/*============================================================================ This C source file is part of the SoftFloat IEEE Floating-Point Arithmetic Package, Release 3c, by John R. Hauser. Copyright 2011, 2012, 2013, 2014 The Regents of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =============================================================================*/ #include #include #include "platform.h" #include "internals.h" #include "softfloat.h" extFloat80_t extF80_sub( extFloat80_t a, extFloat80_t b ) { union { struct extFloat80M s; extFloat80_t f; } uA; uint_fast16_t uiA64; uint_fast64_t uiA0; bool signA; union { struct extFloat80M s; extFloat80_t f; } uB; uint_fast16_t uiB64; uint_fast64_t uiB0; bool signB; #if ! defined INLINE_LEVEL || (INLINE_LEVEL < 2) extFloat80_t (*magsFuncPtr)( uint_fast16_t, uint_fast64_t, uint_fast16_t, uint_fast64_t, bool ); #endif uA.f = a; uiA64 = uA.s.signExp; uiA0 = uA.s.signif; signA = signExtF80UI64( uiA64 ); uB.f = b; uiB64 = uB.s.signExp; uiB0 = uB.s.signif; signB = signExtF80UI64( uiB64 ); #if defined INLINE_LEVEL && (2 <= INLINE_LEVEL) if ( signA == signB ) { return softfloat_subMagsExtF80( uiA64, uiA0, uiB64, uiB0, signA ); } else { return softfloat_addMagsExtF80( uiA64, uiA0, uiB64, uiB0, signA ); } #else magsFuncPtr = (signA == signB) ? softfloat_subMagsExtF80 : softfloat_addMagsExtF80; return (*magsFuncPtr)( uiA64, uiA0, uiB64, uiB0, signA ); #endif }