diff --git a/README.md b/README.md index 723a019..f9e66ba 100644 --- a/README.md +++ b/README.md @@ -671,7 +671,7 @@ on MNIST digits[DEEP LEARNING] * [DiffSharp](http://diffsharp.github.io/DiffSharp/) - An automatic differentiation (AD) library providing exact and efficient derivatives (gradients, Hessians, Jacobians, directional derivatives, and matrix-free Hessian- and Jacobian-vector products) for machine learning and optimization applications. Operations can be nested to any level, meaning that you can compute exact higher-order derivatives and differentiate functions that are internally making use of differentiation, for applications such as hyperparameter optimization. * [Vulpes](https://github.com/fsprojects/Vulpes) - Deep belief and deep learning implementation written in F# and leverages CUDA GPU execution with Alea.cuBase. * [Encog](http://www.nuget.org/packages/encog-dotnet-core/) - An advanced neural network and machine learning framework. Encog contains classes to create a wide variety of networks, as well as support classes to normalize and process data for these neural networks. Encog trains using multithreaded resilient propagation. Encog can also make use of a GPU to further speed processing time. A GUI based workbench is also provided to help model and train neural networks. -* [Neural Network Designer](http://bragisoft.com/) - DBMS management system and designer for neural networks. The designer application is developed using WPF, and is a user interface which allows you to design your neural network, query the network, create and configure chat bots that are capable of asking questions and learning from your feed back. The chat bots can even scrape the internet for information to return in their output as well as to use for learning. +* [Neural Network Designer](https://sourceforge.net/projects/nnd/) - DBMS management system and designer for neural networks. The designer application is developed using WPF, and is a user interface which allows you to design your neural network, query the network, create and configure chat bots that are capable of asking questions and learning from your feed back. The chat bots can even scrape the internet for information to return in their output as well as to use for learning. * [Infer.NET](http://infernet.azurewebsites.net/) - Infer.NET is a framework for running Bayesian inference in graphical models. One can use Infer.NET to solve many different kinds of machine learning problems, from standard problems like classification, recommendation or clustering through to customised solutions to domain-specific problems. Infer.NET has been used in a wide variety of domains including information retrieval, bioinformatics, epidemiology, vision, and many others.