mirror of
https://github.com/ilyakooo0/urbit.git
synced 2024-12-18 04:11:49 +03:00
2467 lines
75 KiB
Plaintext
2467 lines
75 KiB
Plaintext
!: ::
|
|
:::: /hoon/hoon ::
|
|
:: ::
|
|
=> %151 =>
|
|
:: ::
|
|
:::: 0: version stub ::
|
|
:: ::
|
|
|%
|
|
++ hoon +
|
|
-- =>
|
|
:: ::
|
|
:::: 1: layer one ::
|
|
:: ::
|
|
:: 1a: basic arithmetic ::
|
|
:: 1b: tree addressing ::
|
|
:: 1c: ideal containers ::
|
|
::
|
|
|%
|
|
:: ::
|
|
:::: 1a: unsigned arithmetic and tree addressing ::
|
|
:: ::
|
|
:: add, dec, div, dvr, gte, gth, lte, ::
|
|
:: lth, max, min, mod, mul, sub ::
|
|
::
|
|
++ add :: unsigned addition
|
|
~/ %add
|
|
|= {a/@ b/@}
|
|
^- @
|
|
?: =(0 a) b
|
|
$(a (dec a), b +(b))
|
|
::
|
|
++ dec :: unsigned decrement
|
|
~/ %dec
|
|
|= a/@
|
|
~> %mean.[0 %leaf "decrement-underflow"]
|
|
?< =(0 a)
|
|
=+ b=0
|
|
|- ^- @
|
|
?: =(a +(b)) b
|
|
$(b +(b))
|
|
::
|
|
++ div :: unsigned divide
|
|
~/ %div
|
|
=+ [a=`@`1 b=`@`1]
|
|
|.
|
|
^- @
|
|
~> %mean.[0 %leaf "divide-by-zero"]
|
|
?< =(0 b)
|
|
=+ c=0
|
|
|-
|
|
?: (lth a b) c
|
|
$(a (sub a b), c +(c))
|
|
::
|
|
++ dvr :: divide w/remainder
|
|
~/ %dvr
|
|
|= {a/@ b/@}
|
|
^- {p/@ q/@}
|
|
[(div a b) (mod a b)]
|
|
::
|
|
++ gte :: unsigned greater/eq
|
|
~/ %gte
|
|
|= {a/@ b/@}
|
|
^- ?
|
|
!(lth a b)
|
|
::
|
|
++ gth :: unsigned greater
|
|
~/ %gth
|
|
|= {a/@ b/@}
|
|
^- ?
|
|
!(lte a b)
|
|
::
|
|
++ lte :: unsigned less/eq
|
|
~/ %lte
|
|
|= {a/@ b/@}
|
|
|(=(a b) (lth a b))
|
|
::
|
|
++ lth :: unsigned less
|
|
~/ %lth
|
|
|= {a/@ b/@}
|
|
^- ?
|
|
?& !=(a b)
|
|
|-
|
|
?| =(0 a)
|
|
?& !=(0 b)
|
|
$(a (dec a), b (dec b))
|
|
== == ==
|
|
::
|
|
++ max :: unsigned maximum
|
|
~/ %max
|
|
|= {a/@ b/@}
|
|
^- @
|
|
?: (gth a b) a
|
|
b
|
|
::
|
|
++ min :: unsigned minimum
|
|
~/ %min
|
|
|= {a/@ b/@}
|
|
^- @
|
|
?: (lth a b) a
|
|
b
|
|
::
|
|
++ mod :: unsigned modulus
|
|
~/ %mod
|
|
|: [a=`@`1 b=`@`1]
|
|
^- @
|
|
?< =(0 b)
|
|
(sub a (mul b (div a b)))
|
|
::
|
|
++ mul :: unsigned multiply
|
|
~/ %mul
|
|
|: [a=`@`1 b=`@`1]
|
|
^- @
|
|
=+ c=0
|
|
|-
|
|
?: =(0 a) c
|
|
$(a (dec a), c (add b c))
|
|
::
|
|
++ sub :: subtract
|
|
~/ %sub
|
|
|= {a/@ b/@}
|
|
~> %mean.[0 %leaf "subtract-underflow"]
|
|
^- @
|
|
?: =(0 b) a
|
|
$(a (dec a), b (dec b))
|
|
:: ::
|
|
:::: 1b: tree addressing ::
|
|
:: ::
|
|
:: cap, mas, peg ::
|
|
::
|
|
++ cap :: fragment head
|
|
~/ %cap
|
|
|= a/@
|
|
^- ?($2 $3)
|
|
?- a
|
|
$2 %2
|
|
$3 %3
|
|
?($0 $1) !!
|
|
* $(a (div a 2))
|
|
==
|
|
::
|
|
++ mas :: fragment body
|
|
~/ %mas
|
|
|= a/@
|
|
^- @
|
|
?- a
|
|
$1 !!
|
|
$2 1
|
|
$3 1
|
|
* (add (mod a 2) (mul $(a (div a 2)) 2))
|
|
==
|
|
::
|
|
++ peg :: fragment compose
|
|
~/ %peg
|
|
|= {a/@ b/@}
|
|
^- @
|
|
?- b
|
|
$1 a
|
|
$2 (mul a 2)
|
|
$3 +((mul a 2))
|
|
* (add (mod b 2) (mul $(b (div b 2)) 2))
|
|
==
|
|
:: ::
|
|
:::: 1c: ideal containers ::
|
|
:: ::
|
|
:: ache, bloq, each, gate, list, lone, pair, pole ::
|
|
:: qual, quid, quip, trap, tree, trel, unit ::
|
|
::
|
|
++ ache |*({a/gate b/gate} $%({$| p/b} {$& p/a})) :: a or b, b default
|
|
++ bloq @ :: bitblock, eg 3=byte
|
|
++ each |*({a/gate b/gate} $%({$& p/a} {$| p/b})) :: a or b, a default
|
|
++ gate $-(* *) :: generic gate
|
|
++ list |*(a/gate $@($~ {i/a t/(list a)})) :: nullterminated list
|
|
++ lone |*(a/gate p/a) :: 1-tuple
|
|
++ pair |*({a/gate b/gate} {p/a q/b}) :: 2-tuple
|
|
++ pole |*(a/gate $@($~ {a (pole a)})) :: faceless list
|
|
++ qual |* {a/gate b/gate c/gate d/gate} :: 4-tuple
|
|
{p/a q/b r/c s/d} ::
|
|
++ quid |*({a/gate b/*} {a _b}) :: mixed for sip
|
|
++ quip |*({a/gate b/*} {(list a) _b}) :: list-mixed for sip
|
|
++ trap |*(a/gate _|?(*a)) :: producer
|
|
++ tree |*(a/gate $@($~ {n/a l/(tree a) r/(tree a)})) :: binary tree
|
|
++ trel |*({a/gate b/gate c/gate} {p/a q/b r/c}) :: 3-tuple
|
|
++ unit |*(a/gate $@($~ {$~ u/a})) :: maybe
|
|
-- =>
|
|
:: ::
|
|
:::: 2: layer two ::
|
|
:: ::
|
|
:: 2a: unit logic ::
|
|
:: 2b: list logic ::
|
|
:: 2c: bit arithmetic ::
|
|
:: 2d: bit logic ::
|
|
:: 2e: insecure hashing ::
|
|
:: 2f: noun ordering ::
|
|
:: 2g: unsigned powers ::
|
|
:: 2h: set logic ::
|
|
:: 2i: map logic ::
|
|
:: 2j: jar and jug logic ::
|
|
:: 2k: queue logic ::
|
|
:: 2l: container from container ::
|
|
:: 2m: container from noun ::
|
|
:: 2n: functional hacks ::
|
|
:: 2o: normalizing containers ::
|
|
:: 2p: serialization ::
|
|
::
|
|
|%
|
|
:: ::
|
|
:::: 2a: unit logic ::
|
|
:: ::
|
|
:: biff, bind, bond, both, clap, drop, ::
|
|
:: fall, flit, lift, mate, need, some ::
|
|
::
|
|
++ biff :: apply
|
|
|* {a/(unit) b/$-(* (unit))}
|
|
?~ a ~
|
|
(b u.a)
|
|
::
|
|
++ bind :: argue
|
|
|* {a/(unit) b/gate}
|
|
?~ a ~
|
|
[~ u=(b u.a)]
|
|
::
|
|
++ bond :: replace
|
|
|* a/(trap)
|
|
|* b/(unit)
|
|
?~ b $:a
|
|
u.b
|
|
::
|
|
++ both :: all the above
|
|
|* {a/(unit) b/(unit)}
|
|
?~ a ~
|
|
?~ b ~
|
|
[~ u=[u.a u.b]]
|
|
::
|
|
++ clap :: combine
|
|
|* {a/(unit) b/(unit) c/_|=(^ +<-)}
|
|
?~ a b
|
|
?~ b a
|
|
[~ u=(c u.a u.b)]
|
|
::
|
|
++ drop :: enlist
|
|
|* a/(unit)
|
|
?~ a ~
|
|
[i=u.a t=~]
|
|
::
|
|
++ fall :: default
|
|
|* {a/(unit) b/*}
|
|
?~(a b u.a)
|
|
::
|
|
++ flit :: make filter
|
|
|* a/$-(* ?)
|
|
|* b/*
|
|
?.((a b) ~ [~ u=b])
|
|
::
|
|
++ lift :: lift gate (fmap)
|
|
|* a/gate :: flipped
|
|
|* b/(unit) :: curried
|
|
(bind b a) :: bind
|
|
::
|
|
++ mate :: choose
|
|
|* {a/(unit) b/(unit)}
|
|
?~ b a
|
|
?~ a b
|
|
?.(=(u.a u.b) ~>(%mean.[0 %leaf "mate"] !!) a)
|
|
::
|
|
++ need :: demand
|
|
|* a/(unit)
|
|
?~ a ~>(%mean.[0 %leaf "need"] !!)
|
|
u.a
|
|
::
|
|
++ some :: lift (pure)
|
|
|* a/*
|
|
[~ u=a]
|
|
::
|
|
:::: 2b: list logic ::
|
|
:: ::
|
|
:: flop, homo, lent, levy, lien, limo, murn, reap, ::
|
|
:: reel, roll, skid, skim, skip, scag, slag, snag, ::
|
|
:: sort, swag, turn, weld, welp, zing ::
|
|
:: ::
|
|
++ flop :: reverse
|
|
~/ %flop
|
|
|* a/(list)
|
|
=> .(a (homo a))
|
|
^+ a
|
|
=+ b=`_a`~
|
|
|-
|
|
?~ a b
|
|
$(a t.a, b [i.a b])
|
|
::
|
|
++ gulf :: range inclusive
|
|
|= {a/@ b/@}
|
|
^- (list @)
|
|
?:(=(a +(b)) ~ [a $(a +(a))])
|
|
::
|
|
++ homo :: homogenize
|
|
|* a/(list)
|
|
^+ =< $
|
|
|% +- $ ?:(*? ~ [i=(snag 0 a) t=$])
|
|
--
|
|
a
|
|
::
|
|
++ lent :: length
|
|
~/ %lent
|
|
|= a/(list)
|
|
^- @
|
|
=+ b=0
|
|
|-
|
|
?~ a b
|
|
$(a t.a, b +(b))
|
|
::
|
|
++ levy
|
|
~/ %levy :: all of
|
|
|* {a/(list) b/$-(* ?)}
|
|
|- ^- ?
|
|
?~ a &
|
|
?. (b i.a) |
|
|
$(a t.a)
|
|
::
|
|
++ lien :: some of
|
|
~/ %lien
|
|
|* {a/(list) b/$-(* ?)}
|
|
|- ^- ?
