail (flop sys)))
|
=/ bas=path (flop (tail (flop sys)))
|
||||||
|
:+ %pill %brass
|
||||||
:+ boot-ova
|
:+ boot-ova
|
||||||
:~ :~ //arvo
|
:~ (boot-ovum:pill compiler-source arvo-source)
|
||||||
%what
|
|
||||||
[/sys/hoon hoon/compiler-source]
|
|
||||||
[/sys/arvo hoon/arvo-source]
|
|
||||||
==
|
|
||||||
(file-ovum2:pill bas)
|
(file-ovum2:pill bas)
|
||||||
==
|
==
|
||||||
[(file-ovum:pill bas) ~]
|
[(file-ovum:pill bas) ~]
|
||||||
|
@ -1,8 +1,19 @@
|
|||||||
|
:: Produce an ivory pill
|
||||||
|
::
|
||||||
|
:::: /hoon/ivory/gen
|
||||||
|
::
|
||||||
|
/? 310
|
||||||
|
/+ pill
|
||||||
|
::
|
||||||
|
::::
|
||||||
|
!:
|
||||||
:- %say
|
:- %say
|
||||||
|= $: [now=@da eny=@uvJ bec=beak]
|
|= $: [now=@da eny=@uvJ bec=beak]
|
||||||
arg=$@(~ [top=path ~])
|
arg=$@(~ [top=path ~])
|
||||||
~
|
~
|
||||||
==
|
==
|
||||||
|
:- %noun
|
||||||
|
^- pill:pill
|
||||||
=/ sys=path
|
=/ sys=path
|
||||||
?^ arg top.arg
|
?^ arg top.arg
|
||||||
/(scot %p p.bec)/[q.bec]/(scot %da now)/sys
|
/(scot %p p.bec)/[q.bec]/(scot %da now)/sys
|
||||||
@ -19,7 +30,7 @@
|
|||||||
=/ nok !.
|
=/ nok !.
|
||||||
=> *[ver=(trap vase) ~]
|
=> *[ver=(trap vase) ~]
|
||||||
!= q:$:ver
|
!= q:$:ver
|
||||||
noun/[[nok ver ~] ~ ~]
|
ivory/[nok ver ~]
|
||||||
::
|
::
|
||||||
++ build-sys
|
++ build-sys
|
||||||
|= [sub=(trap vase) nam=term] ^- (trap vase)
|
|= [sub=(trap vase) nam=term] ^- (trap vase)
|
||||||
|
@ -65,30 +65,13 @@
|
|||||||
=< q
|
=< q
|
||||||
%^ spin
|
%^ spin
|
||||||
^- (list ovum)
|
^- (list ovum)
|
||||||
:~ :~ //arvo
|
:~ (boot-ovum:pill compiler-src arvo-src)
|
||||||
%what
|
|
||||||
[/sys/hoon hoon/compiler-src]
|
|
||||||
[/sys/arvo hoon/arvo-src]
|
|
||||||
==
|
|
||||||
(file-ovum2:pill (flop (tail (flop sys))))
|
(file-ovum2:pill (flop (tail (flop sys))))
|
||||||
==
|
==
|
||||||
.*(0 arvo-formula)
|
.*(0 arvo-formula)
|
||||||
|= [ovo=ovum ken=*]
|
|= [ovo=ovum ken=*]
|
||||||
[~ (slum ken [now ovo])]
|
[~ (slum ken [now ovo])]
|
||||||
::
|
::
|
||||||
:: boot-one: lifecycle formula (from +brass)
|
|
||||||
::
|
|
||||||
=/ boot-one
|
|
||||||
=> [boot-formula=** full-sequence=**]
|
|
||||||
!= =+ [state-gate main-sequence]=.*(full-sequence boot-formula)
|
|
||||||
|-
|
|
||||||
?@ main-sequence
|
|
||||||
state-gate
|
|
||||||
%= $
|
|
||||||
main-sequence +.main-sequence
|
|
||||||
state-gate .*(state-gate [%9 2 %10 [6 %1 -.main-sequence] %0 1])
|
|
||||||
==
|
|
||||||
::
|
|
||||||
:: kernel-formula
|
:: kernel-formula
|
||||||
::
|
::
|
||||||
:: We evaluate :arvo-formula (for jet registration),
|
:: We evaluate :arvo-formula (for jet registration),
|
||||||
@ -106,7 +89,7 @@
|
|||||||
:: boot-ova
|
:: boot-ova
|
||||||
::
|
::
|
||||||
=/ boot-ova=(list)
|
=/ boot-ova=(list)
|
||||||
[boot-one boot-two kernel-formula ~]
|
[aeon:eden:part boot-two kernel-formula ~]
|
||||||
::
|
::
|
||||||
:: a pill is a 3-tuple of event-lists: [boot kernel userspace]
|
:: a pill is a 3-tuple of event-lists: [boot kernel userspace]
|
||||||
::
|
::
|
||||||
@ -114,6 +97,7 @@
|
|||||||
:: Our userspace event-list is a list containing a full %clay
|
:: Our userspace event-list is a list containing a full %clay
|
||||||
:: filesystem sync event.
