mirror of
https://github.com/ilyakooo0/urbit.git
synced 2025-01-07 07:30:23 +03:00
Lots of FlP goodness.
Printing almost works, NaN/Inf stuff implemented but untested... Just need to chop off the first char of the printed output
This commit is contained in:
parent
89323f45b1
commit
fb202f68eb
152
arvo/hoon.hoon
152
arvo/hoon.hoon
@ -1173,7 +1173,7 @@
|
|||||||
::
|
::
|
||||||
++ rlyd |= red=@rd ^- [s=? h=@ f=@] !:
|
++ rlyd |= red=@rd ^- [s=? h=@ f=@] !:
|
||||||
~& [%rlyd `@ux`red]
|
~& [%rlyd `@ux`red]
|
||||||
[s=(sig:rd red) h=(hol:rd red) f=0]
|
[s=(sig:rd red) h=(hol:rd red) f=(fac:rd red)]
|
||||||
++ rlyh |=(reh=@rh ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
|
++ rlyh |=(reh=@rh ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
|
||||||
++ rlyq |=(req=@rq ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
|
++ rlyq |=(req=@rq ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
|
||||||
++ rlys |=(res=@rs ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
|
++ rlys |=(res=@rs ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
|
||||||
@ -1245,10 +1245,29 @@
|
|||||||
++ fra |= [p=@u z=@u f=@u] ^- @u
|
++ fra |= [p=@u z=@u f=@u] ^- @u
|
||||||
(^div (lsh 0 p f) (den f z))
|
(^div (lsh 0 p f) (den f z))
|
||||||
::
|
::
|
||||||
:: Decimal fraction of precision q [for printing only]
|
|
||||||
++ fre |= [q=@u a=@u] ^- @u
|
:: utility for ++fre
|
||||||
=+ d=(bex (^sub (met 0 a) 1))
|
++ rep |= [a=@ f=$+(@ @) c=@u]
|
||||||
(^div (^mul a (bey 10 q 0 1)) d)
|
^- @
|
||||||
|
?: =(c 0)
|
||||||
|
a
|
||||||
|
$(a (f a), c (dec c))
|
||||||
|
:: Decimal fraction of precision q [for printing only] mas peg
|
||||||
|
++ fre |= [q=@u n=[s=? e=@s a=@u]] ^- @u
|
||||||
|
=+ ^= b
|
||||||
|
?: =(0 (mod e.n 2))
|
||||||
|
?: (^gte (abs:si e.n) (met 0 a.n))
|
||||||
|
1
|
||||||
|
::=+ k=(lsh 0 (^sub (dec (met 0 a.n)) (abs:si e.n)) 1)
|
||||||
|
::=+ r=(end 0 (^sub (dec (met 0 a.n)) (abs:si e.n)) a.n)
|
||||||
|
::(mix k r)
|
||||||
|
(rep a.n mas (abs:si e.n))
|
||||||
|
::=+ k=(lsh 0 (^add (dec (met 0 a.n)) (abs:si e.n)) 1)
|
||||||
|
::=+ g=(lsh 0 (dec (met 0 a.n)) 1)
|
||||||
|
:::(mix k g a.n)
|
||||||
|
(rep a.n |=(a=@ (peg a 0b10)) (abs:si e.n))
|
||||||
|
=+ d=(bex (^sub (met 0 b) 1))
|
||||||
|
(^div (^mul b (bey 10 q 0 1)) d)
|
||||||
::
|
::
|
||||||
++ hol |= [p=@u n=[s=? e=@s a=@u]] ^- @u
|
++ hol |= [p=@u n=[s=? e=@s a=@u]] ^- @u
|
||||||
?: =((mod `@`e.n 2) 0)
|
?: =((mod `@`e.n 2) 0)
|
||||||
@ -1291,51 +1310,126 @@
|
|||||||
b
|
b
|
||||||
+(b)
|
+(b)
|
||||||
+(b) :: starts with 1, not even distance
|
+(b) :: starts with 1, not even distance
|
||||||
|
::::::::::::
|
||||||
|
:: black magic values
|
||||||
|
++ vl
|
||||||
|
|%
|
||||||
|
++ uzer |= [b=@u p=@u]
|
||||||
|
(szer b p %.y)
|
||||||
|
|
||||||
|
++ szer |= [b=@u p=@u s=?]
|
||||||
|
[s=s e=`@s`(dec (^mul b 2)) a=(lia p 0)]
|
||||||
|
|
||||||
|
++ qnan |= [b=@u p=@u s=?]