|
|
?~ a |
|
|
?: (b i.a) &
|
|
$(a t.a)
|
|
::
|
|
++ limo :: listify
|
|
|* a/*
|
|
^+ =< $
|
|
|% +- $ ?~(a ~ ?:(*? [i=-.a t=$] $(a +.a)))
|
|
--
|
|
a
|
|
::
|
|
++ murn :: maybe transform
|
|
~/ %murn
|
|
|* {a/(list) b/$-(* (unit))}
|
|
|-
|
|
?~ a ~
|
|
=+ c=(b i.a)
|
|
?~ c
|
|
$(a t.a)
|
|
[i=u.c t=$(a t.a)]
|
|
::
|
|
++ reap :: replicate
|
|
~/ %reap
|
|
|* {a/@ b/*}
|
|
|- ^- (list _b)
|
|
?~ a ~
|
|
[b $(a (dec a))]
|
|
::
|
|
++ reel :: right fold
|
|
~/ %reel
|
|
|* {a/(list) b/_|=({* *} +<+)}
|
|
|- ^+ +<+.b
|
|
?~ a
|
|
+<+.b
|
|
(b i.a $(a t.a))
|
|
::
|
|
++ roll :: left fold
|
|
~/ %roll
|
|
|* {a/(list) b/_|=({* *} +<+)}
|
|
|- ^+ +<+.b
|
|
?~ a
|
|
+<+.b
|
|
$(a t.a, b b(+<+ (b i.a +<+.b)))
|
|
::
|
|
++ skid :: separate
|
|
~/ %skid
|
|
|* {a/(list) b/$-(* ?)}
|
|
|- ^+ [p=a q=a]
|
|
?~ a [~ ~]
|
|
=+ c=$(a t.a)
|
|
?:((b i.a) [[i.a p.c] q.c] [p.c [i.a q.c]])
|
|
::
|
|
++ skim :: only
|
|
~/ %skim
|
|
|* {a/(list) b/$-(* ?)}
|
|
|-
|
|
^+ a
|
|
?~ a ~
|
|
?:((b i.a) [i.a $(a t.a)] $(a t.a))
|
|
::
|
|
++ skip :: except
|
|
~/ %skip
|
|
|* {a/(list) b/$-(* ?)}
|
|
|-
|
|
^+ a
|
|
?~ a ~
|
|
?:((b i.a) $(a t.a) [i.a $(a t.a)])
|
|
::
|
|
++ scag :: prefix
|
|
~/ %scag
|
|
|* {a/@ b/(list)}
|
|
|- ^+ b
|
|
?: |(?=($~ b) =(0 a)) ~
|
|
[i.b $(b t.b, a (dec a))]
|
|
::
|
|
++ slag :: suffix
|
|
~/ %slag
|
|
|* {a/@ b/(list)}
|
|
|- ^+ b
|
|
?: =(0 a) b
|
|
?~ b ~
|
|
$(b t.b, a (dec a))
|
|
::
|
|
++ snag :: index
|
|
~/ %snag
|
|
|* {a/@ b/(list)}
|
|
|-
|
|
?~ b
|
|
~> %mean.[0 %leaf "snag-fail"]
|
|
!!
|
|
?: =(0 a) i.b
|
|
$(b t.b, a (dec a))
|
|
::
|
|
++ sort !. :: quicksort
|
|
~/ %sort
|
|
|* {a/(list) b/$-([* *] ?)}
|
|
=> .(a ^.(homo a))
|
|
|- ^+ a
|
|
?~ a ~
|
|
%+ weld
|
|
$(a (skim t.a |=(c/_i.a (b c i.a))))
|
|
^+ t.a
|
|
[i.a $(a (skim t.a |=(c/_i.a !(b c i.a))))]
|
|
::
|
|
++ swag :: slice
|
|
|* {{a/@ b/@} c/(list)}
|
|
(scag +<-> (slag +<-< c))
|
|
::
|
|
++ turn :: transform
|
|
~/ %turn
|
|
|* {a/(list) b/$-(* *)}
|
|
|-
|
|
?~ a ~
|
|
[i=(b i.a) t=$(a t.a)]
|
|
::
|
|
++ weld :: concatenate
|
|
~/ %weld
|
|
|* {a/(list) b/(list)}
|
|
=> .(a ^.(homo a), b ^.(homo b))
|
|
|- ^+ b
|
|
?~ a b
|
|
[i.a $(a t.a)]
|
|
::
|
|
++ welp :: faceless weld
|
|
=| {* *}
|
|
|%
|
|
+- $
|
|
?~ +<-
|
|
+<-(. +<+)
|
|
+<-(+ $(+<- +<->))
|
|
--
|
|
::
|
|
++ zing :: promote
|
|
=| *
|
|
|%
|
|
+- $
|
|
?~ +<
|
|
+<
|
|
(welp +<- $(+< +<+))
|
|
--
|
|
:: ::
|
|
:::: 2c: bit arithmetic ::
|
|
:: ::
|
|
:: bex, can, cat, cut, end, fil, lsh, met, ::
|
|
:: rap, rep, rip, rsh, swp, xeb ::
|
|
::
|
|
++ bex :: binary exponent
|
|
~/ %bex
|
|
|= a/@
|
|
^- @
|
|
?: =(0 a) 1
|
|
(mul 2 $(a (dec a)))
|
|
::
|
|
++ can :: assemble
|
|
~/ %can
|
|
|= {a/bloq b/(list {p/@u q/@})}
|
|
^- @
|
|
?~ b 0
|
|
(add (end a p.i.b q.i.b) (lsh a p.i.b $(b t.b)))
|
|
::
|
|
++ cat :: concatenate
|
|
~/ %cat
|
|
|= {a/bloq b/@ c/@}
|
|
(add (lsh a (met a b) c) b)
|
|
::
|
|
++ cut :: slice
|
|
~/ %cut
|
|
|= {a/bloq {b/@u c/@u} d/@}
|
|
(end a c (rsh a b d))
|
|
::
|
|
++ end :: tail
|
|
~/ %end
|
|
|= {a/bloq b/@u c/@}
|
|
(mod c (bex (mul (bex a) b)))
|
|
::
|
|
++ fil :: fill bloqstream
|
|
|= {a/bloq b/@u c/@}
|
|
=+ n=0
|
|
=+ d=c
|
|
|- ^- @
|
|
?: =(n b)
|
|
(rsh a 1 d)
|
|
$(d (add c (lsh a 1 d)), n +(n))
|
|
::
|
|
++ lsh :: left-shift
|
|
~/ %lsh
|
|
|= {a/bloq b/@u c/@}
|
|
(mul (bex (mul (bex a) b)) c)
|
|
::
|
|
++ met :: measure
|
|
~/ %met
|
|
|= {a/bloq b/@}
|
|
^- @
|
|
=+ c=0
|
|
|-
|
|
?: =(0 b) c
|
|
$(b (rsh a 1 b), c +(c))
|
|
::
|
|
++ rap :: assemble nonzero
|
|
~/ %rap
|
|
|= {a/bloq b/(list @)}
|
|
^- @
|
|
?~ b 0
|
|
(cat a i.b $(b t.b))
|
|
::
|
|
++ rep :: assemble single
|
|
~/ %rep
|
|
|= {a/bloq b/(list @)}
|
|
^- @
|
|
=+ c=0
|
|
|-
|
|
?~ b 0
|
|
(add (lsh a c (end a 1 i.b)) $(c +(c), b t.b))
|
|
::
|
|
++ rip :: disassemble
|
|
~/ %rip
|
|
|= {a/bloq b/@}
|
|
^- (list @)
|
|
?: =(0 b) ~
|
|
[(end a 1 b) $(b (rsh a 1 b))]
|
|
::
|
|
++ rsh :: right-shift
|
|
~/ %rsh
|
|
|= {a/bloq b/@u c/@}
|
|
(div c (bex (mul (bex a) b)))
|
|
::
|
|
++ swp |=({a/bloq b/@} (rep a (flop (rip a b)))) :: reverse bloq order
|
|
++ xeb :: binary logarithm
|
|
~/ %xeb
|
|
|= a/@
|
|
^- @
|
|
(met 0 a)
|
|
:: ::
|
|
:::: 2d: bit logic ::
|
|
:: ::
|
|
:: con, dis, mix, not ::
|
|
::
|
|
++ con :: binary or
|
|
~/ %con
|
|
|= {a/@ b/@}
|
|
=+ [c=0 d=0]
|
|
|- ^- @
|
|
?: ?&(=(0 a) =(0 b)) d
|
|
%= $
|
|
a (rsh 0 1 a)
|
|
b (rsh 0 1 b)
|
|
c +(c)
|
|
d %+ add d
|
|
%^ lsh 0 c
|
|
?& =(0 (end 0 1 a))
|
|
=(0 (end 0 1 b))
|
|
==
|
|
==
|
|
::
|
|
++ dis :: binary and
|
|
~/ %dis
|
|
|= {a/@ b/@}
|
|
=| {c/@ d/@}
|
|
|- ^- @
|
|
?: ?|(=(0 a) =(0 b)) d
|
|
%= $
|
|
a (rsh 0 1 a)
|
|
b (rsh 0 1 b)
|
|
c +(c)
|
|
d %+ add d
|
|
%^ lsh 0 c
|
|
?| =(0 (end 0 1 a))
|
|
=(0 (end 0 1 b))
|
|
==
|
|
==
|
|
::
|
|
++ mix :: binary xor
|
|
~/ %mix
|
|
|= {a/@ b/@}
|
|
^- @
|
|
=+ [c=0 d=0]
|
|
|-
|
|
?: ?&(=(0 a) =(0 b)) d
|
|
%= $
|
|
a (rsh 0 1 a)
|
|
b (rsh 0 1 b)
|
|
c +(c)
|
|
d (add d (lsh 0 c =((end 0 1 a) (end 0 1 b))))
|
|
==
|
|
::
|
|
++ not |= {a/bloq b/@ c/@} :: binary not (sized)
|
|
(mix c (dec (bex (mul b (bex a)))))
|
|
:: ::
|
|
:::: 2e: insecure hashing ::
|
|
:: ::
|
|
:: fnv, mum, mug ::
|
|
::
|
|
++ fnv |=(a/@ (end 5 1 (mul 16.777.619 a))) :: FNV scrambler
|
|
++ mum :: mug with murmur3
|
|
~/ %mum
|
|
|= a/*
|
|
|^ (trim ?@(a a (mix $(a -.a) (mix 0x7fff.ffff $(a +.a)))))
|
|
++ spec :: standard murmur3
|
|
|= {syd/@ key/@}
|
|
?> (lte (met 5 syd) 1)
|
|
=+ ^= row
|
|
|= {a/@ b/@}
|
|
(con (end 5 1 (lsh 0 a b)) (rsh 0 (sub 32 a) b))
|
|
=+ mow=|=({a/@ b/@} (end 5 1 (mul a b)))
|
|
=+ len=(met 5 key)
|
|
=- =. goc (mix goc len)
|
|
=. goc (mix goc (rsh 4 1 goc))
|
|
=. goc (mow goc 0x85eb.ca6b)
|
|
=. goc (mix goc (rsh 0 13 goc))
|
|
=. goc (mow goc 0xc2b2.ae35)
|
|
(mix goc (rsh 4 1 goc))
|
|
^= goc
|
|
=+ [inx=0 goc=syd]
|
|
|- ^- @
|
|
?: =(inx len) goc
|
|
=+ kop=(cut 5 [inx 1] key)
|
|
=. kop (mow kop 0xcc9e.2d51)
|
|
=. kop (row 15 kop)
|
|
=. kop (mow kop 0x1b87.3593)
|
|
=. goc (mix kop goc)
|
|
=. goc (row 13 goc)
|
|
=. goc (end 5 1 (add 0xe654.6b64 (mul 5 goc)))
|
|
$(inx +(inx))
|
|
::
|
|
++ trim :: 31-bit nonzero
|
|
|= key/@
|
|
=+ syd=0xcafe.babe
|
|
|- ^- @
|
|
=+ haz=(spec syd key)
|
|
=+ ham=(mix (rsh 0 31 haz) (end 0 31 haz))
|
|
?.(=(0 ham) ham $(syd +(syd)))
|
|
--
|
|
::
|
|
++ mug :: 31bit nonzero FNV1a
|
|
~/ %mug
|
|
|= a/*
|
|
?^ a
|
|
=+ b=[p=$(a -.a) q=$(a +.a)]
|
|
|- ^- @
|
|
=+ c=(fnv (mix p.b (fnv q.b)))
|
|
=+ d=(mix (rsh 0 31 c) (end 0 31 c))
|
|
?. =(0 c) c
|
|
$(q.b +(q.b))
|
|
=+ b=2.166.136.261
|
|
|- ^- @
|
|
=+ c=b
|
|
=+ [d=0 e=(met 3 a)]
|
|
|- ^- @
|
|
?: =(d e)
|
|
=+ f=(mix (rsh 0 31 c) (end 0 31 c))
|
|
?. =(0 f) f
|
|
^$(b +(b))
|
|
$(c (fnv (mix c (cut 3 [d 1] a))), d +(d))
|
|
:: ::
|
|
:::: 2f: noun ordering ::
|
|
:: ::
|
|
:: aor, dor, gor, hor, lor, vor ::
|
|
::
|
|
++ aor :: a-order
|
|
~/ %aor
|
|
|= {a/* b/*}
|
|
^- ?
|
|
?: =(a b) &
|
|
?. ?=(@ a)
|
|
?: ?=(@ b) |
|
|
?: =(-.a -.b)
|
|
$(a +.a, b +.b)
|
|
$(a -.a, b -.b)
|
|
?. ?=(@ b) &
|
|
|-
|
|
=+ [c=(end 3 1 a) d=(end 3 1 b)]
|
|
?: =(c d)
|
|
$(a (rsh 3 1 a), b (rsh 3 1 b))
|
|
(lth c d)
|
|
::
|
|
++ dor :: d-order
|
|
~/ %dor
|
|
|= {a/* b/*}
|
|
^- ?
