This broke when %kick was handled by resubscribing on your own ship
because it processed the %kick before the %leave. For example, `@t`404
at the dojo would put the dojo in an unworkable state.
You want the %leave to be processed first because you can't do a
"resubscribe" in response to that.
Returns the target %zuse contract configuration to mainnet, and also
tweaks the 'arvo-ropsten' build to use %alef instead of %ames.
Also fixes a merge conflict artifact in nix/ops/default.nix.
This removes the %http-response special case from gall. In its place,
we implement a subscription regime with the following steps:
- Agent sends %connect to Eyre
- Eyre pokes agent with %handle-http-response, including unique eyre-id
- Agent passes %start-watching to Eyre with eyre-id and unique app-id
- Eyre subscribes to agent on /http-response/app-id
- Agent produces a %http-response-header fact followed by 0 or more
%http-response-data facts and possibly a %http-response-cancel fact
- Agent produces a %kick to close the subscription, which Eyre
interprets as completion of the message.
This works when there is data. There is currently a bug where if the
response has no data in total (as in the case of a naked 404), no
response will be sent.
This also includes lib/http-handler, which implements a convenient
interface for agents that want to respond immediately with all the data.
This lets them avoid carrying extra state to keep track of pending
requests.
This should really have access to your state and the ability to change
it. Perhaps a more minimalist design would be better: just keep track
of the requests, then hand it off to +on-watch when eyre is ready to
receive responses. It's not clear how to pass in the request data in
+on-watch.
* eth-watcher-2: (21 commits)
eth: move existing chain requests into ethio
eth-watcher: refactor refresh rate to top of file
hook: add pool-group-hook for making invite groups
ethio: add +read-contract for chain state reading
zuse: add delegated-sending address
eth: move eth-watcher's request-rpc into ethio lib
gaze: make compile for latest eth-watcher
drum: start eth-watcher on boot
azimuth-tracker: remove deprecated generator
eth: implement azimuth-tracker using eth-watcher
eth-watcher: ensure logs always sent oldest-first
eth-watcher: allow peers to unconfigured watchdogs
eth-watcher: saner %watch behavior
eth-watcher: implement %clear poke
eth-watcher: store logs in state to implement peer
eth-watcher: move types into /sur file
eth-watcher: properly tag out-peer-data
eth-watcher: single update timer loop
eth-watcher: implement /block peek
eth: turn azimuth-tracker into eth-watcher
...
Signed-off-by: Jared Tobin <jared@tlon.io>
Until now, clients of Jael have had to store the first-seen rift if they
want to reliably detect breaches. Otherwise, they would get a false
positive if they heard an old message about a breach (eg if you kick
azimuth-tracker). Clay and Gall did this correctly, but Ames did not.
Jael already maintains this state, so I added a notification to the
existing subscription that happens whenever it notices a breach (a diff
or full where the new rift is greater than the old one).
Because this is an issue on the live network, I wrote state adapters
for Gall and Clay. The Gall one just removes the rift from our state,
but the Clay one is much more involved because we have to upgrade
instances of the clad monad that are possibly in progress.
Specifically, since more input is possible than before, we must wrap any
in-progress instances of the monad in a function that handles the
potential new input from Jael. This temporarily preservers a copy of
the old kernel, but only until the current commit/merge/update has
completed.
The real solution for Clay is to factor out those IO-heavy instances to
userspace tapp/async/imp/threads, and if an upgrade happens in the
middle, you should simply restart them.
Fixes#1852
* reclamation:
solid pill
arvo: wires up %trim memory-pressure event stubs
u3: wires up the %trim event in the daemon
u3: adds %trim memory-pressure notification "effect"
u3: tweaks |mass output (and fixes inadvertent truncation)
u3: refactors periodic memory reclamation
u3: factors out u3a_idle() to measure free-lists in a road
u3: adds and uses u3a_full/heap/temp road macros
u3: cleans up whitespace, removes dead code in allocator