|
||||||
|
[s=s e=`@s`(^mul 2 b) a=(lia p `@`0b101)]
|
||||||
|
|
||||||
|
++ snan |= [b=@u p=@u s=?]
|
||||||
|
[s=s e=`@s`(^mul 2 b) a=(lia p `@`0b11)]
|
||||||
|
|
||||||
|
++ inft |= [b=@u p=@u s=?]
|
||||||
|
[s=s e=`@s`(^mul 2 b) a=(lia p `@`0b1)]
|
||||||
|
--
|
||||||
|
:: black magic value tests
|
||||||
|
++ te
|
||||||
|
|%
|
||||||
|
++ zer |= [b=@u p=@u n=[s=? e=@s a=@u]]
|
||||||
|
&(=(e.n (dec (^mul b 2))) !=(0 (ira a.n)))
|
||||||
|
|
||||||
|
++ nan |= [b=@u n=[s=? e=@s a=@u]]
|
||||||
|
&(=(e.n (^mul 2 b)) !=(0 (ira a.n)))
|
||||||
|
|
||||||
|
++ snan |= [b=@u n=[s=? e=@s a=@u]]
|
||||||
|
&(=(e.n (^mul 2 b)) =((dec (met 0 a.n)) (met 0 (ira a.n))))
|
||||||
|
|
||||||
|
++ inf |= [b=@u n=[s=? e=@s a=@u]]
|
||||||
|
&(=(e.n (^mul 2 b)) =(0 (ira a.n)))
|
||||||
|
|
||||||
|
++ gar |= [b=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]]
|
||||||
|
^- (unit ,[s=? e=@s a=@u])
|
||||||
|
?: (snan b n) ~|(%floating-nan !!)
|
||||||
|
?: (snan b n) ~|(%floating-nan !!)
|
||||||
|
?: (nan b n) [~ n]
|
||||||
|
?: (nan b m) [~ m]
|
||||||
|
~
|
||||||
|
|
||||||
|
++ pro |= [b=@u p=@u n=[s=? e=@s a=@u]]
|
||||||
|
^- [s=? e=@s a=@u]
|
||||||
|
=+ maxexp=`@s`(^mul 2 b)
|
||||||
|
=+ minexp=`@s`(dec (^mul 2 b))
|
||||||
|
?: &(=(0 (mod e.n 2)) (^gte e.n maxexp))
|
||||||
|
(inft:vl:fl b p s.n)
|
||||||
|
?: &(=(1 (mod e.n 2)) (^gte e.n minexp))
|
||||||
|
(szer:vl:fl b p s.n) :: flush denorms
|
||||||
|
n
|
||||||
|
--
|
||||||
|
|
||||||
::::::::::::
|
::::::::::::
|
||||||
++ add |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
|
++ add |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
|
||||||
|
=+ g=(gar:te:fl b n m)
|
||||||
|
?: ?=(^ g)
|
||||||
|
u.g
|
||||||
|
?: (zer:te:fl b p n)
|
||||||
|
m
|
||||||
|
?: (zer:te:fl b p m)
|
||||||
|
n
|
||||||
?: &(!s.n !s.m) :: both negative
|
?: &(!s.n !s.m) :: both negative
|
||||||
=+ r=$(s.n %.y, s.m %.y)
|
=+ r=$(s.n %.y, s.m %.y)
|
||||||
[s=%.n e=e.r a=a.r]
|
[s=%.n e=e.r a=a.r]
|
||||||
?. &(s.n s.m) :: if not both positive
|
?. &(s.n s.m) :: if not both positive
|
||||||
(sub p n [s=!s.m e=e.m a=a.m]) :: is actually sub
|
(sub b p n [s=!s.m e=e.m a=a.m]) :: is actually sub
|
||||||
?. (^gte e.n e.m) :: guarantee e.n > e.m
|
?. (^gte e.n e.m) :: guarantee e.n > e.m
|
||||||
$(n m, m n)
|
$(n m, m n)
|
||||||
=+ dif=(abs:si (dif:si e.n e.m)) :: always pos
|
=+ dif=(abs:si (dif:si e.n e.m)) :: always pos
|
||||||
=+ a2=(lsh 0 dif a.n) :: p+1+dif bits
|
=+ a2=(lsh 0 dif a.n) :: p+1+dif bits
|
||||||
=+ a3=(^add a.m a2) :: at least p+1+dif bits
|
=+ a3=(^add a.m a2) :: at least p+1+dif bits
|
||||||