|
|
?: =(a b) &
|
|
?. ?=(@ a)
|
|
?: ?=(@ b) |
|
|
?: =(-.a -.b)
|
|
$(a +.a, b +.b)
|
|
$(a -.a, b -.b)
|
|
?. ?=(@ b) &
|
|
(lth a b)
|
|
::
|
|
++ gor :: g-order
|
|
~/ %gor
|
|
|= {a/* b/*}
|
|
^- ?
|
|
=+ [c=(mug a) d=(mug b)]
|
|
?: =(c d)
|
|
(dor a b)
|
|
(lth c d)
|
|
::
|
|
++ hor :: h-order
|
|
~/ %hor
|
|
|= {a/* b/*}
|
|
^- ?
|
|
?: ?=(@ a)
|
|
?. ?=(@ b) &
|
|
(gor a b)
|
|
?: ?=(@ b) |
|
|
?: =(-.a -.b)
|
|
(gor +.a +.b)
|
|
(gor -.a -.b)
|
|
::
|
|
++ lor :: l-order
|
|
~/ %lor
|
|
|= {a/* b/*}
|
|
^- ?
|
|
?: =(a b) &
|
|
?@ a
|
|
?^ b &
|
|
(lth a b)
|
|
?: =(-.a -.b)
|
|
$(a +.a, b +.b)
|
|
$(a -.a, b -.b)
|
|
::
|
|
++ vor :: v-order
|
|
~/ %vor
|
|
|= {a/* b/*}
|
|
^- ?
|
|
=+ [c=(mug (mug a)) d=(mug (mug b))]
|
|
?: =(c d)
|
|
(dor a b)
|
|
(lth c d)
|
|
:: ::
|
|
:::: ::
|
|
:: 2g: unsigned powers ::
|
|
:: ::
|
|
:: pow, sqt ::
|
|
::
|
|
++ pow :: unsigned exponent
|
|
~/ %pow
|
|
|= {a/@ b/@}
|
|
?: =(b 0) 1
|
|
|- ?: =(b 1) a
|
|
=+ c=$(b (div b 2))
|
|
=+ d=(mul c c)
|
|
?~ (dis b 1) d (mul d a)
|
|
::
|
|
++ sqt :: unsigned rem/sqrt
|
|
~/ %sqt
|
|
|= a/@ ^- {p/@ q/@}
|
|
?~ a [0 0]
|
|
=+ [q=(div (dec (xeb a)) 2) r=0]
|
|
=- [-.b (sub a +.b)]
|
|
^= b |-
|
|
=+ s=(add r (bex q))
|
|
=+ t=(mul s s)
|
|
?: =(q 0)
|
|
?:((lte t a) [s t] [r (mul r r)])
|
|
?: (lte t a)
|
|
$(r s, q (dec q))
|
|
$(q (dec q))
|
|
:: ::
|
|
:::: ::
|
|
:: ::
|
|
:: 2h: set logic ::
|
|
:: ::
|
|
:: in ::
|
|
::
|
|
++ in :: set engine
|
|
~/ %in
|
|
|_ a/(tree)
|
|
+- all :: logical AND
|
|
~/ %all
|
|
|* b/$-(* ?)
|
|
|- ^- ?
|
|
?~ a
|
|
&
|
|
?&((b n.a) $(a l.a) $(a r.a))
|
|
::
|
|
+- any :: logical OR
|
|
~/ %any
|
|
|* b/$-(* ?)
|
|
|- ^- ?
|
|
?~ a
|
|
|
|
|
?|((b n.a) $(a l.a) $(a r.a))
|
|
::
|
|
+- apt :: check correctness
|
|
|- ^- ?
|
|
?~ a
|
|
&
|
|
?& ?~(l.a & ?&((vor n.a n.l.a) (hor n.l.a n.a) $(a l.a)))
|
|
?~(r.a & ?&((vor n.a n.r.a) (hor n.a n.r.a) $(a r.a)))
|
|
==
|
|
::
|
|
+- bif :: splits a by b
|
|
~/ %bif
|
|
|* b/*
|
|
^+ [l=a r=a]
|
|
=< [+< +>]
|
|
|- ^+ a
|
|
?~ a
|
|
[b ~ ~]
|
|
?: =(b n.a)
|
|
a
|
|
?: (hor b n.a)
|
|
=+ c=$(a l.a)
|
|
?> ?=(^ c)
|
|
[n.c l.c [n.a r.c r.a]]
|
|
=+ c=$(a r.a)
|
|
?> ?=(^ c)
|
|
[n.c [n.a l.a l.c] r.c]
|
|
::
|
|
+- del :: b without any a
|
|
~/ %del
|
|
|* b/*
|
|
|- ^+ a
|
|
?~ a
|
|
~
|
|
?. =(b n.a)
|
|
?: (hor b n.a)
|
|
[n.a $(a l.a) r.a]
|
|
[n.a l.a $(a r.a)]
|
|
|- ^- {$?($~ _a)}
|
|
?~ l.a r.a
|
|
?~ r.a l.a
|
|
?: (vor n.l.a n.r.a)
|
|
[n.l.a l.l.a $(l.a r.l.a)]
|
|
[n.r.a $(r.a l.r.a) r.r.a]
|
|
::
|
|
+- dif :: difference
|
|
~/ %dif
|
|
|* b/_a
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
=+ c=(bif n.b)
|
|
?> ?=(^ c)
|
|
=+ d=$(a l.c, b l.b)
|
|
=+ e=$(a r.c, b r.b)
|
|
|- ^- {$?($~ _a)}
|
|
?~ d e
|
|
?~ e d
|
|
?: (vor n.d n.e)
|
|
[n.d l.d $(d r.d)]
|
|
[n.e $(e l.e) r.e]
|
|
::
|
|
+- dig :: axis of a in b
|
|
|= b/*
|
|
=+ c=1
|
|
|- ^- (unit @)
|
|
?~ a ~
|
|
?: =(b n.a) [~ u=(peg c 2)]
|
|
?: (hor b n.a)
|
|
$(a l.a, c (peg c 6))
|
|
$(a r.a, c (peg c 7))
|
|
::
|
|
+- gas :: concatenate
|
|
~/ %gas
|
|
|= b/(list _?>(?=(^ a) n.a))
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
$(b t.b, a (put i.b))
|
|
::
|
|
+- has :: b exists in a check
|
|
~/ %has
|
|
|* b/*
|
|
|- ^- ?
|
|
?~ a
|
|
|
|
|
?: =(b n.a)
|
|
&
|
|
?: (hor b n.a)
|
|
$(a l.a)
|
|
$(a r.a)
|
|
::
|
|
+- int :: intersection
|
|
~/ %int
|
|
|* b/_a
|
|
|- ^+ a
|
|
?~ b
|
|
~
|
|
?~ a
|
|
~
|
|
?. (vor n.a n.b)
|
|
$(a b, b a)
|
|
?: =(n.b n.a)
|
|
[n.a $(a l.a, b l.b) $(a r.a, b r.b)]
|
|
?: (hor n.b n.a)
|
|
%- uni(a $(a l.a, b [n.b l.b ~])) $(b r.b)
|
|
%- uni(a $(a r.a, b [n.b ~ r.b])) $(b l.b)
|
|
::
|
|
+- put :: puts b in a, sorted
|
|
~/ %put
|
|
|* b/*
|
|
|- ^+ a
|
|
?~ a
|
|
[b ~ ~]
|
|
?: =(b n.a)
|
|
a
|
|
?: (hor b n.a)
|
|
=+ c=$(a l.a)
|
|
?> ?=(^ c)
|
|
?: (vor n.a n.c)
|
|
[n.a c r.a]
|
|
[n.c l.c [n.a r.c r.a]]
|
|
=+ c=$(a r.a)
|
|
?> ?=(^ c)
|
|
?: (vor n.a n.c)
|
|
[n.a l.a c]
|
|
[n.c [n.a l.a l.c] r.c]
|
|
::
|
|
+- rep :: replace by product
|
|
|* b/_|=({* *} +<+)
|
|
|-
|
|
?~ a +<+.b
|
|
$(a r.a, +<+.b $(a l.a, +<+.b (b n.a +<+.b)))
|
|
::
|
|
+- run :: apply gate to values
|
|
|* {b/$-(* *) c/*}
|
|
|-
|
|
?~ a c
|
|
$(a r.a, c [(b n.a) $(a l.a)])
|
|
::
|
|
+- tap :: convert to list
|
|
~/ %tap
|
|
|= b/(list _?>(?=(^ a) n.a))
|
|
^+ b
|
|
?~ a
|
|
b
|
|
$(a r.a, b [n.a $(a l.a)])
|
|
::
|
|
+- uni :: union
|
|
~/ %uni
|
|
|* b/_a
|
|
?: =(a b) a
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
?~ a
|
|
b
|
|
?: (vor n.a n.b)
|
|
?: =(n.b n.a)
|
|
[n.b $(a l.a, b l.b) $(a r.a, b r.b)]
|
|
?: (hor n.b n.a)
|
|
$(a [n.a $(a l.a, b [n.b l.b ~]) r.a], b r.b)
|
|
$(a [n.a l.a $(a r.a, b [n.b ~ r.b])], b l.b)
|
|
?: =(n.a n.b)
|
|
[n.b $(b l.b, a l.a) $(b r.b, a r.a)]
|
|
?: (hor n.a n.b)
|
|
$(b [n.b $(b l.b, a [n.a l.a ~]) r.b], a r.a)
|
|
$(b [n.b l.b $(b r.b, a [n.a ~ r.a])], a l.a)
|
|
::
|
|
+- wyt :: size of set
|
|
|- ^- @
|
|
?~(a 0 +((add $(a l.a) $(a r.a))))
|
|
--
|
|
:: ::
|
|
:::: 2i: map logic ::
|
|
:: ::
|
|
:: by ::
|
|
::
|
|
++ by :: map engine
|
|
~/ %by
|
|
|_ a/(tree (pair))
|
|
+- all :: logical AND
|
|
~/ %all
|
|
|* b/$-(* ?)
|
|
|- ^- ?
|
|
?~ a
|
|
&
|
|
?&((b q.n.a) $(a l.a) $(a r.a))
|
|
::
|
|
+- any :: logical OR
|
|
~/ %any
|
|
|* b/$-(* ?)
|
|
|- ^- ?
|
|
?~ a
|
|
|
|
|
?|((b q.n.a) $(a l.a) $(a r.a))
|
|
::
|
|
+- apt :: map invariant
|
|
|- ^- ?
