:: :::: /hoon/sole/lib :: /? 310 /- *sole !: :::: :: |% ++ cs :: shared-state engine |_ sole-share ++ abet +< ++ apply |= ted=sole-edit ^+ +> ?- -.ted %del +>.$(buf (weld (scag p.ted buf) (slag +(p.ted) buf))) %ins +>.$(buf (weld (scag p.ted buf) `_buf`[q.ted (slag p.ted buf)])) %mor |- ^+ +>.^$ ?~ p.ted +>.^$ $(p.ted t.p.ted, +>.^$ ^$(ted i.p.ted)) %nop +>.$ %set +>.$(buf p.ted) == :: :::: :: ++transmute: symmetric operational transformation. :: :: for any sole state +>, obeys :: :: =+ [x=(transmute a b) y=(transmute b a)] :: .= (apply:(apply a) x) :: (apply:(apply b) y) :: ++ transmute :: dex as after sin |= [sin=sole-edit dex=sole-edit] ~| [%transmute sin dex] ^- sole-edit ?: ?=(%mor -.sin) |- ^- sole-edit ?~ p.sin dex $(p.sin t.p.sin, dex ^$(sin i.p.sin)) :: ?: ?=(%mor -.dex) :- %mor |- ^- (list sole-edit) ?~ p.dex ~ [^$(dex i.p.dex) $(p.dex t.p.dex)] :: ?: |(?=(%nop -.sin) ?=(%nop -.dex)) dex ?: ?=(%set -.sin) [%nop ~] ?: ?=(%set -.dex) dex :: ?- -.sin %del ?- -.dex %del ?: =(p.sin p.dex) [%nop ~] ?:((lth p.sin p.dex) dex(p (dec p.dex)) dex) %ins ?:((lth p.sin p.dex) dex(p (dec p.dex)) dex) == :: %ins ?- -.dex %del ?:((lte p.sin p.dex) dex(p +(p.dex)) dex) %ins ?: =(p.sin p.dex) ?:((lth q.sin q.dex) dex dex(p +(p.dex))) ?:((lte p.sin p.dex) dex(p +(p.dex)) dex) == == :: ++ commit :: local change |= ted=sole-edit ^- sole-share abet:(apply(own.ven +(own.ven), leg [ted leg]) ted) :: :::: :: ++inverse: inverse of change in context. :: :: for any sole state +>, obeys :: :: =(+> (apply:(apply a) (inverse a))) :: ++ inverse :: relative inverse |= ted=sole-edit ^- sole-edit =. ted ?.(?=([%mor * ~] ted) ted i.p.ted) ?- -.ted %del [%ins p.ted (snag p.ted buf)] %ins [%del p.ted] %mor :- %mor %- flop |- ^- (list sole-edit) ?~ p.ted ~ :- ^$(ted i.p.ted) $(p.ted t.p.ted, +>.^$ (apply i.p.ted)) %nop [%nop ~] %set [%set buf] == :: ++ receive :: naturalize event |= sole-change ^- [sole-edit sole-share] ?. &(=(his.ler his.ven) (lte own.ler own.ven)) ~& [%receive-sync his/[his.ler his.ven] own/[own.ler own.ven]] !! ?> &(=(his.ler his.ven) (lte own.ler own.ven)) ?> |(!=(own.ler own.ven) =(0 haw) =(haw (sham buf))) =. leg (scag (sub own.ven own.ler) leg) :: ~? !=(own.ler own.ven) [%miss-leg leg] =+ dat=(transmute [%mor leg] ted) :: ~? !=(~ leg) [%transmute from/ted to/dat ~] [dat abet:(apply(his.ven +(his.ven)) dat)] :: ++ remit :: conditional accept |= [cal=sole-change ask=$+((list ,@c) ?)] ^- [(unit sole-change) sole-share] =+ old=buf =^ dat +>+<.$ (receive cal) ?: (ask buf) [~ +>+<.$] =^ lic +>+<.$ (transmit (inverse(buf old) dat)) [`lic +>+<.$] :: ++ transmit :: outgoing change |= ted=sole-edit ^- [sole-change sole-share] [[[his.ven own.ven] (sham buf) ted] (commit ted)] :: ++ transceive :: receive and invert |= sole-change ^- [sole-edit sole-share] =+ old=buf =^ dat +>+<.$ (receive +<.$) [(inverse(buf old) dat) +>+<.$] :: ++ transpose :: adjust position |= pos=@ud =+ dat=(transmute [%mor leg] [%ins pos `@c`0]) ?> ?=(%ins -.dat) p.dat -- --