=+ dif2=(^sub (met 0 a3) (met 0 a2)) :: (met 0 a3) > (met 0 a2)
|
=+ dif2=(^sub (met 0 a3) (met 0 a2)) :: (met 0 a3) > (met 0 a2)
|
||||||
[s=|(s.n s.m) e=(sum:si (sun:si dif2) e.n) a=(lia p a3)]
|
=+ e2=(sum:si (sun:si dif2) e.n)
|
||||||
|
(pro:te:fl b p [s=|(s.n s.m) e=e2 a=(lia p a3)])
|
||||||
|
|
||||||
++ sub |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
|
++ sub |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
|
||||||
?: &(!s.n s.m) :: -a-b
|
=+ g=(gar:te:fl b n m)
|
||||||
(add p m [s=%.n e.m a.m]) :: add handles negative case
|
?: ?=(^ g)
|
||||||
?: &(s.n !s.m) :: a+b
|
u.g
|
||||||
(add p m [s=%.y e.m a.m]) :: is actually add
|
?: |((zer:te:fl b p n) (zer:te:fl b p m))
|
||||||
|
(add b p n m) :: why not
|
||||||
|
?: &(!s.n s.m) :: -a-b
|
||||||
|
(add b p m [s=%.n e.m a.m]) :: add handles negative case
|
||||||
|
?: &(s.n !s.m) :: a+b
|
||||||
|
(add b p m [s=%.y e.m a.m]) :: is actually add
|
||||||
?. |((^gth e.n e.m) &(=(e.n e.m) (^gte a.n a.m))) :: n > m
|
?. |((^gth e.n e.m) &(=(e.n e.m) (^gte a.n a.m))) :: n > m
|
||||||
$(n m(s !s.m), m n(s !s.n))
|
$(n m(s !s.m), m n(s !s.n))
|
||||||
=+ dif=(abs:si (dif:si e.n e.m))
|
=+ dif=(abs:si (dif:si e.n e.m))
|
||||||
=+ a2=(lsh 0 dif a.n) :: p+1+dif bits
|
=+ a2=(lsh 0 dif a.n) :: p+1+dif bits
|
||||||
=+ a3=(^sub a2 a.m) :: assume m < 0 for now
|
=+ a3=(^sub a2 a.m) :: assume m < 0 for now
|
||||||
=+ dif2=(^sub (met 0 a2) (met 0 a3)) :: (met 0 a2) > (met 0 a3)
|
=+ dif2=(^sub (met 0 a2) (met 0 a3)) :: (met 0 a2) > (met 0 a3)
|
||||||
[s=s.n e=(dif:si e.n (sun:si dif2)) a=(lia p a3)] :: n > m => s=s.n
|
(pro:te:fl b p [s=s.n e=(dif:si e.n (sun:si dif2)) a=(lia p a3)]) :: n > m => s=s.n
|
||||||
|
|
||||||
++ mul |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
|
++ mul |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
|
||||||
~& [[%n [a.n e.n]] [%m [a.m e.m]]]
|
=+ g=(gar:te:fl b n m)
|
||||||
|
?: ?=(^ g)
|
||||||
|
u.g
|
||||||
|
?: |((zer:te:fl b p n) (zer:te:fl b p m))
|
||||||
|
(szer:vl:fl b p =(s.n s.m))
|
||||||
=+ a2=(^mul a.n a.m)
|
=+ a2=(^mul a.n a.m)
|
||||||
:: =+ a3=(mix (lsh 0 (^mul p 2) 1) (end 0 (^mul p 2) a2))
|
:: =+ a3=(mix (lsh 0 (^mul p 2) 1) (end 0 (^mul p 2) a2))
|
||||||
=+ e2=(met 0 (rsh 0 (^add 1 (^mul p 2)) a2))
|
=+ e2=(met 0 (rsh 0 (^add 1 (^mul p 2)) a2))
|
||||||
:: =+ a4=(rnd p (rsh 0 e2 a3))
|
:: =+ a4=(rnd p (rsh 0 e2 a3))
|
||||||
=+ a4=(lia p a2)
|
=+ a4=(lia p a2)
|
||||||
=+ s2=|(s.n s.m)
|
=+ s2==(s.n s.m)
|
||||||
[s=s2 e=:(sum:si e.n e.m (sun:si e2)) a=a4]
|
(pro:te:fl b p [s=s2 e=:(sum:si e.n e.m (sun:si e2)) a=a4])
|
||||||
|
|