|
|
?~ a
|
|
&
|
|
?& ?~(l.a & ?&((vor p.n.a p.n.l.a) (gor p.n.l.a p.n.a) $(a l.a)))
|
|
?~(r.a & ?&((vor p.n.a p.n.r.a) (gor p.n.a p.n.r.a) $(a l.a)))
|
|
==
|
|
+- bif :: splits a by b
|
|
~/ %bif
|
|
|* {b/* c/*}
|
|
^+ [l=a r=a]
|
|
=< [+< +>]
|
|
|- ^+ a
|
|
?~ a
|
|
[[b c] ~ ~]
|
|
?: =(b p.n.a)
|
|
?: =(c q.n.a)
|
|
a
|
|
[[b c] l.a r.a]
|
|
?: (gor b p.n.a)
|
|
=+ d=$(a l.a)
|
|
?> ?=(^ d)
|
|
[n.d l.d [n.a r.d r.a]]
|
|
=+ d=$(a r.a)
|
|
?> ?=(^ d)
|
|
[n.d [n.a l.a l.d] r.d]
|
|
::
|
|
+- del :: delete at key b
|
|
~/ %del
|
|
|* b/*
|
|
|- ^+ a
|
|
?~ a
|
|
~
|
|
?. =(b p.n.a)
|
|
?: (gor b p.n.a)
|
|
[n.a $(a l.a) r.a]
|
|
[n.a l.a $(a r.a)]
|
|
|- ^- {$?($~ _a)}
|
|
?~ l.a r.a
|
|
?~ r.a l.a
|
|
?: (vor p.n.l.a p.n.r.a)
|
|
[n.l.a l.l.a $(l.a r.l.a)]
|
|
[n.r.a $(r.a l.r.a) r.r.a]
|
|
::
|
|
+- dif :: difference
|
|
~/ %dif
|
|
|* b/_a
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
=+ c=(bif n.b)
|
|
?> ?=(^ c)
|
|
=+ d=$(a l.c, b l.b)
|
|
=+ e=$(a r.c, b r.b)
|
|
|- ^- {$?($~ _a)}
|
|
?~ d e
|
|
?~ e d
|
|
?: (vor p.n.d p.n.e)
|
|
[n.d l.d $(d r.d)]
|
|
[n.e $(e l.e) r.e]
|
|
::
|
|
+- dig :: axis of b key
|
|
|= b/*
|
|
=+ c=1
|
|
|- ^- (unit @)
|
|
?~ a ~
|
|
?: =(b p.n.a) [~ u=(peg c 2)]
|
|
?: (gor b p.n.a)
|
|
$(a l.a, c (peg c 6))
|
|
$(a r.a, c (peg c 7))
|
|
::
|
|
+- gas :: concatenate
|
|
~/ %gas
|
|
|* b/(list {p/* q/*})
|
|
=> .(b `(list _?>(?=(^ a) n.a))`b)
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
$(b t.b, a (put p.i.b q.i.b))
|
|
::
|
|
+- get :: grab value by key
|
|
~/ %get
|
|
|= b/*
|
|
^- {$@($~ {$~ u/_?>(?=(^ a) q.n.a)})}
|
|
?~ a
|
|
~
|
|
?: =(b p.n.a)
|
|
[~ u=q.n.a]
|
|
?: (gor b p.n.a)
|
|
$(a l.a)
|
|
$(a r.a)
|
|
::
|
|
+- got
|
|
|* b/*
|
|
(need (get b))
|
|
::
|
|
+- has :: key existence check
|
|
~/ %has
|
|
|* b/*
|
|
!=(~ (get b))
|
|
::
|
|
+- int :: intersection
|
|
~/ %int
|
|
|* b/_a
|
|
|- ^+ a
|
|
?~ b
|
|
~
|
|
?~ a
|
|
~
|
|
?: (vor p.n.a p.n.b)
|
|
?: =(p.n.b p.n.a)
|
|
[n.b $(a l.a, b l.b) $(a r.a, b r.b)]
|
|
?: (gor p.n.b p.n.a)
|
|
%- uni(a $(a l.a, b [n.b l.b ~])) $(b r.b)
|
|
%- uni(a $(a r.a, b [n.b ~ r.b])) $(b l.b)
|
|
?: =(p.n.a p.n.b)
|
|
[n.b $(b l.b, a l.a) $(b r.b, a r.a)]
|
|
?: (gor p.n.a p.n.b)
|
|
%- uni(a $(b l.b, a [n.a l.a ~])) $(a r.a)
|
|
%- uni(a $(b r.b, a [n.a ~ r.a])) $(a l.a)
|
|
::
|
|
+- mar :: add with validation
|
|
|* {b/_?>(?=(^ a) p.n.a) c/(unit _?>(?=(^ a) q.n.a))}
|
|
?~ c
|
|
(del b)
|
|
(put b u.c)
|
|
::
|
|
+- put :: adds key-value pair
|
|
~/ %put
|
|
|* {b/* c/*}
|
|
|- ^+ a
|
|
?~ a
|
|
[[b c] ~ ~]
|
|
?: =(b p.n.a)
|
|
?: =(c q.n.a)
|
|
a
|
|
[[b c] l.a r.a]
|
|
?: (gor b p.n.a)
|
|
=+ d=$(a l.a)
|
|
?> ?=(^ d)
|
|
?: (vor p.n.a p.n.d)
|
|
[n.a d r.a]
|
|
[n.d l.d [n.a r.d r.a]]
|
|
=+ d=$(a r.a)
|
|
?> ?=(^ d)
|
|
?: (vor p.n.a p.n.d)
|
|
[n.a l.a d]
|
|
[n.d [n.a l.a l.d] r.d]
|
|
::
|
|
+- rep :: replace by product
|
|
|* b/_|=({* *} +<+)
|
|
|-
|
|
?~ a +<+.b
|
|
$(a r.a, +<+.b $(a l.a, +<+.b (b n.a +<+.b)))
|
|
::
|
|
+- rib :: transform + product
|
|
|* {b/* c/$-(* *)}
|
|
|- ^+ [b a]
|
|
?~ a [b ~]
|
|
=+ d=(c n.a b)
|
|
=. n.a +.d
|
|
=+ e=$(a l.a, b -.d)
|
|
=+ f=$(a r.a, b -.e)
|
|
[-.f [n.a +.e +.f]]
|
|
::
|
|
+- run :: apply gate to values
|
|
|* b/$-(* *)
|
|
|-
|
|
?~ a a
|
|
[n=[p=p.n.a q=(b q.n.a)] l=$(a l.a) r=$(a r.a)]
|
|
::
|
|
+- tap :: listify pairs
|
|
~/ %tap
|
|
|= b/(list _?>(?=(^ a) n.a))
|
|
^+ b
|
|
?~ a
|
|
b
|
|
$(a r.a, b [n.a $(a l.a)])
|
|
::
|
|
+- uni :: union, merge
|
|
~/ %uni
|
|
|* b/_a
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
?~ a
|
|
b
|
|
?: (vor p.n.a p.n.b)
|
|
?: =(p.n.b p.n.a)
|
|
[n.b $(a l.a, b l.b) $(a r.a, b r.b)]
|
|
?: (gor p.n.b p.n.a)
|
|
$(a [n.a $(a l.a, b [n.b l.b ~]) r.a], b r.b)
|
|
$(a [n.a l.a $(a r.a, b [n.b ~ r.b])], b l.b)
|
|
?: =(p.n.a p.n.b)
|
|
[n.b $(b l.b, a l.a) $(b r.b, a r.a)]
|
|
?: (gor p.n.a p.n.b)
|
|
$(b [n.b $(b l.b, a [n.a l.a ~]) r.b], a r.a)
|
|
$(b [n.b l.b $(b r.b, a [n.a ~ r.a])], a l.a)
|
|
::
|
|
+- urn :: apply gate to nodes
|
|
|* b/$-({* *} *)
|
|
|-
|
|
?~ a ~
|
|
[n=[p=p.n.a q=(b p.n.a q.n.a)] l=$(a l.a) r=$(a r.a)]
|
|
::
|
|
+- wyt :: depth of map
|
|
|- ^- @
|
|
?~(a 0 +((add $(a l.a) $(a r.a))))
|
|
--
|
|
:: ::
|
|
:::: 2j: jar and jug logic ::
|
|
:: ::
|
|
::
|
|
++ ja :: jar engine
|
|
|_ a/(tree (pair * (list)))
|
|
+- get :: gets list by key
|
|
|* b/*
|
|
=+ c=(~(get by a) b)
|
|
?~(c ~ u.c)
|
|
::
|
|
+- add :: adds key-list pair
|
|
|* {b/* c/*}
|
|
=+ d=(get b)
|
|
(~(put by a) b [c d])
|
|
--
|
|
++ ju :: jug engine
|
|
|_ a/(tree (pair * (tree)))
|
|
+- del :: del key-set pair
|
|
|* {b/* c/*}
|
|
^+ a
|
|
=+ d=(get b)
|
|
=+ e=(~(del in d) c)
|
|
?~ e
|
|
(~(del by a) b)
|
|
(~(put by a) b e)
|
|
::
|
|
+- gas :: concatenate
|
|
|* b/(list {p/* q/*})
|
|
=> .(b `(list _?>(?=({{* ^} ^} a) [p=p q=n.q]:n.a))`b)
|
|
|- ^+ a
|
|
?~ b
|
|
a
|
|
$(b t.b, a (put p.i.b q.i.b))
|
|
::
|
|
+- get :: gets set by key
|
|
|* b/*
|
|
=+ c=(~(get by a) b)
|
|
?~(c ~ u.c)
|
|
::
|
|
+- has :: existence check
|
|
|* {b/* c/*}
|
|
^- ?
|
|
(~(has in (get b)) c)
|
|
::
|
|
+- put :: add key-set pair
|
|
|* {b/* c/*}
|
|
^+ a
|
|
=+ d=(get b)
|
|
(~(put by a) b (~(put in d) c))
|
|
--
|
|
:: ::
|
|
:::: 2k: queue logic ::
|
|
:: ::
|
|
:: to ::
|
|
::
|
|
++ to :: queue engine
|
|
|_ a/(tree)
|
|
+- bal
|
|
|- ^+ a
|
|
?~ a ~
|
|
?. |(?=($~ l.a) (vor n.a n.l.a))
|
|
$(a [n.l.a l.l.a $(a [n.a r.l.a r.a])])
|
|
?. |(?=($~ r.a) (vor n.a n.r.a))
|
|
$(a [n.r.a $(a [n.a l.a l.r.a]) r.r.a])
|
|
a
|
|
::
|
|
+- dep :: max depth of queue
|
|
|- ^- @
|
|
?~ a 0
|
|
+((max $(a l.a) $(a r.a)))
|
|
::
|
|
+- gas :: insert list to que
|
|
|= b/(list _?>(?=(^ a) n.a))
|
|
|- ^+ a
|
|
?~(b a $(b t.b, a (put i.b)))
|
|
::
|
|
+- get :: head-rest pair
|
|
|- ^+ ?>(?=(^ a) [p=n.a q=*(tree _n.a)])
|
|
?~ a
|
|
!!
|
|
?~ r.a
|
|
[n.a l.a]
|
|
=+ b=$(a r.a)
|
|
:- p.b
|
|
?: |(?=($~ q.b) (vor n.a n.q.b))
|
|
[n.a l.a q.b]
|
|
[n.q.b [n.a l.a l.q.b] r.q.b]
|
|
::
|
|
+- nap :: removes head
|
|
?> ?=(^ a)
|
|
?: =(~ l.a) r.a
|
|
=+ b=get(a l.a)
|
|
bal(a ^+(a [p.b q.b r.a]))
|
|
::
|
|
+- put :: insert new tail
|
|
|* b/*
|
|
|- ^+ a
|
|
?~ a
|
|
[b ~ ~]
|
|
bal(a a(l $(a l.a)))
|
|
::
|
|
+- tap :: adds list to end
|
|
|= b/(list _?>(?=(^ a) n.a))
|
|
=+ 0 :: breaks tap.in match
|
|
^+ b
|
|
?~ a
|
|
b
|
|
$(a r.a, b [n.a $(a l.a)])
|
|
::
|
|
+- top :: produces head
|
|
|- ^- (unit _?>(?=(^ a) n.a))
|
|
?~ a ~
|
|
?~(r.a [~ n.a] $(a r.a))
|
|
--
|
|
:: ::
|
|
:::: 2l: container from container ::
|
|
:: ::
|
|
:: malt, molt, silt ::
|
|
::
|
|
++ malt :: map from list
|
|
|* a/(list)
|
|
(molt `(list {p/_-<.a q/_->.a})`a)
|
|
::
|
|
++ molt :: map from pair list
|
|
|* a/(list (pair))
|
|
(~(gas by `(tree {_p.i.-.a _q.i.-.a})`~) a)
|
|
::
|
|
++ silt :: set from list
|
|
|* a/(list)
|
|
=+ b=*(tree _?>(?=(^ a) i.a))
|
|
(~(gas in b) a)
|
|
:: ::
|
|
:::: 2m: container from noun ::
|
|
:: ::
|
|
:: ly, my, sy ::
|
|
::
|
|
++ ly :: list from raw noun
|
|
|* a/*
|
|
^+((homo (limo a)) a)
|
|
::
|
|
++ my :: map from raw noun
|
|
|* a/*
|
|
(malt ^+((homo (limo a)) a))
|
|
::
|
|
++ sy :: set from raw noun
|
|
|* a/*
|
|
(silt ^+((homo (limo a)) a))
|
|
:: ::
|
|
:::: 2n: functional hacks ::
|
|
:: ::
|
|
:: aftr, cork, corl, cury, curr, fore, ::
|
|
:: hard, head, same, soft, tail, test ::
|
|
::
|
|
++ aftr |*(a/$-(* *) |*(b/$-(* *) (pair b a))) :: pair after
|
|
++ cork |*({a/_|=(* **) b/gate} (corl b a)) :: compose forward
|
|
++ corl :: compose backwards
|
|
|* {a/gate b/_|=(* **)}
|
|
=< +:|.((a (b))) :: span check
|
|
=+ c=+<.b
|
|
|.((a (b c)))
|
|
::
|
|
++ cury :: curry left
|
|
|* {a/_|=(^ **) b/*}
|
|
=+ c=+<+.a
|
|
|.((a b c))
|
|
::
|
|
++ curr :: curry right
|
|
|* {a/_|=(^ **) b/*}
|
|
=+ c=+<+.a
|
|
|.((a c b))
|
|
::
|
|
++ fore |*(a/$-(* *) |*(b/$-(* *) (pair a b))) :: pair before
|
|
++ hard :: force remold
|
|
|* han/$-(* *)
|
|
|= fud/* ^- han
|
|
~> %mean.[0 %leaf "hard"]
|
|
=+ gol=(han fud)
|
|
?>(=(gol fud) gol)
|
|
::
|
|
::
|
|
++ head |*(^ +<-) :: get head
|
|
++ same |*(* +<) :: identity
|
|
++ soft :: maybe remold
|
|
|* han/$-(* *)
|
|
|= fud/* ^- (unit han)
|
|
=+ gol=(han fud)
