The following is a list of free, open source books on machine learning, statistics, data-mining, etc. ## Machine-Learning / Data Mining * [Real World Machine Learning](https://manning.com/books/real-world-machine-learning) [Free Chapters] * [An Introduction To Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Book + R Code * [Elements of Statistical Learning](http://statweb.stanford.edu/~tibs/ElemStatLearn/) - Book * [Probabilistic Programming & Bayesian Methods for Hackers](http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/) - Book + IPython Notebooks * [Think Bayes](http://www.greenteapress.com/thinkbayes/) - Book + Python Code * [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/mackay/itila/book.html) * [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/chapters/) * [Data Intensive Text Processing w/ MapReduce](http://lintool.github.io/MapReduceAlgorithms/) * [Reinforcement Learning: - An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html) * [Mining Massive Datasets](http://infolab.stanford.edu/~ullman/mmds/book.pdf) * [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf) * [Pattern Recognition and Machine Learning](http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf) * [Machine Learning & Bayesian Reasoning](http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf) * [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) - Alex Smola and S.V.N. Vishwanathan * [A Probabilistic Theory of Pattern Recognition](http://www.szit.bme.hu/~gyorfi/pbook.pdf) * [Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf) * [Forecasting: principles and practice](http://otexts.com/fpp/) * [Practical Artificial Intelligence Programming in Java](http://www.markwatson.com/opencontent_data/JavaAI3rd.pdf) * [Introduction to Machine Learning](http://arxiv.org/pdf/0904.3664v1.pdf) - Amnon Shashua * [Reinforcement Learning](http://www.intechopen.com/books/reinforcement_learning) * [Machine Learning](http://www.intechopen.com/books/machine_learning) * [A Quest for AI](http://ai.stanford.edu/~nilsson/QAI/qai.pdf) * [Introduction to Applied Bayesian Statistics and Estimation for Social Scientists](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.857&rep=rep1&type=pdf) - Scott M. Lynch * [Bayesian Modeling, Inference and Prediction](http://users.soe.ucsc.edu/~draper/draper-BMIP-dec2005.pdf) * [A Course in Machine Learning](http://ciml.info/) * [Machine Learning, Neural and Statistical Classification](http://www1.maths.leeds.ac.uk/~charles/statlog/) * [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage) Book+MatlabToolBox * [R Programming for Data Science](https://leanpub.com/rprogramming) * [Data Mining - Practical Machine Learning Tools and Techniques](http://www.cse.hcmut.edu.vn/~chauvtn/data_mining/Texts/%5B7%5D%20Data%20Mining%20-%20Practical%20Machine%20Learning%20Tools%20and%20Techniques%20%283rd%20Ed%29.pdf) Book ## Deep-Learning * [Deep Learning - An MIT Press book](http://www.deeplearningbook.org/) ## Natural Language Processing * [Coursera Course Book on NLP](http://www.cs.columbia.edu/~mcollins/notes-spring2013.html) * [NLTK](http://www.nltk.org/book/) * [NLP w/ Python](http://victoria.lviv.ua/html/fl5/NaturalLanguageProcessingWithPython.pdf) * [Foundations of Statistical Natural Language Processing](http://nlp.stanford.edu/fsnlp/promo/) ## Information Retrieval * [An Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf) ## Neural Networks * [A Brief Introduction to Neural Networks](http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf) * [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/) ## Probability & Statistics * [Think Stats](http://www.greenteapress.com/thinkstats/) - Book + Python Code * [From Algorithms to Z-Scores](http://heather.cs.ucdavis.edu/probstatbook) - Book * [The Art of R Programming](http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf) - Book (Not Finished) * [All of Statistics](http://www.ucl.ac.uk/~rmjbale/Stat/wasserman2.pdf) * [Introduction to statistical thought](https://www.math.umass.edu/~lavine/Book/book.pdf) * [Basic Probability Theory](http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf) * [Introduction to probability](http://math.dartmouth.edu/~prob/prob/prob.pdf) - By Dartmouth College * [Principle of Uncertainty](http://uncertainty.stat.cmu.edu/wp-content/uploads/2011/05/principles-of-uncertainty.pdf) * [Probability & Statistics Cookbook](http://matthias.vallentin.net/probability-and-statistics-cookbook/) * [Advanced Data Analysis From An Elementary Point of View](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf) * [Introduction to Probability](http://athenasc.com/probbook.html) - Book and course by MIT * [The Elements of Statistical Learning: Data Mining, Inference, and Prediction.](http://statweb.stanford.edu/~tibs/ElemStatLearn/) -Book * [An Introduction to Statistical Learning with Applications in R](http://www-bcf.usc.edu/~gareth/ISL/) - Book * [Learning Statistics Using R](http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/) * [Introduction to Probability and Statistics Using R](https://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf) - Book * [Advanced R Programming](http://adv-r.had.co.nz) - Book * [Practical Regression and Anova using R](http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf) - Book * [R practicals](http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/practicalsBookNoAns.pdf) - Book * [The R Inferno](http://www.burns-stat.com/pages/Tutor/R_inferno.pdf) - Book ## Linear Algebra * [Linear Algebra Done Wrong](http://www.math.brown.edu/~treil/papers/LADW/book.pdf) * [Linear Algebra, Theory, and Applications](https://math.byu.edu/~klkuttle/Linearalgebra.pdf) * [Convex Optimization](http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) * [Applied Numerical Computing](http://www.seas.ucla.edu/~vandenbe/103/reader.pdf) * [Applied Numerical Linear Algebra](http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4281667/hamdy/hamdy1/cgfvnv/hamdy2/h1/h2/h3/h4/h5/h6/Applied%20Numerical%20Linear%20.pdf)