chapter 2c, simple noun surgery =============================== section 2cA, bit surgery ------------------------ ### `++bex` Binary exponent ++ bex :: binary exponent ~/ %bex |= a=@ ^- @ ?: =(0 a) 1 (mul 2 $(a (dec a))) Computes the result of `2^a`, producing an atom. `a` is an [atom](atom). ~zod/try=> (bex 4) 16 ~zod/try=> (bex (add 19 1)) 1.048.576 ~zod/try=> (bex 0) 1 ------------------------------------------------------------------------ ### `++xeb` Binary logarithm ++ xeb :: binary logarithm :: ~/ %xeb |= a=@ ^- @ (met 0 a) Computes the base-2 logarithm of `a`, producing an atom. `a` is an [atom](atom). ~zod/try=> (xeb 31) 5 ~zod/try=> (xeb 32) 6 ~zod/try=> (xeb 49) 6 ~zod/try=> (xeb 0) 0 ~zod/try=> (xeb 1) 1 ~zod/try=> (xeb 2) 2 ------------------------------------------------------------------------ ### `++can` Assemble ++ can :: assemble ~/ %can |= [a=bloq b=(list ,[p=@ q=@])] ^- @ ?~ b 0 (mix (end a p.i.b q.i.b) (lsh a p.i.b $(b t.b))) Produces an atom from a list `b` of length-value pairs `p` and `q`, where `p` is the length in bloqs of size `a`, and `q` is an atomic value. `a` is a block size (see [++bloq]()). `b` is a [list](list) of length value pairs, `p` and `q`. ~zod/try=> `@ub`(can 3 ~[[1 1]]) 0b1 ~zod/try=> `@ub`(can 0 ~[[1 255]]) 0b1 ~zod/try=> `@ux`(can 3 [3 0xc1] [1 0xa] ~) 0xa00.00c1 ~zod/try=> `@ux`(can 3 [3 0xc1] [1 0xa] [1 0x23] ~) 0x23.0a00.00c1 ~zod/try=> `@ux`(can 4 [3 0xc1] [1 0xa] [1 0x23] ~) 0x23.000a.0000.0000.00c1 ~zod/try=> `@ux`(can 3 ~[[1 'a'] [2 'bc']]) 0x63.6261 ------------------------------------------------------------------------ ### `++cat` Concatenate ++ cat :: concatenate ~/ %cat |= [a=bloq b=@ c=@] (add (lsh a (met a b) c) b) Concatenates two atoms, `b` and `c`, using bloq size `a`, producing an atom. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> `@ub`(cat 3 1 0) 0b1 ~zod/try=> `@ub`(cat 0 1 1) 0b11 ~zod/try=> `@ub`(cat 0 2 1) 0b110 ~zod/try=> `@ub`(cat 2 1 1) 0b1.0001 ~zod/try=> `@ub`256 0b1.0000.0000 ~zod/try=> `@ub`255 0b1111.1111 ~zod/try=> `@ub`(cat 3 256 255) 0b1111.1111.0000.0001.0000.0000 ~zod/try=> `@ub`(cat 2 256 255) 0b1111.1111.0001.0000.0000 ~zod/try=> (cat 3 256 255) 16.711.936 ------------------------------------------------------------------------ ### `++cut` Slice ++ cut :: slice ~/ %cut |= [a=bloq [b=@ c=@] d=@] (end a c (rsh a b d)) Slices `c` blocks of size `a` that are `b` blocks from the end of `d`. Produces an atom. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> (cut 0 [1 1] 2) 1 ~zod/try=> (cut 0 [2 1] 4) 1 ~zod/try=> `@t`(cut 3 [0 3] 'abcdefgh') 'abc' ~zod/try=> `@t`(cut 3 [1 3] 'abcdefgh') 'bcd' ~zod/try=> `@ub`(cut 0 [0 3] 0b1111.0000.1101) 0b101 ~zod/try=> `@ub`(cut 0 [0 6] 0b1111.0000.1101) 0b1101 ~zod/try=> `@ub`(cut 0 [4 6] 0b1111.0000.1101) 0b11.0000 ~zod/try=> `@ub`(cut 0 [3 6] 0b1111.0000.1101) 0b10.0001 ------------------------------------------------------------------------ ### `++end` Tail ++ end :: tail ~/ %end |= [a=bloq b=@ c=@] (mod c (bex (mul (bex a) b))) Produces an atom by taking the last `b` blocks of size `a` from `c`. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> `@ub`12 0b1100 ~zod/try=> `@ub`(end 0 3 12) 0b100 ~zod/try=> (end 0 3 12) 4 ~zod/try=> `@ub`(end 1 3 12) 0b1100 ~zod/try=> (end 1 3 12) 12 ~zod/try=> `@ux`'abc' 0x63.6261 ~zod/try=> `@ux`(end 3 2 'abc') 0x6261 ~zod/try=> `@t`(end 3 2 'abc') 'ab' ------------------------------------------------------------------------ ### `++fil` Fill bloqstream ++ fil :: fill bloqstream |= [a=bloq b=@ c=@] =+ n=0 =+ d=c |- ^- @ ?: =(n b) (rsh a 1 d) $(d (add c (lsh a 1 d)), n +(n)) Produces an atom by repeating `c` for `b` blocks of size `a`. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> `@t`(fil 3 5 %a) 'aaaaa' ~zod/try=> `@t`(fil 5 10 %ceeb) 'ceebceebceebceebceebceebceebceebceebceeb' ~zod/try=> `@t`(fil 4 10 %eced) 'ʇʇʇʇʇʇʇʇʇʇed' ~zod/try=> `@tas`(fil 4 10 %bf) %bfbfbfbfbfbfbfbfbfbf ------------------------------------------------------------------------ ### `++lsh` Left-shift ++ lsh :: left-shift ~/ %lsh |= [a=bloq b=@ c=@] (mul (bex (mul (bex a) b)) c) Produces an atom by left-shifting `c` by `b` blocks of size `a`. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> `@ub`1 0b1 ~zod/try=> `@ub`(lsh 0 1 1) 0b10 ~zod/try=> (lsh 0 1 1) 2 ~zod/try=> `@ub`255 0b1111.1111 ~zod/try=> `@ub`(lsh 3 1 255) 0b1111.1111.0000.0000 ~zod/try=> (lsh 3 1 255) 65.280 ------------------------------------------------------------------------ ### `++met` Measure ++ met :: measure ~/ %met |= [a=bloq b=@] ^- @ =+ c=0 |- ?: =(0 b) c $(b (rsh a 1 b), c +(c)) Computes the number of blocks of size `a` in `b`, producing an atom. `a` is a block size (see [++bloq]()). `b` is an [atom](). ~zod/try=> (met 0 1) 1 ~zod/try=> (met 0 2) 2 ~zod/try=> (met 3 255) 1 ~zod/try=> (met 3 256) 2 ~zod/try=> (met 3 'abcde') 5 ------------------------------------------------------------------------ ### `++rap` Assemble non-zero ++ rap :: assemble nonzero ~/ %rap |= [a=bloq b=(list ,@)] ^- @ ?