|
|
?.(=(gol fud) ~ [~ gol])
|
|
::
|
|
++ tail |*(^ +<+) :: get tail
|
|
++ test |=(^ =(+<- +<+)) :: equality
|
|
::
|
|
:: ::
|
|
:::: 2o: normalizing containers ::
|
|
:: ::
|
|
:: jar, jug, map, set, qeu ::
|
|
::
|
|
++ jar |*({a/gate b/gate} (map a (list b))) :: map of lists
|
|
++ jug |*({a/gate b/gate} (map a (set b))) :: map of sets
|
|
++ map |* {a/gate b/gate} :: table
|
|
$@($~ {n/{p/a q/b} l/(map a b) r/(map a b)}) ::
|
|
++ qeu |* a/gate :: queue
|
|
$@($~ {n/a l/(qeu a) r/(qeu a)}) ::
|
|
++ set |* a/gate :: set
|
|
$@($~ {n/a l/(set a) r/(set a)}) ::
|
|
::
|
|
:::: 2p: serialization ::
|
|
:: ::
|
|
:: cue, jam, mat, rub ::
|
|
::
|
|
++ cue :: unpack
|
|
~/ %cue
|
|
|= a/@
|
|
^- *
|
|
=+ b=0
|
|
=+ m=`(map @ *)`~
|
|
=< q
|
|
|- ^- {p/@ q/* r/(map @ *)}
|
|
?: =(0 (cut 0 [b 1] a))
|
|
=+ c=(rub +(b) a)
|
|
[+(p.c) q.c (~(put by m) b q.c)]
|
|
=+ c=(add 2 b)
|
|
?: =(0 (cut 0 [+(b) 1] a))
|
|
=+ u=$(b c)
|
|
=+ v=$(b (add p.u c), m r.u)
|
|
=+ w=[q.u q.v]
|
|
[(add 2 (add p.u p.v)) w (~(put by r.v) b w)]
|
|
=+ d=(rub c a)
|
|
[(add 2 p.d) (need (~(get by m) q.d)) m]
|
|
::
|
|
++ jam :: pack
|
|
~/ %jam
|
|
|= a/*
|
|
^- @
|
|
=+ b=0
|
|
=+ m=`(map * @)`~
|
|
=< q
|
|
|- ^- {p/@ q/@ r/(map * @)}
|
|
=+ c=(~(get by m) a)
|
|
?~ c
|
|
=> .(m (~(put by m) a b))
|
|
?: ?=(@ a)
|
|
=+ d=(mat a)
|
|
[(add 1 p.d) (lsh 0 1 q.d) m]
|
|
=> .(b (add 2 b))
|
|
=+ d=$(a -.a)
|
|
=+ e=$(a +.a, b (add b p.d), m r.d)
|
|
[(add 2 (add p.d p.e)) (mix 1 (lsh 0 2 (cat 0 q.d q.e))) r.e]
|
|
?: ?&(?=(@ a) (lte (met 0 a) (met 0 u.c)))
|
|
=+ d=(mat a)
|
|
[(add 1 p.d) (lsh 0 1 q.d) m]
|
|
=+ d=(mat u.c)
|
|
[(add 2 p.d) (mix 3 (lsh 0 2 q.d)) m]
|
|
::
|
|
++ mat :: length-encode
|
|
~/ %mat
|
|
|= a/@
|
|
^- {p/@ q/@}
|
|
?: =(0 a)
|
|
[1 1]
|
|
=+ b=(met 0 a)
|
|
=+ c=(met 0 b)
|
|
:- (add (add c c) b)
|
|
(cat 0 (bex c) (mix (end 0 (dec c) b) (lsh 0 (dec c) a)))
|
|
::
|
|
++ rub :: length-decode
|
|
~/ %rub
|
|
|= {a/@ b/@}
|
|
^- {p/@ q/@}
|
|
=+ ^= c
|
|
=+ [c=0 m=(met 0 b)]
|
|
|- ?< (gth c m)
|
|
?. =(0 (cut 0 [(add a c) 1] b))
|
|
c
|
|
$(c +(c))
|
|
?: =(0 c)
|
|
[1 0]
|
|
=+ d=(add a +(c))
|
|
=+ e=(add (bex (dec c)) (cut 0 [d (dec c)] b))
|
|
[(add (add c c) e) (cut 0 [(add d (dec c)) e] b)]
|
|
++ char @tD
|
|
-- =>
|
|
:: ::
|
|
:::: 3: layer three ::
|
|
:: ::
|
|
|%
|
|
::
|
|
:::: 3a: signed and modular ints ::
|
|
:: ::
|
|
:: fe, si ::
|
|
::
|
|
++ fe :: modulo bloq
|
|
|_ a/bloq
|
|
++ dif |=({b/@ c/@} (sit (sub (add out (sit b)) (sit c)))) :: difference
|
|
++ inv |=(b/@ (sub (dec out) (sit b))) :: inverse
|
|
++ net |= b/@ ^- @ :: flip byte endianness
|
|
=> .(b (sit b))
|
|
?: (lte a 3)
|
|
b
|
|
=+ c=(dec a)
|
|
%+ con
|
|
(lsh c 1 $(a c, b (cut c [0 1] b)))
|
|
$(a c, b (cut c [1 1] b))
|
|
++ out (bex (bex a)) :: mod value
|
|
++ rol |= {b/bloq c/@ d/@} ^- @ :: roll left
|
|
=+ e=(sit d)
|
|
=+ f=(bex (sub a b))
|
|
=+ g=(mod c f)
|
|
(sit (con (lsh b g e) (rsh b (sub f g) e)))
|
|
++ ror |= {b/bloq c/@ d/@} ^- @ :: roll right
|
|
=+ e=(sit d)
|
|
=+ f=(bex (sub a b))
|
|
=+ g=(mod c f)
|
|
(sit (con (rsh b g e) (lsh b (sub f g) e)))
|
|
++ sum |=({b/@ c/@} (sit (add b c))) :: wrapping add
|
|
++ sit |=(b/@ (end a 1 b)) :: enforce modulo
|
|
--
|
|
::
|
|
++ si !: :: signed integer
|
|
|%
|
|
++ abs |=(a/@s (add (end 0 1 a) (rsh 0 1 a))) :: absolute value
|
|
++ dif |= {a/@s b/@s} :: subtraction
|
|
(sum a (new !(syn b) (abs b)))
|
|
++ dul |= {a/@s b/@} :: modulus
|
|
=+(c=(old a) ?:(-.c (mod +.c b) (sub b +.c)))
|
|
++ fra |= {a/@s b/@s} :: divide
|
|
(new =(0 (mix (syn a) (syn b))) (div (abs a) (abs b)))
|
|
++ new |= {a/? b/@} :: [sign value] to @s
|
|
`@s`?:(a (mul 2 b) ?:(=(0 b) 0 +((mul 2 (dec b)))))
|
|
++ old |=(a/@s [(syn a) (abs a)]) :: [sign value]
|
|
++ pro |= {a/@s b/@s} :: multiplication
|
|
(new =(0 (mix (syn a) (syn b))) (mul (abs a) (abs b)))
|
|
++ rem |=({a/@s b/@s} (dif a (pro b (fra a b)))) :: remainder
|
|
++ sum |= {a/@s b/@s} :: addition
|
|
=+ [c=(old a) d=(old b)]
|
|
?: -.c
|
|
?: -.d
|
|
(new & (add +.c +.d))
|
|
?: (gte +.c +.d)
|
|
(new & (sub +.c +.d))
|
|
(new | (sub +.d +.c))
|
|
?: -.d
|
|
?: (gte +.c +.d)
|
|
(new | (sub +.c +.d))
|
|
(new & (sub +.d +.c))
|
|
(new | (add +.c +.d))
|
|
++ sun |=(a/@u (mul 2 a)) :: @u to @s
|
|
++ syn |=(a/@s =(0 (end 0 1 a))) :: sign test
|
|
++ cmp |= {a/@s b/@s} :: compare
|
|
^- @s
|
|
?: =(a b)
|
|
--0
|
|
?: (syn a)
|
|
?: (syn b)
|
|
?: (gth a b)
|
|
--1
|
|
-1
|
|
--1
|
|
?: (syn b)
|
|
-1
|
|
?: (gth a b)
|
|
-1
|
|
--1
|
|
--
|
|
:: ::
|
|
:::: 3b: floating point ::
|
|
:: ::
|
|
:: rd, rh, rs, rq ::
|
|
:: rlyd, rlys, rlyh, rlyq ::
|
|
:: ryld, ryls, rylh, rylq ::
|
|
::
|
|
-- =>
|
|
|%
|
|
++ fn :: float, infinity, or NaN
|
|
:: s=sign, e=exponent, a=arithmetic form
|
|
:: (-1)^s * a * 2^e
|
|
$% {$f s/? e/@s a/@u}
|
|
{$i s/?}
|
|
{$n $~}
|
|
==
|
|
::
|
|
++ dn :: decimal float, infinity, or NaN
|
|
:: (-1)^s * a * 10^e
|
|
$% {$d s/? e/@s a/@u}
|
|
{$i s/?}
|
|
{$n $~}
|
|
==
|
|
::
|
|
++ rn :: parsed decimal float
|
|
::
|
|
$% {$d a/? b/{c/@ {d/@ e/@} f/? i/@}}
|
|
{$i a/?}
|
|
{$n $~}
|
|
==
|
|
::
|
|
++ fl :: arb. precision fp
|
|
=+ ^- {{p/@u v/@s w/@u} r/$?($n $u $d $z $a) d/$?($d $f $i)}
|
|
[[113 -16.494 32.765] %n %d]
|
|
:: p=precision: number of bits in arithmetic form; must be at least 2
|
|
:: v=min exponent: minimum value of e
|
|
:: w=width: max - min value of e, 0 is fixed point
|
|
:: r=rounding mode: nearest (ties to even), up, down, to zero, away from zero
|
|
:: d=behavior: return denormals, flush denormals to zero,
|
|
:: infinite exponent range
|
|
=>
|
|
~% %cofl +> ~
|
|
:: internal functions; mostly operating on {e/@s a/@u}, in other words
|
|
:: positive numbers. many of these have undefined behavior if a=0.
|
|
|%
|
|
++ rou
|
|
|= {a/{e/@s a/@u}} ^- fn (rau a &)
|
|
::
|
|
++ rau
|
|
|= {a/{e/@s a/@u} t/?} ^- fn
|
|
?- r
|
|
$z (lug %fl a t) $d (lug %fl a t)
|
|
$a (lug %ce a t) $u (lug %ce a t)
|
|
$n (lug %ne a t)
|
|
==
|
|
::
|
|
++ add :: add; exact if e
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u} e/?} ^- fn
|
|
=+ q=(dif:si e.a e.b)
|
|
|- ?. (syn:si q) $(b a, a b, q +(q)) :: a has larger exp
|
|
?: e
|
|
[%f & e.b (^add (lsh 0 (abs:si q) a.a) a.b)]
|
|
=+ [ma=(met 0 a.a) mb=(met 0 a.b)]
|
|
=+ ^= w %+ dif:si e.a %- sun:si :: expanded exp of a
|
|
?: (gth prc ma) (^sub prc ma) 0
|
|
=+ ^= x %+ sum:si e.b (sun:si mb) :: highest exp for b
|
|
?: =((cmp:si w x) --1) :: don't need to add
|
|
?- r
|
|
$z (lug %fl a &) $d (lug %fl a &)
|
|
$a (lug %lg a &) $u (lug %lg a &)
|
|
$n (lug %na a &)
|
|
==
|
|
(rou [e.b (^add (lsh 0 (abs:si q) a.a) a.b)])
|
|
::
|
|
++ sub :: subtract; exact if e
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u} e/?} ^- fn
|
|
=+ q=(dif:si e.a e.b)
|
|
|- ?. (syn:si q)
|
|
(fli $(b a, a b, q +(q), r swr))
|
|
=+ [ma=(met 0 a.a) mb=(met 0 a.b)]
|
|
=+ ^= w %+ dif:si e.a %- sun:si
|
|
?: (gth prc ma) (^sub prc ma) 0
|
|
=+ ^= x %+ sum:si e.b (sun:si mb)
|
|
?: &(!e =((cmp:si w x) --1))
|
|
?- r
|
|
$z (lug %sm a &) $d (lug %sm a &)
|
|
$a (lug %ce a &) $u (lug %ce a &)
|
|
$n (lug %nt a &)
|
|
==
|
|
=+ j=(lsh 0 (abs:si q) a.a)
|
|
|- ?. (gte j a.b)
|
|
(fli $(a.b j, j a.b, r swr))
|
|
=+ i=(^sub j a.b)
|
|
?~ i [%f & zer]
|
|
?: e [%f & e.b i] (rou [e.b i])
|
|
::
|
|
++ mul :: multiply
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u}} ^- fn
|
|
(rou (sum:si e.a e.b) (^mul a.a a.b))
|
|
::
|
|
++ div :: divide
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u}} ^- fn
|
|
=+ [ma=(met 0 a.a) mb=(met 0 a.b)]
|
|
=+ v=(dif:si (sun:si ma) (sun:si +((^add mb prc))))
|
|
=. a ?: (syn:si v) a
|
|
a(e (sum:si v e.a), a (lsh 0 (abs:si v) a.a))
|
|
=+ [j=(dif:si e.a e.b) q=(dvr a.a a.b)]
|
|
(rau [j p.q] =(q.q 0))
|
|
::
|
|
++ sqt :: square root
|
|
|= {a/{e/@s a/@u}} ^- fn
|
|
=. a
|
|
=+ [w=(met 0 a.a) x=(^mul +(prc) 2)]
|
|
=+ ?:((^lth w x) (^sub x w) 0)
|
|
=+ ?: =((dis - 1) (dis (abs:si e.a) 1)) -
|
|
(^add - 1)
|
|
a(e (dif:si e.a (sun:si -)), a (lsh 0 - a.a))
|
|
=+ [y=(^sqt a.a) z=(fra:si e.a --2)]
|
|
(rau [z p.y] =(q.y 0))
|
|
::
|
|
++ lth :: less-than
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u}} ^- ?
