Trying to reduce the size of ames queues. This deduplicates incoming
message-blobs by comparing with existing message-blobs in other queues.
It also stops splitting into fragments in +feed-packets. Instead, it
splits into fragments at the last moment, in +encrypt. This means we
don't have to store a large number of packets in our home road.
Gives you a poor man's progress bar. For example, to determine how much
of an OTA you've downloaded from your sponsor, run:
|ames-sift (sein:title our now our)
|ames-verb %rcv
and then to turn it off:
|ames-verb
Uses Zuse's previously unused +harden helper function to streamline
+task unwrapping in vanes.
(Arguably, in landlocked vanes like Ford, we should crash if we get a
%soft task, since no events should be coming in directly from the
outside.)
There was a typo in the routing logic that was comparing equality
against a value where it should have been doing a pattern match. The
value compared against contained the literal * gate, which would never
match route.peer-state, so this condition was always true, meaning the
fix that had added this extra condition (5406f06) did not actually
change the behavior from what it been previously.
If we receive the naxplanation before the nack, the assertion in the gte
direction fails. The intent of the assertion is to make sure top of the
live queue never falls behind current.state, so it was simply in the
wrong direction.
Two bugs fixed here: first, if the %done reentrancy triggered another
%boon, that wasn't getting translated to a %lost, even though it could
have been the reason the event crashed in the first place.
Second, the %done reentrancy needs to happen after we emit our move, so
that we don't invert the order of the %boon's we produce.
We've seen issues where the message-num of the head of live.state is
less than current.state. When this happens, we continually try to
resend message n-1, but we throw away any acknowledgment for n-1 because
current.state is already n. This halts progress on that flow.
We don't know what causes us to get in this bad state, so this adds an
assert to the packet pump that we're in a good state, run every time
the packet pump is run. When this crashes, we can turn on |ames-verb
and hopefully identify the cause.
This also adds logic to +on-wake in the packet pump to not try to resend
any messages that have already been acknowledged. This is just to
rescue ships that currently have these stuck flows.
(Incidentally, I'd love to have a rr-style debugger for stuff like this.
Just run a command that says "replay my event log watching for this
specific condition and then stop and let me poke around".)
This is why basically all packets are going through the galaxies right
now. Most of the time, the flow right now is:
* talking to ~dopzod but don't know where it is, so ask ~zod to forward,
which it does
* ~dopzod responds both directly (on the origin lane) and through ~zod
* (if NAT, the direct response doesn't get back, but the one through
~zod does. Then you respond directly to ~dopzod because their lane
piggybacked on the response. ~dopzod responds both directly and
through ~zod, and the story picks up the same as if you weren't behind a
NAT)
* now you have a direct lane to ~dopzod, so all is well.
* now the duplicate response from ~dopzod through ~zod comes in (takes a
little longer because it's bouncing off ~zod), resetting your lane to
"provisional"
* since your lane is provisional, you send your next packet both
directly and through ~zod
* GOTO 2
This change says "if I already have a direct lane, don't overwrite it
with a provisional one". This way, the only way the direct lane can be
overwritten is if they stop responding on it (cleared on "not
responding; still trying").
I also added |- to +send-blob to make |ames-verb %rot less confusing.