~ b 0 (cat a i.b $(b t.b)) Concatenate a list of atoms `b` using blocksize `a`, producing an atom. `a` is a block size (see [++bloq]()). `b` is a [list]() of [atoms](). ~zod/try=> `@ub`(rap 2 (limo [1 2 3 4 ~])) 0b100.0011.0010.0001 ~zod/try=> `@ub`(rap 1 (limo [1 2 3 4 ~])) 0b1.0011.1001 ~zod/try=> (rap 0 (limo [0 0 0 ~])) 0 ~zod/try=> (rap 0 (limo [1 0 1 ~])) 3 ------------------------------------------------------------------------ ### `++rep` Assemble single ++ rep :: assemble single ~/ %rep |= [a=bloq b=(list ,@)] ^- @ =+ c=0 |- ?~ b 0 (con (lsh a c (end a 1 i.b)) $(c +(c), b t.b)) Produces an atom by assembling a list of atoms `b` using block size `a`. `a` is a block size (see [++bloq]()). `b` is a list of [atoms](). ~zod/try=> `@ub`(rep 2 (limo [1 2 3 4 ~])) 0b100.0011.0010.0001 ~zod/try=> (rep 0 (limo [0 0 1 ~])) 4 ~zod/try=> (rep 0 (limo [0 0 0 1 ~])) 8 ~zod/try=> (rep 0 (limo [0 1 0 0 ~])) 2 ~zod/try=> (rep 0 (limo [0 1 0 1 ~])) 10 ~zod/try=> (rep 0 (limo [0 1 0 1 0 1 ~])) 42 ~zod/try=> `@ub`42 0b10.1010 ------------------------------------------------------------------------ ### `++rip` Disassemble ++ rip :: disassemble ~/ %rip |= [a=bloq b=@] ^- (list ,@) ?: =(0 b) ~ [(end a 1 b) $(b (rsh a 1 b))] Produces a list of atoms from the bits of `b` using block size `a`. `a` is a block size (see [++bloq]()). `b` is an [atom](). ~zod/try=> `@ub`155 0b1001.1011 ~zod/try=> (rip 0 155) ~[1 1 0 1 1 0 0 1] ~zod/try=> (rip 2 155) ~[11 9] ~zod/try=> (rip 1 155) ~[3 2 1 2] ~zod/try=> `@ub`256 0b1.0000.0000 ~zod/try=> (rip 0 256) ~[0 0 0 0 0 0 0 0 1] ~zod/try=> (rip 2 256) ~[0 0 1] ~zod/try=> (rip 3 256) ~[0 1] ------------------------------------------------------------------------ ### `++rsh` Right-shift ++ rsh :: right-shift ~/ %rsh |= [a=bloq b=@ c=@] (div c (bex (mul (bex a) b))) Right-shifts `c` by `b` blocks of size `a`, producing an atom. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> `@ub`145 0b1001.0001 ~zod/try=> `@ub`(rsh 1 1 145) 0b10.0100 ~zod/try=> (rsh 1 1 145) 36 ~zod/try=> `@ub`(rsh 2 1 145) 0b1001 ~zod/try=> (rsh 2 1 145) 9 ~zod/try=> `@ub`10 0b1010 ~zod/try=> `@ub`(rsh 0 1 10) 0b101 ~zod/try=> (rsh 0 1 10) 5 ~zod/try=> `@ux`'abc' 0x63.6261 ~zod/try=> `@t`(rsh 3 1 'abc') 'bc' ~zod/try=> `@ux`(rsh 3 1 'abc') 0x6362 ------------------------------------------------------------------------ ### `++swap` Reverse block order ++ swap |=([a=bloq b=@] (rep a (flop (rip a b)))) :: reverse bloq order Switches little ending to big and vice versa: produces an atom by reversing the block order of `b` using block size `a`. `a` is a block size (see [++bloq]()). `b` is an [atom]() ~zod/try=> `@ub`24 0b1.1000 ~zod/try=> (swap 0 24) 3 ~zod/try=> `@ub`3 0b11 ~zod/try=> (swap 0 0) 0 ~zod/try=> (swap 0 128) 1 ------------------------------------------------------------------------ section 2cB, bit logic ---------------------- ### `++con` Binary OR ++ con :: binary or ~/ %con |= [a=@ b=@] =+ [c=0 d=0] |- ^- @ ?: ?&(=(0 a) =(0 b)) d %= $ a (rsh 0 1 a) b (rsh 0 1 b) c +(c) d %+ add d %^ lsh 0 c ?& =(0 (end 0 1 a)) =(0 (end 0 1 b)) == == Computes the bit-wise logical OR of two atoms, `a` and `b`, producing an atom. `a` is an [atom]() `b` is an [atom]() ~zod/try=> (con 0b0 0b1) 1 ~zod/try=> (con 0 1) 1 ~zod/try=> (con 0 0) 0 ~zod/try=> `@ub`(con 0b1111.0000 0b1.0011) 0b1111.0011 ~zod/try=> (con 4 4) 4 ~zod/try=> (con 10.000 234) 10.234 ------------------------------------------------------------------------ ### `++dis` Binary AND ++ dis :: binary and ~/ %dis |= [a=@ b=@] =| [c=@ d=@] |- ^- @ ?: ?|(=(0 a) =(0 b)) d %= $ a (rsh 0 1 a) b (rsh 0 1 b) c +(c) d %+ add d %^ lsh 0 c ?| =(0 (end 0 1 a)) =(0 (end 0 1 b)) == == Computes the bit-wise logical AND of two atoms `a` and `b`, producing an atom. `a` is an [atom]() `b` is an [atom]() ~zod/try=> `@ub`9 0b1001 ~zod/try=> `@ub`5 0b101 ~zod/try=> `@ub`(dis 9 5) 0b1 ~zod/try=> (dis 9 5) 1 ~zod/try=> `@ub`534 0b10.0001.0110 ~zod/try=> `@ub`987 0b11.1101.1011 ~zod/try=> `@ub`(dis 534 987) 0b10.0001.0010 ~zod/try=> (dis 534 987) 530 ------------------------------------------------------------------------ ### `++mix` Binary XOR ++ mix :: binary xor ~/ %mix |= [a=@ b=@] ^- @ =+ [c=0 d=0] |- ?: ?&(=(0 a) =(0 b)) d %= $ a (rsh 0 1 a) b (rsh 0 1 b) c +(c) d (add d (lsh 0 c =((end 0 1 a) (end 0 1 b)))) == Produces the bit-wise logical XOR of `a` and `b`, producing an atom. `a` is an [atom]() `b` is an [atom]() ~zod/try=> `@ub`2 0b10 ~zod/try=> `@ub`3 0b11 ~zod/try=> `@ub`(mix 2 3) 0b1 ~zod/try=> (mix 2 3) 1 ~zod/try=> `@ub`(mix 2 2) 0b0 ~zod/try=> (mix 2 2) 0 ------------------------------------------------------------------------ ### `++not` Binary NOT ++ not |= [a=bloq b=@ c=@] :: binary not (sized) (mix c (dec (bex (mul b (bex a))))) Computes the bit-wise logical NOT of the bottom `b` blocks of size `a` of `c`. `a` is a block size (see [++bloq]()). `b` is an [atom](). `c` is an [atom](). ~zod/try=> `@ub`24 0b1.1000 ~zod/try=> (not 0 5 24) 7 ~zod/try=> `@ub`7 0b111 ~zod/try=> (not 2 5 24) 1.048.551 ~zod/try=> (not 2 5 1.048.551) 24 ~zod/try=> (not 1 1 (not 1 1 10)) 10 ------------------------------------------------------------------------ section 2cC, noun orders ------------------------ ### `++aor` Alphabetic order ++ aor :: alphabetic-order ~/ %aor |= [a=* b=*] ^- ? ?: =(a b) & ?. ?