|
|
?: =(e.a e.b) (^lth a.a a.b)
|
|
=+ c=(cmp:si (ibl a) (ibl b))
|
|
?: =(c -1) & ?: =(c --1) |
|
|
?: =((cmp:si e.a e.b) -1)
|
|
(^lth (rsh 0 (abs:si (dif:si e.a e.b)) a.a) a.b)
|
|
(^lth (lsh 0 (abs:si (dif:si e.a e.b)) a.a) a.b)
|
|
::
|
|
++ lte :: less-equals
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u}} ^- ?
|
|
?: =(e.a e.b) (^lte a.a a.b)
|
|
=+ c=(cmp:si (ibl a) (ibl b))
|
|
?: =(c -1) & ?: =(c --1) |
|
|
?: =((cmp:si e.a e.b) -1)
|
|
(^lte a.a (lsh 0 (abs:si (dif:si e.a e.b)) a.b))
|
|
(^lte (lsh 0 (abs:si (dif:si e.a e.b)) a.a) a.b)
|
|
::
|
|
++ equ :: equals
|
|
|= {a/{e/@s a/@u} b/{e/@s a/@u}} ^- ?
|
|
?. =((ibl a) (ibl b)) |
|
|
?: =((cmp:si e.a e.b) -1)
|
|
=((lsh 0 (abs:si (dif:si e.a e.b)) a.b) a.a)
|
|
=((lsh 0 (abs:si (dif:si e.a e.b)) a.a) a.b)
|
|
::
|
|
:: integer binary logarithm: 2^ibl(a) <= |a| < 2^(ibl(a)+1)
|
|
++ ibl
|
|
|= {a/{e/@s a/@u}} ^- @s
|
|
(sum:si (sun:si (dec (met 0 a.a))) e.a)
|
|
::
|
|
:: change to a representation where a.a is odd
|
|
:: every fn has a unique representation of this kind
|
|
++ uni
|
|
|= {a/{e/@s a/@u}}
|
|
|- ?: =((end 0 1 a.a) 1) a
|
|
$(a.a (rsh 0 1 a.a), e.a (sum:si e.a --1))
|
|
::
|
|
:: expands to either full precision or to denormalized
|
|
++ xpd
|
|
|= {a/{e/@s a/@u}}
|
|
=+ ma=(met 0 a.a)
|
|
?: (gte ma prc) a
|
|
=+ ?: =(den %i) (^sub prc ma)
|
|
=+ ^= q
|
|
=+ w=(dif:si e.a emn)
|
|
?: (syn:si w) (abs:si w) 0
|
|
(min q (^sub prc ma))
|
|
a(e (dif:si e.a (sun:si -)), a (lsh 0 - a.a))
|
|
::
|
|
:: central rounding mechanism
|
|
:: can perform: floor, ceiling, smaller, larger,
|
|
:: nearest (round ties to: even, away from 0, toward 0)
|
|
:: s is sticky bit: represents a value less than ulp(a) = 2^(e.a)
|
|
++ lug
|
|
~/ %lug
|
|
|= {t/$?($fl $ce $sm $lg $ne $na $nt) a/{e/@s a/@u} s/?} ^- fn
|
|
?< =(a.a 0)
|
|
=-
|
|
?. =(den %f) - :: flush denormals
|
|
?. ?=({$f *} -) -
|
|
?: =((met 0 ->+>) prc) - [%f & zer]
|
|
::
|
|
=+ m=(met 0 a.a)
|
|
?> |(s (gth m prc)) :: require precision
|
|
=+ ^= q
|
|
=+ ^= f :: reduce precision
|
|
?: (gth m prc) (^sub m prc) 0
|
|
=+ ^= g %- abs:si :: enforce min. exp
|
|
?: =(den %i) --0
|
|
?: =((cmp:si e.a emn) -1) (dif:si emn e.a) --0
|
|
(max f g)
|
|
=^ b a :- (end 0 q a.a)
|
|
a(e (sum:si e.a (sun:si q)), a (rsh 0 q a.a))
|
|
::
|
|
?~ a.a
|
|
?< =(den %i)
|
|
?- t
|
|
$fl [%f & zer]
|
|
$sm [%f & zer]
|
|
$ce [%f & spd]
|
|
$lg [%f & spd]
|
|
$ne ?: s [%f & ?:((^lte b (bex (dec q))) zer spd)]
|
|
[%f & ?:((^lth b (bex (dec q))) zer spd)]
|
|
$nt ?: s [%f & ?:((^lte b (bex (dec q))) zer spd)]
|
|
[%f & ?:((^lth b (bex (dec q))) zer spd)]
|
|
$na [%f & ?:((^lth b (bex (dec q))) zer spd)]
|
|
==
|
|
::
|
|
=. a (xpd a)
|
|
::
|
|
=. a
|
|
?- t
|
|
$fl a
|
|
$lg a(a +(a.a))
|
|
$sm ?. &(=(b 0) s) a
|
|
?: &(=(e.a emn) !=(den %i)) a(a (dec a.a))
|
|
=+ y=(dec (^mul a.a 2))
|
|
?. (^lte (met 0 y) prc) a(a (dec a.a))
|
|
[(dif:si e.a --1) y]
|
|
$ce ?: &(=(b 0) s) a a(a +(a.a))
|
|
$ne ?~ b a
|
|
=+ y=(bex (dec q))
|
|
?: &(=(b y) s) :: round halfs to even
|
|
?~ (dis a.a 1) a a(a +(a.a))
|
|
?: (^lth b y) a a(a +(a.a))
|
|
$na ?~ b a
|
|
=+ y=(bex (dec q))
|
|
?: (^lth b y) a a(a +(a.a))
|
|
$nt ?~ b a
|
|
=+ y=(bex (dec q))
|
|
?: =(b y) ?: s a a(a +(a.a))
|
|
?: (^lth b y) a a(a +(a.a))
|
|
==
|
|
::
|
|
=. a ?. =((met 0 a.a) +(prc)) a
|
|
a(a (rsh 0 1 a.a), e (sum:si e.a --1))
|
|
?~ a.a [%f & zer]
|
|
::
|
|
?: =(den %i) [%f & a]
|
|
?: =((cmp:si emx e.a) -1) [%i &] [%f & a] :: enforce max. exp
|
|
::
|
|
++ drg :: dragon4;
|
|
~/ %drg :: convert to decimal
|
|
|= {a/{e/@s a/@u}} ^- {@s @u}
|
|
?< =(a.a 0)
|
|
=. a (xpd a)
|
|
=+ r=(lsh 0 ?:((syn:si e.a) (abs:si e.a) 0) a.a)
|
|
=+ s=(lsh 0 ?.((syn:si e.a) (abs:si e.a) 0) 1)
|
|
=+ m=(lsh 0 ?:((syn:si e.a) (abs:si e.a) 0) 1)
|
|
=+ [k=--0 q=(^div (^add s 9) 10)]
|
|
|- ?: (^lth r q)
|
|
%= $
|
|
k (dif:si k --1)
|
|
r (^mul r 10)
|
|
m (^mul m 10)
|
|
==
|
|
|- ?: (gte (^add (^mul r 2) m) (^mul s 2))
|
|
$(s (^mul s 10), k (sum:si k --1))
|
|
=+ [u=0 o=0]
|
|
|-
|
|
=+ v=(dvr (^mul r 10) s)
|
|
=> %= .
|
|
k (dif:si k --1)
|
|
u p.v
|
|
r q.v
|
|
m (^mul m 10)
|
|
==
|
|
=+ l=(^lth (^mul r 2) m)
|
|
=+ ^= h
|
|
?| (^lth (^mul s 2) m)
|
|
(gth (^mul r 2) (^sub (^mul s 2) m))
|
|
==
|
|
?: &(!l !h)
|
|
$(o (^add (^mul o 10) u))
|
|
=+ q=&(h |(!l (gte (^mul r 2) s)))
|
|
=. o (^add (^mul o 10) ?:(q +(u) u))
|
|
[k o]
|
|
::
|
|
++ toj :: round to integer
|
|
|= {a/{e/@s a/@u}} ^- fn
|
|
?. =((cmp:si e.a --0) -1) [%f & a]
|
|
=+ x=(abs:si e.a)
|
|
=+ y=(rsh 0 x a.a)
|
|
?: |(=(r %d) =(r %z)) [%f & --0 y]
|
|
=+ z=(end 0 x a.a)
|
|
?: |(=(r %u) =(r %a)) [%f & --0 ?~(z y +(y))]
|
|
=+ i=(bex (dec x))
|
|
?: &(=(z i) =((dis y 1) 0)) [%f & --0 y]
|
|
?: (^lth z i) [%f & --0 y] [%f & --0 +(y)]
|
|
::
|
|
++ ned :: require ?=({$f *} a)
|
|
|= {a/fn} ^- {$f s/? e/@s a/@u}
|
|
?: ?=({$f *} a) a
|
|
~> %mean.[0 leaf+"need-float"]
|
|
!!
|
|
::
|
|
++ shf :: a * 2^b; no rounding
|
|
|= {a/fn b/@s}
|
|
?: |(?=({$n *} a) ?=({$i *} a)) a
|
|
a(e (sum:si e.a b))
|
|
::
|
|
++ fli :: flip sign
|
|
|= {a/fn} ^- fn
|
|
?-(-.a $f a(s !s.a), $i a(s !s.a), $n a)
|
|
::
|
|
++ swr ?+(r r $d %u, $u %d) :: flipped rounding
|
|
++ prc ?>((gth p 1) p) :: force >= 2 precision
|
|
++ den d :: denorm+flush+inf exp
|
|
++ emn v :: minimum exponent
|
|
++ emx (sum:si emn (sun:si w)) :: maximum exponent
|
|
++ spd [e=emn a=1] :: smallest denormal
|
|
++ spn [e=emn a=(bex (dec prc))] :: smallest normal
|
|
++ lfn [e=emx a=(fil 0 prc 1)] :: largest
|
|
++ lfe (sum:si emx (sun:si prc)) :: 2^lfe is > than all
|
|
++ zer [e=--0 a=0]
|
|
--
|
|
|%
|
|
++ rou :: round
|
|
|= {a/fn} ^- fn
|
|
?. ?=({$f *} a) a
|
|
?~ a.a [%f s.a zer]
|
|
?: s.a (^rou +>.a)
|
|
=.(r swr (fli (^rou +>.a)))
|
|
::
|
|
++ syn :: get sign
|
|
|= {a/fn} ^- ?
