urbit/gen/musk.hoon
2017-11-25 13:13:53 -08:00

304 lines
6.2 KiB
Plaintext

|%
::
++ musk :: nock with block set
=> |%
++ block
:: identity of resource awaited
::
noun
::
++ result
:: internal interpreter result
::
$@(~ seminoun)
::
++ seminoun
:: partial noun; blocked subtrees are ~
::
(pair stencil noun)
::
++ stencil
:: noun knowledge map
::
%+ each
:: yes; noun is either fully complete, or fully blocked
::
(set block)
:: no; noun has partial block substructure
::
(pair stencil stencil)
::
++ output
:: optional partial result
::
%- unit
:: complete noun or block set
::
(each noun (set block))
--
:: execute nock on partial subject
::
|= $: :: sub: subject, a partial noun
:: fol: formula, a complete noun
::
sub/seminoun
fol/noun
==
^- output
=< apex
|%
++ abet
:: simplify raw result
::
|= $: :: noy: raw result
::
noy/result
==
^- output
:: interpreter stopped
::
?~ noy ~
:: simplify internal result
::
[~ =+((squash p.noy) ?~(- [%& q.noy] [%| ~(tap in -)]))]
::
++ apex
:: simplify result
::
%- abet
:: interpreter loop
::
|- ^- result
?@ fol
:: bad formula, stop
::
~
?: ?=(^ -.fol)
:: hed: interpret head
::
=+ hed=$(fol -.fol)
:: propagate stop
::
?: ?=(~ -.hed) ~
:: tal: interpret tail
::
=+ tal=$(fol +.fol)
:: propagate stop
::
?: ?=(~ -.tal) ~
:: combine
::
`(combine +.hed +.tal)
?+ fol
:: bad formula; stop
::
~
:: 0; fragment
::
{$0 b/@}
:: if bad axis, stop
::
?: =(0 b.fol) ~
:: reduce to fragment
::
(fragment b.fol)
::
:: 1; constant
::
{$1 b/*}
:: constant is complete
::
`[[%& ~] b.fol]
::
:: 2; recursion
::
{$2 b/* c/*}
:: require complete formula
::
%+ require
:: compute formula with current subject
::
$(fol c.fol)
|= :: ryf: next formula
::
ryf/noun
:: lub: next subject
::
=+ lub=$(fol b.fol)
:: propagate stop
::
?~ lub ~
:: recurse
::
$(fol ryf, sub lub)
::
:: 3; probe
::
{$3 b/*}
%+ require
$(fol b.fol)
|= :: fig: probe input
::
fig/noun
:: yes if cell, no if atom
::
`[[%& ~] .?(fig)]
::
:: 4; increment
::
{$4 b/*}
%+ require
$(fol b.fol)
|= :: fig: increment input
::
fig/noun
:: stop for cells, increment for atoms
::
?^(fig ~ `[[%& ~] +(fig))
::
:: 5; compare
::
{$5 b/*}
%+ require
$(fol b.fol)
|= :: fig: operator input
::
fig/noun
:: stop for atoms, compare cells
::
?@(fig ~ `[[%& ~] =(-.fig +.fig))
::
:: 6; if-then-else
::
{$6 b/* c/* d/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [2 [0 1] 2 [1 c d] [1 0] 2 [1 2 3] [1 0] 4 4 b]))
::
:: 7; composition
::
{$7 b/* c/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [2 b 1 c]))
::
:: 8; declaration
::
{$8 b/* c/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [7 [[0 1] b] c]))
::
:: 9; invocation
::
{$9 b/* c/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [7 c 0 b]))
::
:: 10; static hint
::
{$10 @ c/*}
:: ignore hint
::
$(fol c.fol)
::
:: 10; dynamic hint
::
{$10 {b/* c/*} d/*}
:: noy: dynamic hint
::
=+ noy=$(fol c.fol)
:: propagate stop
::
?~ noy ~
:: otherwise, ignore hint
::
$(fol d.fol)
--
:: require complete result
::
++ require
|= $: noy/result
yen/$-(noun result)
==
^- result
:: propagate stop
::
?~ noy ~
:: if partial block, squash blocks and stop
::
?: ?=($| -.p.noy) `[[%& (squash p.noy)] ~]
:: if full block, propagate block
::
?: ?=(^ p.p.noy) `[[%& p.p.noy] ~]
:: otherwise use complete noun
::
(yen q.noy)
::
++ squash
:: convert stencil to block set
::
|= tyn/stencil
^- (set block)
?- -.tyn
$& p.tyn
$| (~(uni in $(tyn p.tyn)) $(tyn q.tyn))
==
::
++ combine
:: combine a pair of seminouns
::
|= $: :: hed: head of pair
:: tal: tail of pair
::
hed/seminoun
tal/seminoun
==
?: &(?=($& p.hed) ?=($& p.tal))
:: yin: merged block set
::
=/ yin (~(uni in p.p.hed) p.p.tal
:- [%& yin]
:: don't accumulate stubs
::
?~(yin ~ [q.hed q.tal])
:: partial cell
::
[[%| p.hed p.tal] [q.hed q.tal]]
::
++ fragment
:: seek to an axis in a seminoun
::
|= $: :: axe: tree address of subtree
::
axe/axis
==
^- result
:: 1 is the root
::
?: =(1 axe) sub
:: now: 2 or 3, top of axis
:: lat: rest of axis
::
=+ [now=(cap axe) lat=(mas axe)]
?- -.p.sub
:: subject is fully blocked or complete
::
$& :: if fully blocked, produce self
::
?^ p.p.sub sub
:: descending into atom, stop
::
?@ q.sub ~
:: descend into complete cell
::
$(axe lat, sub [[%& ~] ?:(=(2 now) -.q.sub +.q.sub))
:: subject is partly blocked
::
$| :: descend into partial cell
::
$(axe lat, sub ?:(=(2 now) [p.p.sub -.q.sub] [q.p.sub +.q.sub]))
==
--