:: |rsa: primitive, textbook RSA :: :: Unpadded, unsafe, unsuitable for encryption! :: |% :: +key:rsa: rsa public or private key :: += key $: :: pub: public parameters (n=modulus, e=pub-exponent) :: pub=[n=@ux e=@ux] :: sek: secret parameters (d=private-exponent, p/q=primes) :: sek=(unit [d=@ux p=@ux q=@ux]) == :: +ramp: make rabin-miller probabilistic prime :: :: XX replace +ramp:number? :: a: bitwidth :: b: snags (XX small primes to check divisibility?) :: c: entropy :: ++ ramp |= [a=@ b=(list @) c=@] =. c (shas %ramp c) :: XX what is this value? :: =| d=@ |- ^- @ux :: XX what is this condition? :: ?: =((mul 100 a) d) ~|(%ar-ramp !!) :: e: prime candidate :: :: Sets low bit, as prime must be odd. :: Sets high bit, as +raw:og only gives up to :a bits. :: =/ e :(con 1 (lsh 0 (dec a) 1) (~(raw og c) a)) :: XX what algorithm is this modular remainder check? :: ?: ?& (levy b |=(f/@ !=(1 (mod e f)))) (pram:number e) == e $(c +(c), d (shax d)) :: +elcm:rsa: carmichael totient :: ++ elcm |= [a=@ b=@] (div (mul a b) d:(egcd a b)) :: +new-key:rsa: write somethingXXX :: ++ new-key =/ e `@ux`65.537 |= [wid=@ eny=@] ^- key =/ diw (rsh 0 1 wid) =/ p=@ux (ramp diw [3 5 ~] eny) =/ q=@ux (ramp diw [3 5 ~] +(eny)) =/ n=@ux (mul p q) =/ d=@ux (~(inv fo (elcm (dec p) (dec q))) e) [[n e] `[d p q]] :: +en:rsa: primitive RSA encryption :: :: ciphertext = message^e (mod n) :: ++ en |= [m=@ k=key] ~| %rsa-len ?> (lte (met 0 m) (met 0 n.pub.k)) (~(exp fo n.pub.k) e.pub.k m) :: +de:rsa: primitive RSA decryption :: :: message = ciphertext^d (mod e) :: ++ de |= [m=@ k=key] :: XX assert rsa-len here too? ~| %rsa-need-ring ?> ?=(^ sek.k) =/ fu (fu:number p.u.sek.k q.u.sek.k) (out.fu (exp.fu d.u.sek.k (sit.fu m))) --