|
|
?-(-.a $f s.a, $i s.a, $n &)
|
|
::
|
|
++ abs :: absolute value
|
|
|= {a/fn} ^- fn
|
|
?: ?=({$f *} a) [%f & e.a a.a]
|
|
?: ?=({$i *} a) [%i &] [%n ~]
|
|
::
|
|
++ add :: add
|
|
|= {a/fn b/fn} ^- fn
|
|
?: |(?=({$n *} a) ?=({$n *} b)) [%n ~]
|
|
?: |(?=({$i *} a) ?=({$i *} b))
|
|
?: &(?=({$i *} a) ?=({$i *} b))
|
|
?: =(a b) a [%n ~]
|
|
?: ?=({$i *} a) a b
|
|
?: |(=(a.a 0) =(a.b 0))
|
|
?. &(=(a.a 0) =(a.b 0)) %- rou ?~(a.a b a)
|
|
[%f ?:(=(r %d) &(s.a s.b) |(s.a s.b)) zer]
|
|
%- |= {a/fn}
|
|
?. ?=({$f *} a) a
|
|
?. =(a.a 0) a
|
|
[%f !=(r %d) zer]
|
|
?: =(s.a s.b)
|
|
?: s.a (^add +>.a +>.b |)
|
|
=.(r swr (fli (^add +>.a +>.b |)))
|
|
?: s.a (^sub +>.a +>.b |)
|
|
(^sub +>.b +>.a |)
|
|
::
|
|
++ ead :: exact add
|
|
|= {a/fn b/fn} ^- fn
|
|
?: |(?=({$n *} a) ?=({$n *} b)) [%n ~]
|
|
?: |(?=({$i *} a) ?=({$i *} b))
|
|
?: &(?=({$i *} a) ?=({$i *} b))
|
|
?: =(a b) a [%n ~]
|
|
?: ?=({$i *} a) a b
|
|
?: |(=(a.a 0) =(a.b 0))
|
|
?. &(=(a.a 0) =(a.b 0)) ?~(a.a b a)
|
|
[%f ?:(=(r %d) &(s.a s.b) |(s.a s.b)) zer]
|
|
%- |= {a/fn}
|
|
?. ?=({$f *} a) a
|
|
?. =(a.a 0) a
|
|
[%f !=(r %d) zer]
|
|
?: =(s.a s.b)
|
|
?: s.a (^add +>.a +>.b &)
|
|
(fli (^add +>.a +>.b &))
|
|
?: s.a (^sub +>.a +>.b &)
|
|
(^sub +>.b +>.a &)
|
|
::
|
|
++ sub :: subtract
|
|
|= {a/fn b/fn} ^- fn (add a (fli b))
|
|
::
|
|
++ mul :: multiply
|
|
|= {a/fn b/fn} ^- fn
|
|
?: |(?=({$n *} a) ?=({$n *} b)) [%n ~]
|
|
?: ?=({$i *} a)
|
|
?: ?=({$i *} b)
|
|
[%i =(s.a s.b)]
|
|
?: =(a.b 0) [%n ~] [%i =(s.a s.b)]
|
|
?: ?=({$i *} b)
|
|
?: =(a.a 0) [%n ~] [%i =(s.a s.b)]
|
|
?: |(=(a.a 0) =(a.b 0)) [%f =(s.a s.b) zer]
|
|
?: =(s.a s.b) (^mul +>.a +>.b)
|
|
=.(r swr (fli (^mul +>.a +>.b)))
|
|
::
|
|
++ emu :: exact multiply
|
|
|= {a/fn b/fn} ^- fn
|
|
?: |(?=({$n *} a) ?=({$n *} b)) [%n ~]
|
|
?: ?=({$i *} a)
|
|
?: ?=({$i *} b)
|
|
[%i =(s.a s.b)]
|
|
?: =(a.b 0) [%n ~] [%i =(s.a s.b)]
|
|
?: ?=({$i *} b)
|
|
?: =(a.a 0) [%n ~] [%i =(s.a s.b)]
|
|
?: |(=(a.a 0) =(a.b 0)) [%f =(s.a s.b) zer]
|
|
[%f =(s.a s.b) (sum:si e.a e.b) (^^mul a.a a.b)]
|
|
::
|
|
++ div :: divide
|
|
|= {a/fn b/fn} ^- fn
|
|
?: |(?=({$n *} a) ?=({$n *} b)) [%n ~]
|
|
?: ?=({$i *} a)
|
|
?: ?=({$i *} b) [%n ~] [%i =(s.a s.b)]
|
|
?: ?=({$i *} b) [%f =(s.a s.b) zer]
|
|
?: =(a.a 0) ?: =(a.b 0) [%n ~] [%f =(s.a s.b) zer]
|
|
?: =(a.b 0) [%i =(s.a s.b)]
|
|
?: =(s.a s.b) (^div +>.a +>.b)
|
|
=.(r swr (fli (^div +>.a +>.b)))
|
|
::
|
|
++ fma :: fused multiply-add
|
|
|= {a/fn b/fn c/fn} ^- fn :: (a * b) + c
|
|
(add (emu a b) c)
|
|
::
|
|
++ sqt :: square root
|
|
|= {a/fn} ^- fn
|
|
?: ?=({$n *} a) [%n ~]
|
|
?: ?=({$i *} a) ?:(s.a a [%n ~])
|
|
?~ a.a [%f s.a zer]
|
|
?: s.a (^sqt +>.a) [%n ~]
|
|
::
|
|
++ inv :: inverse
|
|
|= {a/fn} ^- fn
|
|
(div [%f & --0 1] a)
|
|
::
|
|
++ sun :: uns integer to float
|
|
|= {a/@u} ^- fn
|
|
(rou [%f & --0 a])
|
|
::
|
|
++ san :: sgn integer to float
|
|
|= {a/@s} ^- fn
|
|
=+ b=(old:si a)
|
|
(rou [%f -.b --0 +.b])
|
|
::
|
|
:: comparisons return ~ in the event of a NaN
|
|
++ lth :: less-than
|
|
|= {a/fn b/fn} ^- (unit ?)
|
|
?: |(?=({$n *} a) ?=({$n *} b)) ~ :- ~
|
|
?: =(a b) |
|
|
?: ?=({$i *} a) !s.a ?: ?=({$i *} b) s.b
|
|
?: |(=(a.a 0) =(a.b 0))
|
|
?: &(=(a.a 0) =(a.b 0)) |
|
|
?: =(a.a 0) s.b !s.a
|
|
?: !=(s.a s.b) s.b
|
|
?: s.a (^lth +>.a +>.b) (^lth +>.b +>.a)
|
|
::
|
|
++ lte :: less-equal
|
|
|= {a/fn b/fn} ^- (unit ?)
|
|
?: |(?=({$n *} a) ?=({$n *} b)) ~ :- ~
|
|
?: =(a b) &
|
|
?: ?=({$i *} a) !s.a ?: ?=({$i *} b) s.b
|
|
?: |(=(a.a 0) =(a.b 0))
|
|
?: &(=(a.a 0) =(a.b 0)) &
|
|
?: =(a.a 0) s.b !s.a
|
|
?: !=(s.a s.b) s.b
|
|
?: s.a (^lte +>.a +>.b) (^lte +>.b +>.a)
|
|
::
|
|
++ equ :: equal
|
|
|= {a/fn b/fn} ^- (unit ?)
|
|
?: |(?=({$n *} a) ?=({$n *} b)) ~ :- ~
|
|
?: =(a b) &
|
|
?: |(?=({$i *} a) ?=({$i *} b)) |
|
|
?: |(=(a.a 0) =(a.b 0))
|
|
?: &(=(a.a 0) =(a.b 0)) & |
|
|
?: |(=(e.a e.b) !=(s.a s.b)) |
|
|
(^equ +>.a +>.b)
|
|
::
|
|
++ gte :: greater-equal
|
|
|= {a/fn b/fn} ^- (unit ?) (lte b a)
|
|
::
|
|
++ gth :: greater-than
|
|
|= {a/fn b/fn} ^- (unit ?) (lth b a)
|
|
::
|
|
++ drg :: float to decimal
|
|
|= {a/fn} ^- dn
|
|
?: ?=({$n *} a) [%n ~]
|
|
?: ?=({$i *} a) [%i s.a]
|
|
?~ a.a [%d s.a --0 0]
|
|
[%d s.a (^drg +>.a)]
|
|
::
|
|
++ grd :: decimal to float
|
|
|= {a/dn} ^- fn
|
|
?: ?=({$n *} a) [%n ~]
|
|
?: ?=({$i *} a) [%i s.a]
|
|
=> .(r %n)
|
|
=+ q=(abs:si e.a)
|
|
?: (syn:si e.a)
|
|
(mul [%f s.a --0 a.a] [%f & e.a (pow 5 q)])
|
|
(div [%f s.a --0 a.a] [%f & (sun:si q) (pow 5 q)])
|
|
::
|
|
++ toi :: round to integer @s
|
|
|= {a/fn} ^- (unit @s)
|
|
=+ b=(toj a)
|
|
?. ?=({$f *} b) ~ :- ~
|
|
=+ c=(^^mul (bex (abs:si e.b)) a.b)
|
|
(new:si s.b c)
|
|
::
|
|
++ toj :: round to integer fn
|
|
|= {a/fn} ^- fn
|
|
?. ?=({$f *} a) a
|
|
?~ a.a [%f s.a zer]
|
|
?: s.a (^toj +>.a)
|
|
=.(r swr (fli (^toj +>.a)))
|
|
--
|
|
::
|
|
++ ff :: ieee 754 format fp
|
|
|_ {{w/@u p/@u b/@s} r/$?($n $u $d $z $a)}
|
|
:: this core has no use outside of the functionality
|
|
:: provided to ++rd, ++rs, ++rq, and ++rh
|
|
::
|
|
:: w=width: bits in exponent field
|
|
:: p=precision: bits in fraction field
|
|
:: w=bias: added to exponent when storing
|
|
:: r=rounding mode: same as in ++fl
|
|
::
|
|
++ sb (bex (^add w p)) :: sign bit
|
|
++ me (dif:si (dif:si --1 b) (sun:si p)) :: minimum exponent
|
|
::
|
|
++ pa
|
|
%*(. fl p +(p), v me, w (^sub (bex w) 3), d %d, r r)
|
|
::
|
|
++ sea :: @r to fn
|
|
|= {a/@r} ^- fn
|
|
=+ [f=(cut 0 [0 p] a) e=(cut 0 [p w] a)]
|
|
=+ s=(sig a)
|
|
?: =(e 0)
|
|
?: =(f 0) [%f s --0 0] [%f s me f]
|
|
?: =(e (fil 0 w 1))
|
|
?: =(f 0) [%i s] [%n ~]
|
|
=+ q=:(sum:si (sun:si e) me -1)
|
|
=+ r=(^add f (bex p))
|
|
[%f s q r]
|
|
::
|
|
++ bit |= {a/fn} (bif (rou:pa a)) :: fn to @r w+ rounding
|
|
::
|
|
++ bif :: fn to @r no rounding
|
|
|= {a/fn} ^- @r
|
|
?: ?=({$i *} a)
|
|
=+ q=(lsh 0 p (fil 0 w 1))
|
|
?: s.a q (^add q sb)
|
|
?: ?=({$n *} a) (lsh 0 (dec p) (fil 0 +(w) 1))
|
|
?~ a.a ?: s.a `@r`0 sb
|
|
=+ ma=(met 0 a.a)
|
|
?. =(ma +(p))
|
|
?> =(e.a me)
|
|
?> (^lth ma +(p))
|
|
?: s.a `@r`a.a (^add a.a sb)
|
|
=+ q=(sum:si (dif:si e.a me) --1)
|
|
=+ r=(^add (lsh 0 p (abs:si q)) (end 0 p a.a))
|
|
?: s.a r (^add r sb)
|
|
::
|
|
++ sig :: get sign
|
|
|= {a/@r} ^- ?