|
:: filesystem sync event.
|
||||||
::
|
::
|
||||||
|
:+ %pill %solid
|
||||||
:+ boot-ova ~
|
:+ boot-ova ~
|
||||||
=/ bas (flop (tail (flop sys)))
|
=/ bas (flop (tail (flop sys)))
|
||||||
[(file-ovum:pill bas) ~]
|
[(file-ovum:pill bas) ~]
|
||||||
|
@ -4,10 +4,13 @@
|
|||||||
|%
|
|%
|
||||||
::
|
::
|
||||||
+$ pill
|
+$ pill
|
||||||
$: boot-ova=*
|
$% [%ivory p=(list)]
|
||||||
kernel-ova=(list unix-event)
|
$: %pill
|
||||||
userspace-ova=(list unix-event)
|
nam=term
|
||||||
==
|
boot-ova=(list)
|
||||||
|
kernel-ova=(list unix-event)
|
||||||
|
userspace-ova=(list unix-event)
|
||||||
|
== ==
|
||||||
::
|
::
|
||||||
+$ unix-event
|
+$ unix-event
|
||||||
%+ pair wire
|
%+ pair wire
|
||||||
@ -17,6 +20,15 @@
|
|||||||
[%boot ? $%($>(%fake task:able:jael) $>(%dawn task:able:jael))]
|
[%boot ? $%($>(%fake task:able:jael) $>(%dawn task:able:jael))]
|
||||||
unix-task
|
unix-task
|
||||||
==
|
==
|
||||||
|
:: +boot-ovum: boostrap kernel filesystem load
|
||||||
|
::
|
||||||
|
++ boot-ovum
|
||||||
|
|= [hoon=cord arvo=cord]
|
||||||
|
:~ //arvo
|
||||||
|
%what
|
||||||
|
[/sys/hoon hoon/hoon]
|
||||||
|
[/sys/arvo hoon/arvo]
|
||||||
|
==
|
||||||
:: +file-ovum: userspace filesystem load
|
:: +file-ovum: userspace filesystem load
|
||||||
::
|
::
|
||||||
:: bas: full path to / directory
|
:: bas: full path to / directory
|
||||||
|
@ -614,6 +614,137 @@
|
|||||||
::
|
::
|
||||||
+| %engines
|
+| %engines
|
||||||
::
|
::
|
||||||
|
:: |eden: lifecycle and bootstrap formula generators
|
||||||
|
::
|
||||||
|
:: while unused by arvo itself, these nock formulas
|
||||||
|
:: bootstrap arvo and define its lifecycle.
|
||||||
|
::
|
||||||
|
:: we're creating an event series E whose lifecycle can be computed
|
||||||
|
:: with the urbit lifecycle formula L, `[2 [0 3] [0 2]]`. that is:
|
||||||
|
:: if E is the list of events processed by a computer in its life,
|
||||||
|
:: its final state is S, where S is nock(E L).
|
||||||
|
::
|
||||||
|
:: in practice, the first five nouns in E are: two boot formulas,
|
||||||
|
:: a hoon compiler as a nock formula, the same compiler as source,
|
||||||
|
:: and the arvo kernel as source.
|
||||||
|
::
|
||||||
|
:: after the first five special events, we enter an iterative
|
||||||
|
:: sequence of regular events which continues for the rest of the
|
||||||
|
:: computer's life. during this sequence, each state is a function
|
||||||
|
:: that, passed the next event, produces the next state.
|
||||||
|
::
|
||||||
|
:: a regular event is an $ovum, or `[date wire type data]` tuple, where
|
||||||
|
:: `date` is a 128-bit Urbit date; `wire` is an opaque path which
|
||||||
|
:: output can match to track causality; `type` is a symbol describing
|
||||||
|
:: the type of input; and `data` is input data specific to `type`.
|
||||||
|
::
|
||||||
|
:: in real life we don't actually run the lifecycle loop,
|
||||||
|
:: since real life is updated incrementally and also cares
|
||||||
|
:: about things like output. we couple to the internal
|
||||||
|
:: structure of the state machine and work directly with
|
||||||
|
:: the underlying arvo engine.
|
||||||
|
::
|
||||||
|
:: this arvo core, which is at `+7` (Lisp `cddr`) of the state
|
||||||
|
:: function (see its public interface in `sys/arvo`), gives us
|
||||||
|
:: extra features, like output, which are relevant to running
|
||||||
|
:: a real-life urbit vm, but don't affect the formal definition.
|
||||||
|
::
|
||||||
|
:: so a real-life urbit interpreter is coupled to the shape of
|
||||||
|
:: the arvo core. it becomes very hard to change this shape.
|
||||||
|
:: fortunately, it is not a very complex interface.