||||||
++ div |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
|
++ div |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
|
||||||
~& [[%n [a.n e.n]] [%m [a.m e.m]]]
|
=+ g=(gar:te:fl b n m)
|
||||||
|
?: &((zer:te:fl b p n) (zer:te:fl b p m))
|
||||||
|
(qnan:vl:fl b p =(s.n s.m))
|
||||||
|
?: (zer:te:fl b p n)
|
||||||
|
(szer:vl:fl b p =(s.n s.m))
|
||||||
|
?: (zer:te:fl b p m)
|
||||||
|
(inft:vl:fl b p =(s.n s.m))
|
||||||
=+ b=(lia p (^div (lsh 0 (^mul p 3) a.n) a.m))
|
=+ b=(lia p (^div (lsh 0 (^mul p 3) a.n) a.m))
|
||||||
?: (^gte a.n a.m)
|
?: (^gte a.n a.m)
|
||||||
[s=|(s.n s.m) e=(dif:si e.n e.m) a=b]
|
(pro:te:fl b p [s==(s.n s.m) e=(dif:si e.n e.m) a=b])
|
||||||
[s=|(s.n s.m) e=(dif:si (dif:si e.n e.m) (sun:si 1)) a=b]
|
(pro:te:fl b p [s=|(s.n s.m) e=(dif:si (dif:si e.n e.m) (sun:si 1)) a=b])
|
||||||
|
|
||||||
++ lte |= [n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- ?
|
++ lte |= [n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- ?
|
||||||
?: (^lte e.n e.m)
|
?: (^lte e.n e.m)
|
||||||
@ -1377,7 +1471,7 @@
|
|||||||
(dif:si (sun:si (rsh 0 52 (end 0 63 a))) (sun:si 1.023))
|
(dif:si (sun:si (rsh 0 52 (end 0 63 a))) (sun:si 1.023))
|
||||||
:: Fraction of an @rd (binary)
|
:: Fraction of an @rd (binary)
|
||||||
++ fac |= [a=@rd] ^- @u
|
++ fac |= [a=@rd] ^- @u
|
||||||
(fre:fl 14 (ari:fl 52 (end 0 52 a)))
|
(fre:fl 14 (sea a))
|
||||||
:: Whole
|
:: Whole
|
||||||
++ hol |= [a=@rd] ^- @u
|
++ hol |= [a=@rd] ^- @u
|
||||||
(hol:fl 52 (sea a))
|
(hol:fl 52 (sea a))
|
||||||
@ -1392,23 +1486,19 @@
|
|||||||
|
|
||||||
++ add ~/ %add
|
++ add ~/ %add
|
||||||
|= [a=@rd b=@rd] ^- @rd
|
|= [a=@rd b=@rd] ^- @rd
|
||||||
(bit (add:fl 52 (sea a) (sea b)))
|
(bit (add:fl 1.023 52 (sea a) (sea b)))
|
||||||
|
|
||||||
++ sub ~/ %sub
|
++ sub ~/ %sub
|
||||||
|= [a=@rd b=@rd] ^- @rd
|
|= [a=@rd b=@rd] ^- @rd
|
||||||
(bit (sub:fl 52 (sea a) (sea b)))
|
(bit (sub:fl 1.023 52 (sea a) (sea b)))
|
||||||
|
|
||||||
++ mul ~/ %mul
|
++ mul ~/ %mul
|
||||||
|= [a=@rd b=@rd] ^- @rd
|
|= [a=@rd b=@rd] ^- @rd
|
||||||
~& [%a `@ub`a]
|
(bit (mul:fl 1.023 52 (sea a) (sea b)))
|
||||||
~& [%b `@ub`b]
|
|
||||||
(bit (mul:fl 52 (sea a) (sea b)))
|
|
||||||
|
|
||||||
++ div ~/ %div
|
++ div ~/ %div
|
||||||
|= [a=@rd b=@rd] ^- @rd
|
|= [a=@rd b=@rd] ^- @rd
|
||||||
~& [%a `@ub`a]
|
(bit (div:fl 1.023 52 (sea a) (sea b)))
|
||||||
~& [%b `@ub`b]
|
|
||||||
(bit (div:fl 52 (sea a) (sea b)))
|
|
||||||
|
|
||||||
++ lte ~/ %lte
|
++ lte ~/ %lte
|
||||||
|= [a=@rd b=@rd] ^- ?
|
|= [a=@rd b=@rd] ^- ?
|
||||||
|
Loading…
Reference in New Issue
Block a user