=(@ a) ?: ?=(@ b) | ?: =(-.a -.b) $(a +.a, b +.b) $(a -.a, b -.b) ?. ?=(@ b) & |- =+ [c=(end 3 1 a) d=(end 3 1 b)] ?: =(c d) $(a (rsh 3 1 a), b (rsh 3 1 b)) (lth c d) Computes whether `a` and `b` are in alphabetical order, producing a loobean. `a` is a [noun](). `b` is a [noun](). ~zod/try=> (aor 'a' 'b') %.y ~zod/try=> (aor 'b' 'a') %.n ~zod/try=> (aor "foo" "bar") %.n ~zod/try=> (aor "bar" "foo") %.y ~zod/try=> (aor "abcdefz" "abcdefa") %.n ~zod/try=> (aor "abcdefa" "abcdefz") %.y ~zod/try=> (aor 10.000 17.000) %.y ~zod/try=> (aor 10 9) %.n ------------------------------------------------------------------------ ### `++dor` Numeric order ++ dor :: d-order ~/ %dor |= [a=* b=*] ^- ? ?: =(a b) & ?. ?=(@ a) ?: ?=(@ b) | ?: =(-.a -.b) $(a +.a, b +.b) $(a -.a, b -.b) ?. ?=(@ b) & (lth a b) Computes whether `a` and `b` are in ascending numeric order, producing a loobean. `a` is a [noun](). `b` is a [noun](). ~zod/try=> (dor 1 2) %.y ~zod/try=> (dor 2 1) %.n ~zod/try=> (dor ~[1 2 3] ~[1 2 4]) %.y ~zod/try=> (dor ~[1 2 4] ~[1 2 3]) %.n ~zod/try=> (dor (limo ~[99 100 10.000]) ~[99 101 10.000]) %.y ~zod/try=> (dor ~[99 101 10.999] (limo ~[99 100 10.000])) %.n ------------------------------------------------------------------------ ### `++gor` Hash order ++ gor :: g-order ~/ %gor |= [a=* b=*] ^- ? =+ [c=(mug a) d=(mug b)] ?: =(c d) (dor a b) (lth c d) XX revisit ~zod/try=> (gor 'd' 'c') %.y ~zod/try=> 'd' 'd' ~zod/try=> 'c' ~zod/try=> `@ud`'d' 100 ~zod/try=> `@ud`'c' 99 ~zod/try=> (mug 'd') 1.628.185.714 ~zod/try=> (mug 'c') 1.712.073.811 ~zod/try=> (gor 'd' 'c') %.y ~zod/try=> (gor 'c' 'd') %.n ~zod/try=> (gor "foo" "bar") %.n ~zod/try=> (gor (some 10) (limo [1 2 3 ~])) %.n ------------------------------------------------------------------------ ### `++hor` Hash order ++ hor :: h-order ~/ %hor |= [a=* b=*] ^- ? ?: ?=(@ a) ?. ?=(@ b) & (gor a b) ?: ?=(@ b) | ?: =(-.a -.b) (gor +.a +.b) (gor -.a -.b) XX revisit Recursive hash comparator gate. ~zod/try=> (hor . 1) %.n ~zod/try=> (hor 1 2) %.y ~zod/try=> (hor "abc" "cba") %.y ~zod/try=> (hor 'c' 'd') %.n ------------------------------------------------------------------------ ### `++vor` ++ vor :: v-order ~/ %vor |= [a=* b=*] ^- ? =+ [c=(mug (mug a)) d=(mug (mug b))] ?: =(c d) (dor a b) (lth c d) XX revisit Double hash comparator gate. ~zod/try=> (vor 'f' 'g') %.y ~zod/try=> (vor 'a' 'z') %.n ~zod/try=> (vor 43.326 41.106) %.n section 2cD, insecure hashing ----------------------------- ### `++fnv` ++ fnv |=(a=@ (end 5 1 (mul 16.777.619 a))) :: FNV scrambler Hashes an atom with the 32-bit FNV non-cryptographic hash algorithm. Multiplies `a` by the prime number 16,777,619 and then takes the block of size 5 off the product's end, producing atom. `a` is an [atom](). ~zod/try=> (fnv 10.000) 272.465.456 ~zod/try=> (fnv 10.001) 289.243.075 ~zod/try=> (fnv 1) 16.777.619 ------------------------------------------------------------------------ ### `++mum` ++ mum :: mug with murmur3 ~/ %mum |= a=* |^ (trim ?@(a a (mix $(a -.a) (mix 0x7fff.ffff $(a +.a))))) ++ spec :: standard murmur3 |= [syd=@ key=@] ?> (lte (met 5 syd) 1) =+ ^= row |= [a=@ b=@] (con (end 5 1 (lsh 0 a b)) (rsh 0 (sub 32 a) b)) =+ mow=|=([a=@ b=@] (end 5 1 (mul a b))) =+ len=(met 5 key) =- =. goc (mix goc len) =. goc (mix goc (rsh 4 1 goc)) =. goc (mow goc 0x85eb.ca6b) =. goc (mix goc (rsh 0 13 goc)) =. goc (mow goc 0xc2b2.ae35) (mix goc (rsh 4 1 goc)) ^= goc =+ [inx=0 goc=syd] |- ^- @ ?: =(inx len) goc =+ kop=(cut 5 [inx 1] key) =. kop (mow kop 0xcc9e.2d51) =. kop (row 15 kop) =. kop (mow kop 0x1b87.3593) =. goc (mix kop goc) =. goc (row 13 goc) =. goc (end 5 1 (add 0xe654.6b64 (mul 5 goc))) $(inx +(inx)) :: ++ trim :: 31-bit nonzero |= key=@ =+ syd=0xcafe.babe |- ^- @ =+ haz=(spec syd key) =+ ham=(mix (rsh 0 31 haz) (end 0 31 haz)) ?.(=(0 ham) ham $(syd +(syd))) -- :: XX document ~zod/try=> (mum 10.000) 1.232.632.901 ~zod/try=> (mum 10.001) 658.093.079 ~zod/try=> (mum 1) 818.387.364 ~zod/try=> (mum (some 10)) 1.177.215.703 ~zod/try=> (mum ~[1 2 3 4 5]) 1.517.902.092 ### `++mug` ++ mug :: 31bit nonzero FNV1a ~/ %mug |= a=* ?