|
|
=(0 (cut 0 [(^add p w) 1] a))
|
|
::
|
|
++ exp :: get exponent
|
|
|= {a/@r} ^- @s
|
|
(dif:si (sun:si (cut 0 [p w] a)) b)
|
|
::
|
|
++ add :: add
|
|
|= {a/@r b/@r}
|
|
(bif (add:pa (sea a) (sea b)))
|
|
::
|
|
++ sub :: subtract
|
|
|= {a/@r b/@r}
|
|
(bif (sub:pa (sea a) (sea b)))
|
|
::
|
|
++ mul :: multiply
|
|
|= {a/@r b/@r}
|
|
(bif (mul:pa (sea a) (sea b)))
|
|
::
|
|
++ div :: divide
|
|
|= {a/@r b/@r}
|
|
(bif (div:pa (sea a) (sea b)))
|
|
::
|
|
++ fma :: fused multiply-add
|
|
|= {a/@r b/@r c/@r}
|
|
(bif (fma:pa (sea a) (sea b) (sea c)))
|
|
::
|
|
++ sqt :: square root
|
|
|= {a/@r}
|
|
(bif (sqt:pa (sea a)))
|
|
::
|
|
++ lth :: less-than
|
|
|= {a/@r b/@r} (fall (lth:pa (sea a) (sea b)) |)
|
|
++ lte :: less-equals
|
|
|= {a/@r b/@r} (fall (lte:pa (sea a) (sea b)) |)
|
|
++ equ :: equals
|
|
|= {a/@r b/@r} (fall (equ:pa (sea a) (sea b)) |)
|
|
++ gte :: greater-equals
|
|
|= {a/@r b/@r} (fall (gte:pa (sea a) (sea b)) |)
|
|
++ gth :: greater-than
|
|
|= {a/@r b/@r} (fall (gth:pa (sea a) (sea b)) |)
|
|
++ sun :: uns integer to @r
|
|
|= {a/@u} (bit [%f & --0 a])
|
|
++ san :: signed integer to @r
|
|
|= {a/@s} (bit [%f (syn:si a) --0 (abs:si a)])
|
|
++ toi :: round to integer
|
|
|= {a/@r} (toi:pa (sea a))
|
|
++ drg :: @r to decimal float
|
|
|= {a/@r} (drg:pa (sea a))
|
|
++ grd :: decimal float to @r
|
|
|= {a/dn} (bif (grd:pa a))
|
|
--
|
|
::
|
|
++ rlyd |= a/@rd ^- dn (drg:rd a) :: prep @rd for print
|
|
++ rlys |= a/@rs ^- dn (drg:rs a) :: prep @rs for print
|
|
++ rlyh |= a/@rh ^- dn (drg:rh a) :: prep @rh for print
|
|
++ rlyq |= a/@rq ^- dn (drg:rq a) :: prep @rq for print
|
|
++ ryld |= a/dn ^- @rd (grd:rd a) :: finish parsing @rd
|
|
++ ryls |= a/dn ^- @rs (grd:rs a) :: finish parsing @rs
|
|
++ rylh |= a/dn ^- @rh (grd:rh a) :: finish parsing @rh
|
|
++ rylq |= a/dn ^- @rq (grd:rq a) :: finish parsing @rq
|
|
::
|
|
++ rd :: double precision fp
|
|
~% %rd +> ~
|
|
|_ r/$?($n $u $d $z)
|
|
:: round to nearest, round up, round down, round to zero
|
|
::
|
|
++ ma
|
|
%*(. ff w 11, p 52, b --1.023, r r)
|
|
::
|
|
++ sea :: @rd to fn
|
|
|= {a/@rd} (sea:ma a)
|
|
::
|
|
++ bit :: fn to @rd
|
|
|= {a/fn} ^- @rd (bit:ma a)
|
|
::
|
|
++ add ~/ %add :: add
|
|
|= {a/@rd b/@rd} ^- @rd
|
|
~> %mean.[0 leaf+"rd-fail"]
|
|
(add:ma a b)
|
|
::
|
|
++ sub ~/ %sub :: subtract
|
|
|= {a/@rd b/@rd} ^- @rd
|
|
~> %mean.[0 leaf+"rd-fail"]
|
|
(sub:ma a b)
|
|
::
|
|
++ mul ~/ %mul :: multiply
|
|
|= {a/@rd b/@rd} ^- @rd
|
|
~> %mean.[0 leaf+"rd-fail"]
|
|
(mul:ma a b)
|
|
::
|
|
++ div ~/ %div :: divide
|
|
|= {a/@rd b/@rd} ^- @rd
|
|
~> %mean.[0 leaf+"rd-fail"]
|
|
(div:ma a b)
|
|
::
|
|
++ fma ~/ %fma :: fused multiply-add
|
|
|= {a/@rd b/@rd c/@rd} ^- @rd
|
|
~> %mean.[0 leaf+"rd-fail"]
|
|
(fma:ma a b c)
|
|
::
|
|
++ sqt ~/ %sqt :: square root
|
|
|= {a/@rd} ^- @rd ~> %mean.[0 leaf+"rd-fail"]
|
|
(sqt:ma a)
|
|
::
|
|
++ lth ~/ %lth :: less-than
|
|
|= {a/@rd b/@rd}
|
|
~> %mean.[0 leaf+"rd-fail"]
|
|
(lth:ma a b)
|
|
::
|
|
++ lte ~/ %lte :: less-equals
|
|
|= {a/@rd b/@rd} ~> %mean.[0 leaf+"rd-fail"] (lte:ma a b)
|
|
++ equ ~/ %equ :: equals
|
|
|= {a/@rd b/@rd} ~> %mean.[0 leaf+"rd-fail"] (equ:ma a b)
|
|
++ gte ~/ %gte :: greater-equals
|
|
|= {a/@rd b/@rd} ~> %mean.[0 leaf+"rd-fail"] (gte:ma a b)
|
|
++ gth ~/ %gth :: greater-than
|
|
|= {a/@rd b/@rd} ~> %mean.[0 leaf+"rd-fail"] (gth:ma a b)
|
|
::
|
|
++ sun |= {a/@u} ^- @rd (sun:ma a) :: uns integer to @rd
|
|
++ san |= {a/@s} ^- @rd (san:ma a) :: sgn integer to @rd
|
|
++ sig |= {a/@rd} ^- ? (sig:ma a) :: get sign
|
|
++ exp |= {a/@rd} ^- @s (exp:ma a) :: get exponent
|
|
++ toi |= {a/@rd} ^- (unit @s) (toi:ma a) :: round to integer
|
|
++ drg |= {a/@rd} ^- dn (drg:ma a) :: @rd to decimal float
|
|
++ grd |= {a/dn} ^- @rd (grd:ma a) :: decimal float to @rd
|
|
--
|
|
::
|
|
++ rs :: single precision fp
|
|
~% %rs +> ~
|
|
|_ r/$?($n $u $d $z)
|
|
:: round to nearest, round up, round down, round to zero
|
|
::
|
|
++ ma
|
|
%*(. ff w 8, p 23, b --127, r r)
|
|
::
|
|
++ sea :: @rs to fn
|
|
|= {a/@rs} (sea:ma a)
|
|
::
|
|
++ bit :: fn to @rs
|
|
|= {a/fn} ^- @rs (bit:ma a)
|
|
::
|
|
++ add ~/ %add :: add
|
|
|= {a/@rs b/@rs} ^- @rs
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(add:ma a b)
|
|
::
|
|
++ sub ~/ %sub :: subtract
|
|
|= {a/@rs b/@rs} ^- @rs
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(sub:ma a b)
|
|
::
|
|
++ mul ~/ %mul :: multiply
|
|
|= {a/@rs b/@rs} ^- @rs
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(mul:ma a b)
|
|
::
|
|
++ div ~/ %div :: divide
|
|
|= {a/@rs b/@rs} ^- @rs
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(div:ma a b)
|
|
::
|
|
++ fma ~/ %fma :: fused multiply-add
|
|
|= {a/@rs b/@rs c/@rs} ^- @rs
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(fma:ma a b c)
|
|
::
|
|
++ sqt ~/ %sqt :: square root
|
|
|= {a/@rs} ^- @rs
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(sqt:ma a)
|
|
::
|
|
++ lth ~/ %lth :: less-than
|
|
|= {a/@rs b/@rs}
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(lth:ma a b)
|
|
::
|
|
++ lte ~/ %lte :: less-equals
|
|
|= {a/@rs b/@rs}
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(lte:ma a b)
|
|
::
|
|
++ equ ~/ %equ :: equals
|
|
|= {a/@rs b/@rs}
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(equ:ma a b)
|
|
::
|
|
++ gte ~/ %gte :: greater-equals
|
|
|= {a/@rs b/@rs}
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(gte:ma a b)
|
|
::
|
|
++ gth ~/ %gth :: greater-than
|
|
|= {a/@rs b/@rs}
|
|
~> %mean.[0 leaf+"rs-fail"]
|
|
(gth:ma a b)
|
|
::
|
|
++ sun |= {a/@u} ^- @rs (sun:ma a) :: uns integer to @rs
|
|
++ san |= {a/@s} ^- @rs (san:ma a) :: sgn integer to @rs
|
|
++ sig |= {a/@rs} ^- ? (sig:ma a) :: get sign
|
|
++ exp |= {a/@rs} ^- @s (exp:ma a) :: get exponent
|
|
++ toi |= {a/@rs} ^- (unit @s) (toi:ma a) :: round to integer
|
|
++ drg |= {a/@rs} ^- dn (drg:ma a) :: @rs to decimal float
|
|
++ grd |= {a/dn} ^- @rs (grd:ma a) :: decimal float to @rs
|
|
--
|
|
::
|
|
++ rq :: quad precision fp
|
|
~% %rq +> ~
|
|
|_ r/$?($n $u $d $z)
|
|
:: round to nearest, round up, round down, round to zero
|
|
::
|
|
++ ma
|
|
%*(. ff w 15, p 112, b --16.383, r r)
|
|
::
|
|
++ sea :: @rq to fn
|
|
|= {a/@rq} (sea:ma a)
|
|
::
|
|
++ bit :: fn to @rq
|
|
|= {a/fn} ^- @rq (bit:ma a)
|
|
::
|
|
++ add ~/ %add :: add
|
|
|= {a/@rq b/@rq} ^- @rq
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(add:ma a b)
|
|
::
|
|
++ sub ~/ %sub :: subtract
|
|
|= {a/@rq b/@rq} ^- @rq
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(sub:ma a b)
|
|
::
|
|
++ mul ~/ %mul :: multiply
|
|
|= {a/@rq b/@rq} ^- @rq
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(mul:ma a b)
|
|
::
|
|
++ div ~/ %div :: divide
|
|
|= {a/@rq b/@rq} ^- @rq
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(div:ma a b)
|
|
::
|
|
++ fma ~/ %fma :: fused multiply-add
|
|
|= {a/@rq b/@rq c/@rq} ^- @rq
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(fma:ma a b c)
|
|
::
|
|
++ sqt ~/ %sqt :: square root
|
|
|= {a/@rq} ^- @rq
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(sqt:ma a)
|
|
::
|
|
++ lth ~/ %lth :: less-than
|
|
|= {a/@rq b/@rq}
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(lth:ma a b)
|
|
::
|
|
++ lte ~/ %lte :: less-equals
|
|
|= {a/@rq b/@rq}
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(lte:ma a b)
|
|
::
|
|
++ equ ~/ %equ :: equals
|
|
|= {a/@rq b/@rq}
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(equ:ma a b)
|
|
::
|
|
++ gte ~/ %gte :: greater-equals
|
|
|= {a/@rq b/@rq}
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(gte:ma a b)
|
|
::
|
|
++ gth ~/ %gth :: greater-than
|
|
|= {a/@rq b/@rq}
|
|
~> %mean.[0 leaf+"rq-fail"]
|
|
(gth:ma a b)
|
|
::
|
|
++ sun |= {a/@u} ^- @rq (sun:ma a) :: uns integer to @rq
|
|
++ san |= {a/@s} ^- @rq (san:ma a) :: sgn integer to @rq
|
|
++ sig |= {a/@rq} ^- ? (sig:ma a) :: get sign
|
|
++ exp |= {a/@rq} ^- @s (exp:ma a) :: get exponent
|
|
++ toi |= {a/@rq} ^- (unit @s) (toi:ma a) :: round to integer
|
|
++ drg |= {a/@rq} ^- dn (drg:ma a) :: @rq to decimal float
|
|
++ grd |= {a/dn} ^- @rq (grd:ma a) :: decimal float to @rq
|
|
--
|
|
::
|
|
++ rh :: half precision fp
|
|
|_ r/$?($n $u $d $z)
|
|
:: round to nearest, round up, round down, round to zero
|
|
::
|
|
++ ma
|
|
%*(. ff w 5, p 10, b --15, r r)
|
|
::
|
|
++ sea :: @rh to fn
|
|
|= {a/@rh} (sea:ma a)
|
|
::
|
|
++ bit :: fn to @rh
|
|
|= {a/fn} ^- @rh (bit:ma a)
|
|
::
|
|
++ tos :: @rh to @rs
|
|
|= {a/@rh} (bit:rs (sea a))
|
|
::
|
|
++ fos :: @rs to @rh
|
|
|= {a/@rs} (bit (sea:rs a))
|
|
::
|
|
++ lth ~/ %lth :: less-than
|
|
|= {a/@rh b/@rh}
|
|
~> %mean.[0 leaf+"rh-fail"]
|
|
(lth:ma a b)
|
|
::
|
|
++ lte ~/ %lte :: less-equals
|
|
|= {a/@rh b/@rh}
|
|
~> %mean.[0 leaf+"rh-fail"]
|
|
(lte:ma a b)
|
|
::
|
|
++ equ ~/ %equ :: equals
|
|
|= {a/@rh b/@rh}
|
|
~> %mean.[0 leaf+"rh-fail"]
|
|
(equ:ma a b)
|
|
::
|
|
++ gte ~/ %gte :: greater-equals
|
|
|= {a/@rh b/@rh}
|
|
~> %mean.[0 leaf+"rh-fail"]
|
|
(gte:ma a b)
|
|
::
|
|
++ gth ~/ %gth :: greater-than
|
|
|= {a/@rh b/@rh}
|
|
~> %mean.[0 leaf+"rh-fail"]
|
|
(gth:ma a b)
|
|
::
|
|
++ sun |= {a/@u} ^- @rh (sun:ma a) :: uns integer to @rh
|
|
++ san |= {a/@s} ^- @rh (san:ma a) :: sgn integer to @rh
|
|
++ sig |= {a/@rh} ^- ? (sig:ma a) :: get sign
|
|
++ exp |= {a/@rh} ^- @s (exp:ma a) :: get exponent
|
|
++ toi |= {a/@rh} ^- (unit @s) (toi:ma a) :: round to integer
|
|
++ drg |= {a/@rh} ^- dn (drg:ma a) :: @rh to decimal float
|
|
++ grd |= {a/dn} ^- @rh (grd:ma a) :: decimal float to @rh
|
|
--
|
|
--
|
|
.
|