/- *btc |% :: big endian sha256: input and output are both MSB first (big endian) :: ++ sha256 |= =byts ^- hash :: if there are leading 0s, lshift by their amount after flip to little endian to preserve =/ pad=@ (sub wid.byts (met 3 dat.byts)) =/ little-endian=@ (lsh 3 pad (swp 3 dat.byts)) :- 32 %+ swp 3 (shay wid.byts little-endian) :: ++ dsha256 |= =byts (sha256 (sha256 byts)) :: ++ hash-160 |= pubkey=@ux ^- hash =, ripemd:crypto :- 20 %- ripemd-160 %- sha256 [(met 3 pubkey) pubkey] :: ++ to-script-pubkey |= script=^buffer ^- ^buffer %- zing :~ ~[0x19 0x76 0xa9 0x14] script ~[0x88 0xac] == ++ address-to-script-pubkey |= =address ^- ^buffer ?. ?=(%bech32 -.address) ~|("Only bech32 addresses supported right now" !!) =/ hex=byts (to-hex:bech32 address) ?. =(wid.hex 20) ~|("Only 20-byte P2WPKH bech32 supported" !!) (to-script-pubkey (from-byts:buffer hex)) :: list of @ux that is big endian for hashing purposes :: used to preserve 0s when concatenating byte sequences :: ++ buffer |% ++ from-byts |= =byts ^- ^buffer =/ b=(list @ux) (flop (rip 3 dat.byts)) =/ pad=@ (sub wid.byts (lent b)) (weld (reap pad 0x0) b) :: converts an atom to a little endian buffer with wid length (trailing 0s) :: atom 1 with wid=4 becomes ~[0x1 0x0 0x0 0x0] :: 0xff11 with wid=8 becomes ~[0x11 0xff 0x0 0x0 0x0 0x0 0x0 0x0] :: ++ from-atom-le |= [wid=@ a=@] ^- ^buffer =/ b=(list @ux) (rip 3 a) =/ pad=@ (sub wid (lent b)) (weld b (reap pad 0x0)) :: ++ to-byts |= b=^buffer ^- byts [(lent b) (rep 3 (flop b))] ++ concat-as-byts |= bs=(list ^buffer) ^- byts %- to-byts (zing bs) -- :: ++ unsigned-tx =, buffer |_ ut=unsigned:tx ++ prevouts-buffer |= =input:tx ^- ^buffer %+ weld (from-byts tx-hash.input) (from-atom-le 4 witness-ver.input) :: ++ sequence-buffer |= =input:tx ^- ^buffer (from-byts sequence.input) :: ++ outputs-buffer |= =output:tx ^- ^buffer %+ weld (from-atom-le 8 value.output) (address-to-script-pubkey address.output) :: ++ sighash |= input-index=@ ^- hash ?: (gte input-index (lent inputs.ut)) ~|("Input index out of range" !!) =/ =input:tx (snag input-index inputs.ut) ?: =(1 witness-ver.input) (sighash-witness input) (sighash-legacy input) :: ++ sighash-witness |= =input:tx ^- hash =/ prevouts=byts %- concat-as-byts (turn inputs.ut prevouts-buffer) =/ sequences=byts %- concat-as-byts (turn inputs.ut sequence-buffer) =/ outputs=byts %- concat-as-byts (turn outputs.ut outputs-buffer) :: Hash inputs in order, as per BIP143 examples :: =/ n-version=^buffer (from-atom-le 4 version.ut) =/ hash-prevouts=^buffer %- from-byts (dsha256 prevouts) =/ hash-sequence=^buffer %- from-byts (dsha256 sequences) =/ outpoint=^buffer %+ weld (from-byts tx-hash.input) (from-atom-le 4 witness-ver.input) =/ script-code=^buffer %- to-script-pubkey (slag 2 (from-byts script-pubkey.input)) =/ amount=^buffer (from-atom-le 8 value.input) =/ n-sequence=^buffer (sequence-buffer input) =/ hash-outputs=^buffer %- from-byts (dsha256 outputs) =/ n-locktime=^buffer (from-atom-le 4 locktime.ut) =/ n-hashtype=^buffer (from-atom-le 4 1) %- dsha256 %- concat-as-byts :~ n-version hash-prevouts hash-sequence outpoint script-code amount n-sequence hash-outputs n-locktime n-hashtype == :: ++ sighash-legacy |= =input:tx ^- hash [0 0x0] -- :: :: Converts a list of bits to a list of n-bit numbers :: input-bits should be big-endian :: ++ bits |% :: rip atom a with num-bits. Preserve leading 0s, big endian :: returns a list of bits :: ++ zeros-brip |= [num-bits=@ a=@] ^- (list @) =/ bits=(list @) (flop (rip 0 a)) =/ pad=@ (sub num-bits (lent bits)) (weld (reap pad 0) bits) :: converts from bit list to a list of atoms each with bitwidth d(est) :: ++ convert |= [d=@ bits=(list @)] ^- (list @) =| ret=(list @) |- ?