^ a =+ b=[p=$(a -.a) q=$(a +.a)] |- ^- @ =+ c=(fnv (mix p.b (fnv q.b))) =+ d=(mix (rsh 0 31 c) (end 0 31 c)) ?. =(0 c) c $(q.b +(q.b)) =+ b=2.166.136.261 |- ^- @ =+ c=b =+ [d=0 e=(met 3 a)] |- ^- @ ?: =(d e) =+ f=(mix (rsh 0 31 c) (end 0 31 c)) ?. =(0 f) f ^$(b +(b)) $(c (fnv (mix c (cut 3 [d 1] a))), d +(d)) Hashes `a` with the 31-bit nonzero FNV-1a non-cryptographic hash algorithm, producing an atom. ~zod/try=> (mug 10.000) 178.152.889 ~zod/try=> (mug 10.001) 714.838.017 ~zod/try=> (mug 1) 67.918.732 ~zod/try=> (mug (some 10)) 1.872.403.737 ~zod/try=> (mug (limo [1 2 3 4 5 ~])) 1.067.931.605 section 2cE, phonetic base -------------------------- ### `++po` ++ po ~/ %po =+ :- ^= sis :: prefix syllables 'dozmarbinwansamlitsighidfidlissogdirwacsabwissib\ /rigsoldopmodfoglidhopdardorlorhodfolrintogsilmir\ /holpaslacrovlivdalsatlibtabhanticpidtorbolfosdot\ /losdilforpilramtirwintadbicdifrocwidbisdasmidlop\ /rilnardapmolsanlocnovsitnidtipsicropwitnatpanmin\ /ritpodmottamtolsavposnapnopsomfinfonbanporworsip\ /ronnorbotwicsocwatdolmagpicdavbidbaltimtasmallig\ /sivtagpadsaldivdactansidfabtarmonranniswolmispal\ /lasdismaprabtobrollatlonnodnavfignomnibpagsopral\ /bilhaddocridmocpacravripfaltodtiltinhapmicfanpat\ /taclabmogsimsonpinlomrictapfirhasbosbatpochactid\ /havsaplindibhosdabbitbarracparloddosbortochilmac\ /tomdigfilfasmithobharmighinradmashalraglagfadtop\ /mophabnilnosmilfopfamdatnoldinhatnacrisfotribhoc\ /nimlarfitwalrapsarnalmoslandondanladdovrivbacpol\ /laptalpitnambonrostonfodponsovnocsorlavmatmipfap' ^= dex :: suffix syllables 'zodnecbudwessevpersutletfulpensytdurwepserwylsun\ /rypsyxdyrnuphebpeglupdepdysputlughecryttyvsydnex\ /lunmeplutseppesdelsulpedtemledtulmetwenbynhexfeb\ /pyldulhetmevruttylwydtepbesdexsefwycburderneppur\ /rysrebdennutsubpetrulsynregtydsupsemwynrecmegnet\ /secmulnymtevwebsummutnyxrextebfushepbenmuswyxsym\ /selrucdecwexsyrwetdylmynmesdetbetbeltuxtugmyrpel\ /syptermebsetdutdegtexsurfeltudnuxruxrenwytnubmed\ /lytdusnebrumtynseglyxpunresredfunrevrefmectedrus\ /bexlebduxrynnumpyxrygryxfeptyrtustyclegnemfermer\ /tenlusnussyltecmexpubrymtucfyllepdebbermughuttun\ /bylsudpemdevlurdefbusbeprunmelpexdytbyttyplevmyl\ /wedducfurfexnulluclennerlexrupnedlecrydlydfenwel\ /nydhusrelrudneshesfetdesretdunlernyrsebhulryllud\ /remlysfynwerrycsugnysnyllyndyndemluxfedsedbecmun\ /lyrtesmudnytbyrsenwegfyrmurtelreptegpecnelnevfes' |% Provides the phonetic syllables and name generators for the Urbit naming system. The two faces, `sis` and `dex` are available to the arms contained in this section. ------------------------------------------------------------------------ ### `++ind` Parse prefix ++ ind ~/ %ind :: parse prefix |= a=@ =+ b=0 |- ^- (unit ,@) ?:(=(256 b) ~ ?:(=(a (tod b)) [~ b] $(b +(b)))) Produces the byte of the right-hand syllable `a`. `a` is an [atom](). ~zod/try=> (ind:po 'zod') [~ 0] ~zod/try=> (ind:po 'zam') ~ ~zod/try=> (ind:po 'del') [~ 37] ------------------------------------------------------------------------ ### `++ins` Parse suffix ++ ins ~/ %ins :: parse suffix |= a=@ =+ b=0 |- ^- (unit ,@) ?:(=(256 b) ~ ?:(=(a (tos b)) [~ b] $(b +(b)))) Produces the byte of the left-hand phonetic syllable `b`. `a` is an [atom](). ~zod/try=> (ins:po 'mar') [~ 1] ~zod/try=> (ins:po 'son') [~ 164] ~zod/try=> (ins:po 'pit') [~ 242] ~zod/try=> (ins:po 'pok') ~ ------------------------------------------------------------------------ ### `++tod` Fetch prefix ++ tod ~/ %tod :: fetch prefix |=(a=@ ?>((lth a 256) (cut 3 [(mul 3 a) 3] dex))) Produces the phonetic prefix syllable from index `a` within `dex` as an atom. `a` is an [atom]() ~zod/try=> `@t`(tod:po 1) 'nec' ~zod/try=> `@t`(tod:po 98) 'dec' ~zod/try=> `@t`(tod:po 0) 'zod' ~zod/try=> `@t`(tod:po 150) 'ryg' ~zod/try=> `@t`(tod:po 255) 'fes' ~zod/try=> `@t`(tod:po 256) ! exit ------------------------------------------------------------------------ ### `++tos` Fetch suffix ++ tos ~/ %tos :: fetch suffix |=(a=@ ?>((lth a 256) (cut 3 [(mul 3 a) 3] sis))) Produces the phonetic prefix syllable from index `a` within `sis` as an atom. ~zod/try=> `@t`(tos:po 0) 'doz' ~zod/try=> `@t`(tos:po 120) 'fab' ~zod/try=> `@t`(tos:po 43) 'pid' ~zod/try=> `@t`(tos:po 253) 'mat' ------------------------------------------------------------------------ section 2cF, signed and modular ints ------------------------------------ ### `++si` ++ si !: :: signed integer |% Container for the signed integer functions. ------------------------------------------------------------------------ ### `++abs` ++ abs |=(a=@s (add (end 0 1 a) (rsh 0 1 a))) :: absolute value Produces the absolute value of a signed integer. `a` is a signed integer, `@s`. ~zod/try=> (abs:si -2) 2 ~zod/try=> (abs:si -10.000) 10.000 ~zod/try=> (abs:si --2) 2 ------------------------------------------------------------------------ ### `++dif` ++ dif |= [a=@s b=@s] :: subtraction (sum a (new !