mirror of
https://github.com/ilyakooo0/urbit.git
synced 2025-01-07 15:38:45 +03:00
358 lines
9.1 KiB
C
358 lines
9.1 KiB
C
/*-
|
|
* Copyright 2009 Colin Percival
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This file was originally written by Colin Percival as part of the Tarsnap
|
|
* online backup system.
|
|
*/
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <emmintrin.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "sha256.h"
|
|
#include "sysendian.h"
|
|
|
|
#include "crypto_scrypt.h"
|
|
|
|
static void
|
|
blkcpy(void * dest, void * src, size_t len)
|
|
{
|
|
__m128i * D = dest;
|
|
__m128i * S = src;
|
|
size_t L = len / 16;
|
|
size_t i;
|
|
|
|
for (i = 0; i < L; i++)
|
|
D[i] = S[i];
|
|
}
|
|
|
|
static void
|
|
blkxor(void * dest, void * src, size_t len)
|
|
{
|
|
__m128i * D = dest;
|
|
__m128i * S = src;
|
|
size_t L = len / 16;
|
|
size_t i;
|
|
|
|
for (i = 0; i < L; i++)
|
|
D[i] = _mm_xor_si128(D[i], S[i]);
|
|
}
|
|
|
|
/**
|
|
* salsa20_8(B):
|
|
* Apply the salsa20/8 core to the provided block.
|
|
*/
|
|
static void
|
|
salsa20_8(__m128i B[4])
|
|
{
|
|
__m128i X0, X1, X2, X3;
|
|
__m128i T;
|
|
size_t i;
|
|
|
|
X0 = B[0];
|
|
X1 = B[1];
|
|
X2 = B[2];
|
|
X3 = B[3];
|
|
|
|
for (i = 0; i < 8; i += 2) {
|
|
/* Operate on "columns". */
|
|
T = _mm_add_epi32(X0, X3);
|
|
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
|
|
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
|
|
T = _mm_add_epi32(X1, X0);
|
|
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
|
|
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
|
|
T = _mm_add_epi32(X2, X1);
|
|
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
|
|
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
|
|
T = _mm_add_epi32(X3, X2);
|
|
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
|
|
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
|
|
|
|
/* Rearrange data. */
|
|
X1 = _mm_shuffle_epi32(X1, 0x93);
|
|
X2 = _mm_shuffle_epi32(X2, 0x4E);
|
|
X3 = _mm_shuffle_epi32(X3, 0x39);
|
|
|
|
/* Operate on "rows". */
|
|
T = _mm_add_epi32(X0, X1);
|
|
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
|
|
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
|
|
T = _mm_add_epi32(X3, X0);
|
|
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
|
|
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
|
|
T = _mm_add_epi32(X2, X3);
|
|
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
|
|
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
|
|
T = _mm_add_epi32(X1, X2);
|
|
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
|
|
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
|
|
|
|
/* Rearrange data. */
|
|
X1 = _mm_shuffle_epi32(X1, 0x39);
|
|
X2 = _mm_shuffle_epi32(X2, 0x4E);
|
|
X3 = _mm_shuffle_epi32(X3, 0x93);
|
|
}
|
|
|
|
B[0] = _mm_add_epi32(B[0], X0);
|
|
B[1] = _mm_add_epi32(B[1], X1);
|
|
B[2] = _mm_add_epi32(B[2], X2);
|
|
B[3] = _mm_add_epi32(B[3], X3);
|
|
}
|
|
|
|
/**
|
|
* blockmix_salsa8(Bin, Bout, X, r):
|
|
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
|
|
* bytes in length; the output Bout must also be the same size. The
|
|
* temporary space X must be 64 bytes.
|
|
*/
|
|
static void
|
|
blockmix_salsa8(__m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
|
|
{
|
|
size_t i;
|
|
|
|
/* 1: X <-- B_{2r - 1} */
|
|
blkcpy(X, &Bin[8 * r - 4], 64);
|
|
|
|
/* 2: for i = 0 to 2r - 1 do */
|
|
for (i = 0; i < r; i++) {
|
|
/* 3: X <-- H(X \xor B_i) */
|
|
blkxor(X, &Bin[i * 8], 64);
|
|
salsa20_8(X);
|
|
|
|
/* 4: Y_i <-- X */
|
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
|
blkcpy(&Bout[i * 4], X, 64);
|
|
|
|
/* 3: X <-- H(X \xor B_i) */
|
|
blkxor(X, &Bin[i * 8 + 4], 64);
|
|
salsa20_8(X);
|
|
|
|
/* 4: Y_i <-- X */
|
|
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
|
|
blkcpy(&Bout[(r + i) * 4], X, 64);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* integerify(B, r):
|
|
* Return the result of parsing B_{2r-1} as a little-endian integer.
|
|
*/
|
|
static uint64_t
|
|
integerify(void * B, size_t r)
|
|
{
|
|
uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
|
|
|
|
return (((uint64_t)(X[13]) << 32) + X[0]);
|
|
}
|
|
|
|
/**
|
|
* smix(B, r, N, V, XY):
|
|
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
|
|
* the temporary storage V must be 128rN bytes in length; the temporary
|
|
* storage XY must be 256r + 64 bytes in length. The value N must be a
|
|
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
|
|
* multiple of 64 bytes.