|
||||||
|
::
|
||||||
|
++ eden
|
||||||
|
|%
|
||||||
|
:: +aeon: arvo lifecycle loop
|
||||||
|
::
|
||||||
|
:: the first event in a ship's log,
|
||||||
|
:: computing the final state from the rest of log
|
||||||
|
:: when invoked via the lifecycle formula: [%2 [%0 3] %0 2]
|
||||||
|
::
|
||||||
|
:: the formal urbit state is always just a gate (function)
|
||||||
|
:: which, passed the next event, produces the next state.
|
||||||
|
::
|
||||||
|
++ aeon
|
||||||
|
^- *
|
||||||
|
=> :: boot: kernel bootstrap, event 2
|
||||||
|
:: tale: events 3-n
|
||||||
|
::
|
||||||
|
*log=[boot=* tale=*]
|
||||||
|
!= :: arvo: bootstrapped kernel
|
||||||
|
:: epic: remainder of the log
|
||||||
|
::
|
||||||
|
=+ [arvo epic]=.*(tale.log boot.log)
|
||||||
|
|- ^- *
|
||||||
|
?@ epic arvo
|
||||||
|
%= $
|
||||||
|
epic +.epic
|
||||||
|
arvo .*(arvo [%9 2 %10 [6 %1 -.epic] %0 1])
|
||||||
|
==
|
||||||
|
::
|
||||||
|
:: +boot: event 2: bootstrap a kernel from source
|
||||||
|
::
|
||||||
|
++ boot
|
||||||
|
^- *
|
||||||
|
::
|
||||||
|
:: event 2 is the startup formula, which verifies the compiler
|
||||||
|
:: and starts the main lifecycle.
|
||||||
|
::
|
||||||
|
=> :: fate: event 3: a nock formula producing the hoon bootstrap compiler
|
||||||
|
:: hoon: event 4: compiler source
|
||||||
|
:: arvo: event 5: kernel source
|
||||||
|
:: epic: event 6-n
|
||||||
|
::
|
||||||
|
*log=[fate=* hoon=@ arvo=@ epic=*]
|
||||||
|
!=
|
||||||
|
::
|
||||||
|
:: activate the compiler gate. the product of this formula
|
||||||
|
:: is smaller than the formula. so you might think we should
|
||||||
|
:: save the gate itself rather than the formula producing it.
|
||||||
|
:: but we have to run the formula at runtime, to register jets.
|
||||||
|
::
|
||||||
|
:: as always, we have to use raw nock as we have no type.
|
||||||
|
:: the gate is in fact ++ride.
|
||||||
|
::
|
||||||
|
~> %slog.[0 leaf+"1-b"]
|
||||||
|
=/ compiler-gate .*(0 fate.log)
|
||||||
|
::
|
||||||
|
:: compile the compiler source, producing (pair span nock).
|
||||||
|
:: the compiler ignores its input so we use a trivial span.
|
||||||
|
::
|
||||||
|
~> %slog.[0 leaf+"1-c (compiling compiler, wait a few minutes)"]
|
||||||
|
=/ compiler-tool
|
||||||
|
.*(compiler-gate [%9 2 %10 [6 %1 noun/hoon.log] %0 1])
|
||||||
|
::
|
||||||
|
:: switch to the second-generation compiler. we want to be
|
||||||
|
:: able to generate matching reflection nouns even if the
|
||||||
|
:: language changes -- the first-generation formula will
|
||||||
|
:: generate last-generation spans for `!>`, etc.
|
||||||
|
::
|
||||||
|
~> %slog.[0 leaf+"1-d"]
|
||||||
|
=. compiler-gate .*(0 +:compiler-tool)
|
||||||
|
::
|
||||||
|
:: get the span (type) of the kernel core, which is the context
|
||||||
|
:: of the compiler gate. we just compiled the compiler,
|
||||||
|
:: so we know the span (type) of the compiler gate. its
|
||||||
|
:: context is at tree address `+>` (ie, `+7` or Lisp `cddr`).
|
||||||
|
:: we use the compiler again to infer this trivial program.
|
||||||
|
::
|
||||||
|
~> %slog.[0 leaf+"1-e"]
|
||||||
|
=/ kernel-span
|
||||||
|
-:.*(compiler-gate [%9 2 %10 [6 %1 [-.compiler-tool '+>']] %0 1])
|
||||||
|
::
|
||||||
|
:: compile the arvo source against the kernel core.
|
||||||
|
::
|
||||||
|
~> %slog.[0 leaf+"1-f"]
|
||||||
|
=/ kernel-tool
|
||||||
|
.*(compiler-gate [%9 2 %10 [6 %1 [kernel-span arvo.log]] %0 1])
|
||||||
|
::
|
||||||
|
:: create the arvo kernel, whose subject is the kernel core.
|
||||||
|
::
|
||||||
|
~> %slog.[0 leaf+"1-g"]
|
||||||
|
[.*(+>:compiler-gate +:kernel-tool) epic.log]
|
||||||
|
--
|
||||||
|
::
|
||||||
:: |adapt
|
:: |adapt
|
||||||
::
|
::
|
||||||
++ adapt
|
++ adapt
|
||||||
|
Loading…
Reference in New Issue
Block a user