~ bits ret =/ dest-bits (scag d ((list @) bits)) :: left-shift the "missing" number of bits =/ num=@ %: lsh 0 (sub d (lent dest-bits)) (rep 0 (flop dest-bits)) == $(ret (snoc ret num), bits (slag d ((list @) bits))) :: Converts e.g. ~[0 0 31 31 31 31 0 0] in base32 (5 bitwidth) :: to ~[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] :: ++ from-digits |= [bitwidth=@ digits=(list @)] ^- (list @) %- zing %+ turn digits |= d=@ (zeros-brip bitwidth d) :: converts 40 bits: ~[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] :: to 0x3fff.fc00 when cast to hex :: ++ to-atom |= bits=(list @) ^- @ %+ rep 0 %- flop bits -- :: ++ bech32 |% ++ prefixes ^- (map network tape) (my [[%main "bc"] [%testnet "tb"] ~]) ++ charset "qpzry9x8gf2tvdw0s3jn54khce6mua7l" +$ raw-decoded [hrp=tape data=(list @) checksum=(list @)] :: ++ polymod |= values=(list @) |^ ^- @ =/ gen=(list @ux) ~[0x3b6a.57b2 0x2650.8e6d 0x1ea1.19fa 0x3d42.33dd 0x2a14.62b3] =/ chk=@ 1 |- ?~ values chk =/ top (rsh 0 25 chk) =. chk (mix i.values (lsh 0 5 (dis chk 0x1ff.ffff))) $(values t.values, chk (update-chk chk top gen)) :: ++ update-chk |= [chk=@ top=@ gen=(list @ux)] =/ is (gulf 0 4) |- ?~ is chk ?: =(1 (dis 1 (rsh 0 i.is top))) $(is t.is, chk (mix chk (snag i.is gen))) $(is t.is) -- :: ++ expand-hrp |= hrp=tape ^- (list @) =/ front (turn hrp |=(p=@tD (rsh 0 5 p))) =/ back (turn hrp |=(p=@tD (dis 31 p))) (zing ~[front ~[0] back]) :: ++ verify-checksum |= [hrp=tape data-and-checksum=(list @)] ^- ? %+ |=([a=@ b=@] =(a b)) 1 %- polymod (weld (expand-hrp hrp) data-and-checksum) :: ++ checksum |= [hrp=tape data=(list @)] ^- (list @) :: xor 1 with the polymod =/ pmod=@ %+ mix 1 %- polymod (zing ~[(expand-hrp hrp) data (reap 6 0)]) %+ turn (gulf 0 5) |=(i=@ (dis 31 (rsh 0 (mul 5 (sub 5 i)) pmod))) :: ++ charset-to-value |= c=@tD ^- (unit @) (find ~[c] charset) ++ value-to-charset |= value=@ ^- (unit @tD) ?: (gth value 31) ~ `(snag value charset) :: ++ is-valid |= [bech=tape last-1-pos=@] ^- ? ?& ?|(=((cass bech) bech) =((cuss bech) bech)) :: to upper or to lower is same as bech (gte last-1-pos 1) (lte (add last-1-pos 7) (lent bech)) (lte (lent bech) 90) (levy bech |=(c=@tD (gte c 33))) (levy bech |=(c=@tD (lte c 126))) == :: data should be 5bit words :: ++ encode-raw |= [hrp=tape data=(list @)] ^- bech32-address =/ combined=(list @) (weld data (checksum hrp data)) :- %bech32 %- crip (zing ~[hrp "1" (tape (murn combined value-to-charset))]) ++ decode-raw |= b=bech32-address ^- (unit raw-decoded) =/ bech (cass (trip +.b)) :: to lowercase =/ pos (flop (fand "1" bech)) ?~ pos ~ =/ last-1=@ i.pos ?. (is-valid bech last-1) :: check bech32 validity (not segwit validity or checksum) ~ =/ hrp (scag last-1 bech) =/ encoded-data-and-checksum=(list @) (slag +(last-1) bech) =/ data-and-checksum=(list @) %+ murn encoded-data-and-checksum charset-to-value ?. =((lent encoded-data-and-checksum) (lent data-and-checksum)) :: ensure all were in CHARSET ~ ?. (verify-checksum hrp data-and-checksum) ~ =/ checksum-pos (sub (lent data-and-checksum) 6) `[hrp (scag checksum-pos data-and-checksum) (slag checksum-pos data-and-checksum)] :: goes from a bech32 address to hex. Returns byts to preserve leading 0s :: ++ to-hex |= b=bech32-address ^- hash =/ d=(unit raw-decoded) (decode-raw b) ?~ d ~|("Invalid bech32 address" !!) =/ bs=(list @) (from-digits:bits 5 (slag 1 data.u.d)) ?. =(0 (mod (lent bs) 8)) ~|("Invalid bech32 address: not 8bit" !!) [(div (lent bs) 8) (to-atom:bits bs)] :: pubkey is the 33 byte ECC compressed public key :: ++ encode-pubkey |= [=network pubkey=@ux] ^- (unit bech32-address) ?. =(33 (met 3 pubkey)) ~|('pubkey must be a 33 byte ECC compressed public key' !!) =/ prefix (~(get by prefixes) network) ?~ prefix ~ :- ~ %+ encode-raw u.prefix [0 (convert:bits 5 (zeros-brip:bits 160 dat:(hash-160 pubkey)))] ++ encode-hash-160 |= [=network h160=byts] ^- (unit bech32-address) =/ prefix (~(get by prefixes) network) ?~ prefix ~ :- ~ %+ encode-raw u.prefix [0 (convert:bits 5 (zeros-brip:bits 160 dat.h160))] -- :: --