(syn b) (abs b))) Produces the difference between two signed integers `b` and `c`. `a` is a signed integer, `@s`. `b` is a signed integer, `@s`. ~zod/try=> (dif:si --10 -7) --17 ~zod/try=> (dif:si --10 --7) --3 ~zod/try=> (dif:si `@s`0 --7) -7 ~zod/try=> (dif:si `@s`0 `@s`7) --4 ------------------------------------------------------------------------ ### `++dul` ++ dul |= [a=@s b=@] :: modulus =+(c=(old a) ?:(-.c (mod +.c b) (sub b +.c))) Produces the modulus of two signed integers. `a` is a signed integer, `@s`. `b` is an [atom](). ~zod/try=> (dul:si --9 3) 0 ~zod/try=> (dul:si --9 4) 1 ~zod/try=> (dul:si --9 5) 4 ~zod/try=> (dul:si --9 6) 3 ~zod/try=> (dul:si --90 --10) 10 ------------------------------------------------------------------------ ### `++fra` ++ fra |= [a=@s b=@s] :: divide (new =(0 (mix (syn a) (syn b))) (div (abs a) (abs b))) Produces the quotient of two signed integers. `a` is a signed integer, `@s`. `b` is a signed integer, `@s`. ~zod/try=> (fra:si --10 -2) -5 ~zod/try=> (fra:si -20 -5) --4 ------------------------------------------------------------------------ ### `++new` ++ new |= [a=? b=@] :: [sign value] to @s `@s`?:(a (mul 2 b) ?:(=(0 b) 0 +((mul 2 (dec b))))) Produces a signed integer from a loobean sign value `a` and an atom `b`. `a` is a loobean. `b` is an [atom](). ~zod/try=> (new:si [& 10]) --10 ~zod/try=> (new:si [| 10]) -10 ~zod/try=> (new:si [%.y 7]) --7 ------------------------------------------------------------------------ ### `++old` ++ old |=(a=@s [(syn a) (abs a)]) :: [sign value] Produces the cell `[sign value]` representations of a signed integer. `a` is a signed integer, `@s`. ~zod/try=> (old:si 7) ! type-fail ! exit ~zod/try=> (old:si -7) [%.n 7] ~zod/try=> (old:si --7) [%.y 7] ~zod/try=> (old:si `@s`7) [%.n 4] ~zod/try=> (old:si -0) [%.y 0] ------------------------------------------------------------------------ ### `++pro` ++ pro |= [a=@s b=@s] :: multiplication (new =(0 (mix (syn a) (syn b))) (mul (abs a) (abs b))) Produces the product of two signed integers. `a` is a signed integer, `@s`. `b` is a signed integer, `@s`. ~zod/try=> (pro:si -4 --2) -8 ~zod/try=> (pro:si -4 -2) --8 ~zod/try=> (pro:si --10.000.000 -10) -100.000.000 ~zod/try=> (pro:si -1.337 --0) --0 ------------------------------------------------------------------------ ### `++rem` ++ rem |=([a=@s b=@s] (dif a (pro b (fra a b)))) :: remainder Produces the remainder from a division of two signed integers. `a` is a signed integer, `@s`. `b` is a signed integer, `@s`. ~zod/try=> (rem:si -10 -4) -2 ~zod/try=> (rem:si --10 --4) --2 ~zod/try=> (rem:si --10 -4) --2 ~zod/try=> (rem:si --7 --3) --1 ~zod/try=> (rem:si --0 --10.000) --0 ------------------------------------------------------------------------ ### `++sum` ++ sum |= [a=@s b=@s] :: addition ~| %si-sum =+ [c=(old a) d=(old b)] ?: -.c ?: -.d (new & (add +.c +.d)) ?: (gte +.c +.d) (new & (sub +.c +.d)) (new | (sub +.d +.c)) ?: -.d ?: (gte +.c +.d) (new | (sub +.c +.d)) (new & (sub +.d +.c)) (new | (add +.c +.d)) Sum two signed integers. `b` is a signed integer, `@s`. `c` is a signed integer, `@s`. ~zod/try=> (sum:si --10 --10) --20 ~zod/try=> (sum:si --10 -0) --10 ~zod/try=> (sum:si -10 -7) -17 ~zod/try=> (sum:si -10 --7) -3 ------------------------------------------------------------------------ ### `++sun` ++ sun |=(a=@u (mul 2 a)) :: @u to @s Produces a signed integer from an unsigned integer. Note that the result must be manually cast to some @s odor to be inferred as an unsigned integer in the type system. `a` is an unsigned integer, `@u`. ~zod/try=> `@s`10 --5 ~zod/try=> (sun:si 10) 20 ~zod/try=> `@s`(sun:si 10) --10 ~zod/try=> `@sd`(sun:si 10) --10 ~zod/try=> `@sd`(sun:si 12.345) --12.345 ------------------------------------------------------------------------ ### `++syn` ++ syn |=(a=@s =(0 (end 0 1 a))) :: sign test Produce the sign of a signed integer, `&` being posiitve, `|` negative. `a` is a signed integer, `@s`. ~zod/try=> (syn:si -2) %.n ~zod/try=> (syn:si --2) %.y ~zod/try=> (syn:si -0) %.y ------------------------------------------------------------------------ ### `++cmp` ++ cmp |= [a=@s b=@s] :: compare ^- @s ?: =(a b) --0 ?: (syn a) ?: (syn b) ?: (gth a b) --1 -1 --1 ?: (syn b) -1 ?: (gth a b) -1 --1 Compare two signed integers. `b` is a signed integer, `@s`. `c` is a signed integer, `@s`. ~zod/try=> (cmp:si --10 --10) --0 ~zod/try=> (cmp:si --10 -0) --1 ~zod/try=> (cmp:si -10 -7) -1 ~zod/try=> (cmp:si -10 --7) -1 ### `++dif` ++ dif |=([b=@ c=@] (sit (sub (add out (sit b)) (sit c)))) Produces the difference between two atoms in the modular basis representation. `b` is an [atom](). `c` is an [atom](). ~zod/try=> (~(dif fe 3) 63 64) 255 ~zod/try=> (~(dif fe 3) 5 10) 251 ~zod/try=> (~(dif fe 3) 0 1) 255 ~zod/try=> (~(dif fe 0) 9 10) 1 ~zod/try=> (~(dif fe 0) 9 11) 0 ~zod/try=> (~(dif fe 0) 9 12) 1 ~zod/try=> (~(dif fe 2) 9 12) 13 ~zod/try=> (~(dif fe 2) 63 64) 15 ------------------------------------------------------------------------ ### `++inv` ++ inv |=(b=@ (sub (dec out) (sit b))) Inverts the order of the modular field. `b` is an [atom](). ~zod/try=> (~(inv fe 3) 255) 0 ~zod/try=> (~(inv fe 3) 256) 255 ~zod/try=> (~(inv fe 3) 0) 255 ~zod/try=> (~(inv fe 3) 1) 254 ~zod/try=> (~(inv fe 3) 2) 253 ~zod/try=> (~(inv fe 3) 55) 200 ------------------------------------------------------------------------ ### `++net` ++ net |= b=@ ^- @ => .