|
|
*/
|
|
void
|
|
smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
|
|
{
|
|
__m128i * X = XY;
|
|
__m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
|
|
__m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
|
|
uint32_t * X32 = (void *)X;
|
|
uint64_t i, j;
|
|
size_t k;
|
|
|
|
/* 1: X <-- B */
|
|
for (k = 0; k < 2 * r; k++) {
|
|
for (i = 0; i < 16; i++) {
|
|
X32[k * 16 + i] =
|
|
le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
|
|
}
|
|
}
|
|
|
|
/* 2: for i = 0 to N - 1 do */
|
|
for (i = 0; i < N; i += 2) {
|
|
/* 3: V_i <-- X */
|
|
blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
|
|
|
|
/* 4: X <-- H(X) */
|
|
blockmix_salsa8(X, Y, Z, r);
|
|
|
|
/* 3: V_i <-- X */
|
|
blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
|
|
Y, 128 * r);
|
|
|
|
/* 4: X <-- H(X) */
|
|
blockmix_salsa8(Y, X, Z, r);
|
|
}
|
|
|
|
/* 6: for i = 0 to N - 1 do */
|
|
for (i = 0; i < N; i += 2) {
|
|
/* 7: j <-- Integerify(X) mod N */
|
|
j = integerify(X, r) & (N - 1);
|
|
|
|
/* 8: X <-- H(X \xor V_j) */
|
|
blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
|
|
blockmix_salsa8(X, Y, Z, r);
|
|
|
|
/* 7: j <-- Integerify(X) mod N */
|
|
j = integerify(Y, r) & (N - 1);
|
|
|
|
/* 8: X <-- H(X \xor V_j) */
|
|
blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
|
|
blockmix_salsa8(Y, X, Z, r);
|
|
}
|
|
|
|
/* 10: B' <-- X */
|
|
for (k = 0; k < 2 * r; k++) {
|
|
for (i = 0; i < 16; i++) {
|
|
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
|
|
X32[k * 16 + i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
|
|
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
|
|
* p, buflen) and write the result into buf. The parameters r, p, and buflen
|
|
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
|
|
* must be a power of 2 greater than 1.
|
|
*
|
|
* Return 0 on success; or -1 on error.
|
|
*/
|
|
int
|
|
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
|
|
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
|
|
uint8_t * buf, size_t buflen)
|
|
{
|
|
void * B0, * V0, * XY0;
|
|
uint8_t * B;
|
|
uint32_t * V;
|
|
uint32_t * XY;
|
|
uint32_t i;
|
|
|
|
/* Sanity-check parameters. */
|
|
#if SIZE_MAX > UINT32_MAX
|
|
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
|
|
errno = EFBIG;
|
|
goto err0;
|
|
}
|
|
#endif
|
|
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
|
|
errno = EFBIG;
|
|
goto err0;
|
|
}
|
|
if (((N & (N - 1)) != 0) || (N == 0)) {
|
|
errno = EINVAL;
|
|
goto err0;
|
|
}
|
|
if ((r > SIZE_MAX / 128 / p) ||
|
|
#if SIZE_MAX / 256 <= UINT32_MAX
|
|
(r > (SIZE_MAX - 64) / 256) ||
|
|
#endif
|
|
(N > SIZE_MAX / 128 / r)) {
|
|
errno = ENOMEM;
|
|
goto err0;
|
|
}
|
|
|
|
/* Allocate memory. */
|
|
#ifdef HAVE_POSIX_MEMALIGN
|
|
if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
|
|
goto err0;
|
|
B = (uint8_t *)(B0);
|
|
if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
|
|
goto err1;
|
|
XY = (uint32_t *)(XY0);
|
|
#ifndef MAP_ANON
|
|
if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
|
|
goto err2;
|
|
V = (uint32_t *)(V0);
|
|
#endif
|
|
#else
|
|
if ((B0 = malloc(128 * r * p + 63)) == NULL)
|
|
goto err0;
|
|
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
|
|
if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
|
|
goto err1;
|
|
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
|
|
#ifndef MAP_ANON
|
|
if ((V0 = malloc(128 * r * N + 63)) == NULL)
|
|
goto err2;
|
|
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
|
|
#endif
|
|
#endif
|
|
#ifdef MAP_ANON
|
|
if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
|
|
#ifdef MAP_NOCORE
|
|
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
|
|
#else
|
|
MAP_ANON | MAP_PRIVATE,
|
|
#endif
|
|
-1, 0)) == MAP_FAILED)
|
|
goto err2;
|
|
V = (uint32_t *)(V0);
|
|
#endif
|
|
|
|
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
|
|
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
|
|
|
|
/* 2: for i = 0 to p - 1 do */
|
|
for (i = 0; i < p; i++) {
|
|
/* 3: B_i <-- MF(B_i, N) */
|
|
smix(&B[i * 128 * r], r, N, V, XY);
|
|
}
|
|
|
|
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
|
|
PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
|
|
|
|
/* Free memory. */
|
|
#ifdef MAP_ANON
|
|
if (munmap(V0, 128 * r * N))
|
|
goto err2;
|
|
#else
|
|
free(V0);
|
|
#endif
|
|
free(XY0);
|
|
free(B0);
|
|
|
|
/* Success! */
|
|
return (0);
|
|
|
|
err2:
|
|
free(XY0);
|
|
err1:
|
|
free(B0);
|
|
err0:
|
|
/* Failure! */
|
|
return (-1);
|
|
}
|