(b (sit b)) ?: (lte a 3) b =+ c=(dec a) %+ con (lsh c 1 $(a c, b (cut c [0 1] b))) $(a c, b (cut c [1 1] b)) Reverse bytes within block. `b` is an [atom](). ~zod/try=> (~(net fe 3) 64) 64 ~zod/try=> (~(net fe 3) 128) 128 ~zod/try=> (~(net fe 3) 255) 255 ~zod/try=> (~(net fe 3) 256) 0 ~zod/try=> (~(net fe 3) 257) 1 ~zod/try=> (~(net fe 3) 500) 244 ~zod/try=> (~(net fe 3) 511) 255 ~zod/try=> (~(net fe 3) 512) 0 ~zod/try=> (~(net fe 3) 513) 1 ~zod/try=> (~(net fe 3) 0) 0 ~zod/try=> (~(net fe 3) 1) 1 ~zod/try=> (~(net fe 0) 1) 1 ~zod/try=> (~(net fe 0) 2) 0 ~zod/try=> (~(net fe 0) 3) 1 ~zod/try=> (~(net fe 6) 1) 72.057.594.037.927.936 ~zod/try=> (~(net fe 6) 2) 144.115.188.075.855.872 ~zod/try=> (~(net fe 6) 3) 216.172.782.113.783.808 ~zod/try=> (~(net fe 6) 4) 288.230.376.151.711.744 ~zod/try=> (~(net fe 6) 5) 360.287.970.189.639.680 ~zod/try=> (~(net fe 6) 6) 432.345.564.227.567.616 ~zod/try=> (~(net fe 6) 7) 504.403.158.265.495.552 ~zod/try=> (~(net fe 6) 512) 562.949.953.421.312 ~zod/try=> (~(net fe 6) 513) 72.620.543.991.349.248 ------------------------------------------------------------------------ ### `++out` ++ out (bex (bex a)) The maximum integer value that the current block can store. ~zod/try=> ~(out fe 0) 2 ~zod/try=> ~(out fe 1) 4 ~zod/try=> ~(out fe 2) 16 ~zod/try=> ~(out fe 3) 256 ~zod/try=> ~(out fe 4) 65.536 ~zod/try=> ~(out fe 10) \/179.769.313.486.231.590.772.930.519.078.902.473.361.797.697.894.230.657.\/ 273.430.081.157.732.675.805.500.963.132.708.477.322.407.536.021.120.113. 879.871.393.357.658.789.768.814.416.622.492.847.430.639.474.124.377.767. 893.424.865.485.276.302.219.601.246.094.119.453.082.952.085.005.768.838. 150.682.342.462.881.473.913.110.540.827.237.163.350.510.684.586.298.239. 947.245.938.479.716.304.835.356.329.624.224.137.216 \/ \/ ------------------------------------------------------------------------ ### `++rol` ++ rol |= [b=bloq c=@ d=@] ^- @ :: roll left =+ e=(sit d) =+ f=(bex (sub a b)) =+ g=(mod c f) (sit (con (lsh b g e) (rsh b (sub f g) e))) Roll `d` to the left by `c` `b`-sized blocks. `b` is a block size (see [++bloq]()). `c` is an [atom](). `d` is an [atom](). ~zod/try=> `@ux`(~(rol fe 6) 4 3 0xabac.dedf.1213) 0x1213.0000.abac.dedf ~zod/try=> `@ux`(~(rol fe 6) 4 2 0xabac.dedf.1213) 0xdedf.1213.0000.abac ~zod/try=> `@t`(~(rol fe 5) 3 1 'dfgh') 'hdfg' ~zod/try=> `@t`(~(rol fe 5) 3 2 'dfgh') 'ghdf' ~zod/try=> `@t`(~(rol fe 5) 3 0 'dfgh') 'dfgh' ------------------------------------------------------------------------ ### `++ror` ++ ror |= [b=bloq c=@ d=@] ^- @ :: roll right =+ e=(sit d) =+ f=(bex (sub a b)) =+ g=(mod c f) (sit (con (rsh b g e) (lsh b (sub f g) e))) Roll `d` to the right by `c` `b`-sized blocks. `b` is a block size (see [++bloq]()). `c` is an [atom](). `d` is an [atom](). ~zod/try=> `@ux`(~(ror fe 6) 4 1 0xabac.dedf.1213) 0x1213.0000.abac.dedf ~zod/try=> `@ux`(~(ror fe 6) 3 5 0xabac.dedf.1213) 0xacde.df12.1300.00ab ~zod/try=> `@ux`(~(ror fe 6) 3 3 0xabac.dedf.1213) 0xdf12.1300.00ab.acde ~zod/try=> `@t`(~(rol fe 5) 3 0 'hijk') 'hijk' ~zod/try=> `@t`(~(rol fe 5) 3 1 'hijk') 'khij' ~zod/try=> `@t`(~(rol fe 5) 3 2 'hijk') 'jkhi' ------------------------------------------------------------------------ ### `++sum` ++ sum |=([b=@ c=@] (sit (add b c))) :: wrapping add Sum two numbers in this modular field. `b` is an [atom](). `c` is an [atom](). ~zod/try=> (~(sum fe 3) 10 250) 4 ~zod/try=> (~(sum fe 0) 0 1) 1 ~zod/try=> (~(sum fe 0) 0 2) 0 ~zod/try=> (~(sum fe 2) 14 2) 0 ~zod/try=> (~(sum fe 2) 14 3) 1 ~zod/try=> (~(sum fe 4) 10.000 256) 10.256 ~zod/try=> (~(sum fe 4) 10.000 100.000) 44.464 ### `++sit` ++ sit |=(b=@ (end a 1 b)) :: enforce modulo Produce an atom in the current modular block representation. `b` is an [atom](). ~zod/try=> (~(sit fe 3) 255) 255 ~zod/try=> (~(sit fe 3) 256) 0 ~zod/try=> (~(sit fe 3) 257) 1 ~zod/try=> (~(sit fe 2) 257) 1 ~zod/try=> (~(sit fe 2) 10.000) 0 ~zod/try=> (~(sit fe 2) 100) 4 ~zod/try=> (~(sit fe 2) 19) 3 ~zod/try=> (~(sit fe 2) 17) 1 ~zod/try=> (~(sit fe 0) 17) 1 ~zod/try=> (~(sit fe 0) 0) 0 ~zod/try=> (~(sit fe 0) 1) 1 ------------------------------------------------------------------------ section 2cG, floating point --------------------------- XX awaiting interface rewrite section 2cH, urbit time ----------------------- Note that entering '-\<-' in the shell produces the current time in @da format. We use this for many of our examples. ~zod/try=> -<- ~2014.8.4..19.39.59..9288 ### `++year` ++ year :: date to @d |= det=date ^- @d =+ ^= yer ?: a.det (add 292.277.024.400 y.det) (sub 292.277.024.400 (dec y.det)) =+ day=(yawn yer m.det d.t.det) (yule day h.t.det m.t.det s.t.det f.t.det) Accept a parsed date of form `[[a=? y=@ud] m=@ud t=tarp]` and produce its `@d`representation. `det` is a [`++date`]() ~zod/try=> (year [[a=%.y y=2.014] m=8 t=[d=4 h=20 m=4 s=57 f=~[0xd940]]]) 0x8000000d227df4e9d940000000000000 ------------------------------------------------------------------------ ### `++yore` ++ yore :: @d to date |= now=@d ^- date =+ rip=(yell now) =+ ger=(yall d.rip) :- ?: (gth y.ger 292.277.024.400) [a=& y=(sub y.ger 292.277.024.400)] [a=| y=+((sub 292.277.024.400 y.ger))] [m.ger d.ger h.rip m.rip s.rip f.rip] Produces a `++date` from a `@d` `now` is a `@d`. ~zod/try=> (yore -<-) [[a=%.y y=2.014] m=8 t=[d=4 h=20 m=17 s=1 f=~[0x700d]]] ~zod/try=> (yore -<-) [[a=%.y y=2.014] m=8 t=[d=4 h=20 m=28 s=53 f=~[0x7b82]]] ### `++yell` ++ yell :: tarp from @d |= now=@d ^- tarp =+ sec=(rsh 6 1 now) =+ ^= fan =+ [muc=4 raw=(end 6 1 now)] |- ^- (list ,@ux) ?: |(=(0 raw) =(0 muc)) ~ => .(muc (dec muc)) [(cut 4 [muc 1] raw) $(raw (end 4 muc raw))] =+ day=(div sec day:yo) => .(sec (mod sec day:yo)) =+ hor=(div sec hor:yo) => .(sec (mod sec hor:yo)) =+ mit=(div sec mit:yo) => .(sec (mod sec mit:yo)) [day hor mit sec fan] Produce a parsed daily time format from an atomic date. `now` is a `@d`. ~zod/try=> (yell ~2014.3.20..05.42.53..7456) [d=106.751.991.820.094 h=5 m=42 s=53 f=~[0x7456]] ~zod/try=> (yell ~2014.6.9..19.09.40..8b66) [d=106.751.991.820.175 h=19 m=9 s=40 f=~[0x8b66]] ~zod/try=> (yell ~1776.7.4) [d=106.751.991.733.273 h=0 m=0 s=0 f=~] ------------------------------------------------------------------------ ### `++yule` ++ yule :: time atom |= rip=tarp ^- @d =+ ^= sec ;: add (mul d.rip day:yo) (mul h.rip hor:yo) (mul m.rip mit:yo) s.rip == =+ ^= fac =+ muc=4 |- ^- @ ?~ f.rip 0 => .(muc (dec muc)) (add (lsh 4 muc i.f.rip) $(f.rip t.f.rip)) (con (lsh 6 1 sec) fac) Accept a [`++tarp`](/doc/hoon/library/1#++tarp), a parsed daily time, and produces a time atom, `@d`. `rip` is a [`++tarp`](/doc/hoon/library/1#++tarp). ~zod/try=> =murica (yell ~1776.7.4) ~zod/try=> murica [d=106.751.991.733.273 h=0 m=0 s=0 f=~] ~zod/try=> (yule murica) 0x8000000b62aaf5800000000000000000 ~zod/try=> `@da`(yule murica) ~1776.7.4 ~zod/try=> `@da`(yule (yell ~2014.3.20..05.42.53..7456)) ~2014.3.20..05.42.53..7456 ~zod/try=> `tarp`[31 12 30 0 ~] [d=31 h=12 m=30 s=0 f=~] ~zod/try=> `@dr`(yule `tarp`[31 12 30 0 ~]) ~d31.h12.m30 ------------------------------------------------------------------------ ### `++yall` ++ yall :: day # to day of year |= day=@ud ^- [y=@ud m=@ud d=@ud] =+ [era=0 cet=0 lep=_?] => .(era (div day era:yo), day (mod day era:yo)) => ^+ . ?: (lth day +(cet:yo)) .(lep &, cet 0) => .(lep |, cet 1, day (sub day +(cet:yo))) .(cet (add cet (div day cet:yo)), day (mod day cet:yo)) =+ yer=(add (mul 400 era) (mul 100 cet)) |- ^- [y=@ud m=@ud d=@ud] =+ dis=?:(lep 366 365) ?. (lth day dis) =+ ner=+(yer) $(yer ner, day (sub day dis), lep =(0 (end 0 2 ner))) |- ^- [y=@ud m=@ud d=@ud] =+ [mot=0 cah=?:(lep moy:yo moh:yo)] |- ^- [y=@ud m=@ud d=@ud] =+ zis=(snag mot cah) ?: (lth day zis) [yer +(mot) +(day)] $(mot +(mot), day (sub day zis)) Produce the date tuple of `[y=@ud m=@ud d=@ud]` of the year, month, and day from a number of days from the beginning of time. `day` is an unsigned decimal, `@ud`. ~zod/try=> (yall 198) [y=0 m=7 d=17] ~zod/try=> (yall 90.398) [y=247 m=7 d=3] ~zod/try=> (yall 0) [y=0 m=1 d=1] ------------------------------------------------------------------------ ### `++yawn` ++ yawn :: days since Jesus |= [yer=@ud mot=@ud day=@ud] ^- @ud => .(mot (dec mot), day (dec day)) => ^+ . %= . day =+ cah=?:((yelp yer) moy:yo moh:yo) |- ^- @ud ?: =(0 mot) day $(mot (dec mot), cah (slag 1 cah), day (add day (snag 0 cah))) == |- ^- @ud ?. =(0 (mod yer 4)) =+ ney=(dec yer) $(yer ney, day (add day ?:((yelp ney) 366 365))) ?. =(0 (mod yer 100)) =+ nef=(sub yer 4) $(yer nef, day (add day ?:((yelp nef) 1.461 1.460))) ?. =(0 (mod yer 400)) =+ nec=(sub yer 100) $(yer nec, day (add day ?:((yelp nec) 36.525 36.524))) (add day (mul (div yer 400) (add 1 (mul 4 36.524)))) Inverse of `yall`, computes number of days A.D. from y/m/d date as the tuple `[yer=@ud mot=@ud day=@ud]`. `yer` is an unsigned decimal, `@ud`. `mon` is an unsigned decimal, `@ud`. `day` is an unsigned decimal, `@ud`. ~zod/try=> (yawn 2.014 8 4) 735.814 ~zod/try=> (yawn 1.776 7 4) 648.856 ~zod/try=> (yawn 1.990 10 11) 727.116 ------------------------------------------------------------------------ ### `++yelp` ++ yelp :: leap year |= yer=@ud ^- ? &(=(0 (mod yer 4)) |(!=(0 (mod yer 100)) =(0 (mod yer 400)))) Determines whether a year contains an ISO 8601 leap week. Produces a loobean. `yer` is an unsigned decimal, `@ud`. ~zod/try=> (yelp 2.014) %.n ~zod/try=> (yelp 2.008) %.y ~zod/try=> (yelp 0) %.y ~zod/try=> (yelp 14.011) %.n ------------------------------------------------------------------------ ### `++yo` ++ yo :: time constants Useful constants for interacting with earth time. ### `++cet` |% ++ cet 36.524 :: (add 24 (mul 100 365)) Days in a century. Derived by multiplying the number of days in a year (365) by the number of years in a century (100), then adding the number days from leap years in a century (24). ~zod/try=> cet:yo 36.524 ~zod/try=> (add 365 cet:yo) 36.889 ~zod/try=> (sub (add 24 (mul 100 365)) cet:yo) 0 ------------------------------------------------------------------------ ### `++day` ++ day 86.400 :: (mul 24 hor) Number of seconds in a day. ~zod/try=> day:yo 86.400 ~zod/try=> (add 60 day:yo) 86.460 ------------------------------------------------------------------------ ### `++era` ++ era 146.097 :: (add 1 (mul 4 cet)) XX Revisit ------------------------------------------------------------------------ ### `++hor` ++ hor 3.600 :: (mul 60 mit) The number of seconds in an hour. Derived by multiplying the number of seconds in a minute by the minutes in an hour. ~zod/try=> hor:yo 3.600 ~zod/try=> (div hor:yo 60) 60 ------------------------------------------------------------------------ ### `++jes` ++ jes 106.751.991.084.417 :: (mul 730.692.561 era) XX Revisit ~zod/try=> jes:yo 106.751.991.084.417 ------------------------------------------------------------------------ ### `++mit` ++ mit 60 The number of seconds in a minute. ~zod/try=> mit:yo 60 ------------------------------------------------------------------------ ### `++moh` ++ moh `(list ,@ud)`[31 28 31 30 31 30 31 31 30 31 30 31 ~] The days in each month of the Gregorian common year. A list of unsigned decimal atoms (Either 28, 30, or 31) denoting the number of days in the month at the year at that index. ~zod/try=> moh:yo ~[31 28 31 30 31 30 31 31 30 31 30 31] ~zod/try=> (snag 4 moh:yo) 31 ------------------------------------------------------------------------ ### `++moy` ++ moy `(list ,@ud)`[31 29 31 30 31 30 31 31 30 31 30 31 ~] The days in each month of the Gregorian leap-year. A list of unsigned decimal atoms (Either 29,30, or 31) denoting the number of days in the month at the leap-year at that index. ~zod/try=> moy:yo ~[31 29 31 30 31 30 31 31 30 31 30 31] ~zod/try=> (snag 1 moy:yo) 29 ------------------------------------------------------------------------ ### `++qad` ++ qad 126.144.001 :: (add 1 (mul 4 yer)) The number of seconds in four years. Derived by adding one second to the number of seconds in four years. ~zod/try=> qad:yo 126.144.001 ------------------------------------------------------------------------ ### `++yer` ++ yer 31.536.000 :: (mul 365 day) The number of seconds in a year. Derived by multiplying the number of seconds in a day by 365. ~zod/try=> yer:yo 31.536.000 ------------------------------------------------------------------------ section 2cI, almost macros -------------------------- ### `++cury` ++ cury |* [a=_|=(^ _*) b=*] |* c=_+<+.a (a b c) Curry a gate, binding the head of its sample `a` is a [gate](). `b` is a noun. ~zod/try=> =mol (cury add 2) ~zod/try=> (mol 4) 6 ~zod/try=> (mol 7) 9 ------------------------------------------------------------------------ ### `++curr` ++ curr |* [a=_|=(^ _*) c=*] |* b=_+<+.a (a b c) Right curry a gate, binding the tail of its sample `a` is a gate. `c` is a noun. ~zod/try=> =tep (curr scan sym) ~zod/try=> `@t`(tep "asd") 'asd' ~zod/try=> `@t`(tep "lek-om") 'lek-om' ------------------------------------------------------------------------ ### `++cork` ++ cork |*([a=_,* b=gate] (corl b a)) :: compose forward Build `f` such that `(f x) .= (b (a x))`. `a` is a noun. `b` is a gate. ~zod/try=> (:(cork dec dec dec) 20) 17 ~zod/try=> =mal (mo (limo a/15 b/23 ~)) ~zod/try=> ((cork ~(got by mal) dec) %a) 14 ~zod/try=> ((cork ~(got by mal) dec) %b) 22 ------------------------------------------------------------------------ ### `++corl` ++ corl :: compose backwards |* [a=gate b=_,*] |= c=_+<.b (a (b c)) Gate compose XX Revisit `a` is a gate. `b` is a noun. ~zod/try=> ((corl (lift bex) (slat %ud)) '2') [~ 4] ------------------------------------------------------------------------ ### `++hard` ++ hard |* han=$+(* *) |= fud=* ^- han ~| %hard =+ gol=(han fud) ?>(=(gol fud) gol) Demands that a specific type be produced, crashing the program is it is not. ~zod/try=> ((hard (list)) (limo [1 2 3 ~])) ~[1 2 3] ~zod/try=> ((hard ,@) (add 2 2)) 4 ~zod/try=> ((hard ,@t) (crip "Tape to cord, bro!")) 'Tape to cord, bro' ~zod/try=> ((hard tape) (crip "...Tape to cord, bro?...")) ! hard ! exit ------------------------------------------------------------------------ ### `++soft` ++ soft |* han=$+(* *) |= fud=* ^- (unit han) =+ gol=(han fud) ?.(=(gol fud) ~ [~ gol]) Politely requests a specific type to be produced, producing null if it is not. ~zod/try=> ((soft ,%4) (add 2 2)) [~ %4] ~zod/try=> ((soft ,@) (add 2 2)) [~ 4] ~zod/try=> ((soft ,%5) (add 2 2)) ~ ~zod/try=> ((soft ,@t) (crip "Tape to cord, Woohoo!")) [~ 'Tape to cord, Woohoo!'] ~zod/try=> ((soft ,@t) (trip 'Cmon man... Tape to cord? Please?!')) ~ ------------------------------------------------------------------------