The following is a list of free, open source books on machine learning, statistics, data-mining, etc. ## Machine-Learning / Data Mining * [The Hundred-Page Machine Learning Book](http://themlbook.com/wiki/doku.php) * [Real World Machine Learning](https://www.manning.com/books/real-world-machine-learning) [Free Chapters] * [An Introduction To Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Book + R Code * [Elements of Statistical Learning](http://web.stanford.edu/~hastie/ElemStatLearn/) - Book * [Computer Age Statistical Inference (CASI)](https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf) ([Permalink as of October 2017](https://perma.cc/J8JG-ZVFW)) - Book * [Probabilistic Programming & Bayesian Methods for Hackers](http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/) - Book + IPython Notebooks * [Think Bayes](http://greenteapress.com/wp/think-bayes/) - Book + Python Code * [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/mackay/itila/book.html) * [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/chapters/) * [Data Intensive Text Processing w/ MapReduce](http://lintool.github.io/MapReduceAlgorithms/) * [Reinforcement Learning: - An Introduction](http://incompleteideas.net/book/the-book-2nd.html) ([Permalink to Nov 2017 Draft](https://perma.cc/83ER-64M3)) * [Mining Massive Datasets](http://infolab.stanford.edu/~ullman/mmds/book.pdf) * [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf) * [Pattern Recognition and Machine Learning](http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf) * [Machine Learning & Bayesian Reasoning](http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf) * [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) - Alex Smola and S.V.N. Vishwanathan * [A Probabilistic Theory of Pattern Recognition](http://www.szit.bme.hu/~gyorfi/pbook.pdf) * [Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf) * [Forecasting: principles and practice](https://www.otexts.org/fpp/) * [Practical Artificial Intelligence Programming in Java](https://www.saylor.org/site/wp-content/uploads/2011/11/CS405-1.1-WATSON.pdf) * [Introduction to Machine Learning](https://arxiv.org/pdf/0904.3664v1.pdf) - Amnon Shashua * [Reinforcement Learning](http://www.intechopen.com/books/reinforcement_learning) * [Machine Learning](http://www.intechopen.com/books/machine_learning) * [A Quest for AI](http://ai.stanford.edu/~nilsson/QAI/qai.pdf) * [Introduction to Applied Bayesian Statistics and Estimation for Social Scientists](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.857&rep=rep1&type=pdf) - Scott M. Lynch * [Bayesian Modeling, Inference and Prediction](https://users.soe.ucsc.edu/~draper/draper-BMIP-dec2005.pdf) * [A Course in Machine Learning](http://ciml.info/) * [Machine Learning, Neural and Statistical Classification](http://www1.maths.leeds.ac.uk/~charles/statlog/) * [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage) Book+MatlabToolBox * [R Programming for Data Science](https://leanpub.com/rprogramming) * [Data Mining - Practical Machine Learning Tools and Techniques](http://cs.du.edu/~mitchell/mario_books/Data_Mining:_Practical_Machine_Learning_Tools_and_Techniques_-_2e_-_Witten_&_Frank.pdf) Book * [Machine Learning with TensorFlow](https://www.manning.com/books/machine-learning-with-tensorflow) Early access book * [Reactive Machine Learning Systems](https://www.manning.com/books/reactive-machine-learning-systems) Early access book * [Hands‑On Machine Learning with Scikit‑Learn and TensorFlow](http://index-of.es/Varios-2/Hands%20on%20Machine%20Learning%20with%20Scikit%20Learn%20and%20Tensorflow.pdf) - Aurélien Géron * [R for Data Science: Import, Tidy, Transform, Visualize, and Model Data](http://r4ds.had.co.nz/) - Wickham and Grolemund. Great as introduction on how to use R. * [Advanced R](http://adv-r.had.co.nz/) - Hadley Wickham. More advanced usage of R for programming. * [Graph-Powered Machine Learning](https://www.manning.com/books/graph-powered-machine-learning) - Alessandro Negro. Combining graph theory and models to improve machine learning projects ## Deep-Learning * [Deep Learning - An MIT Press book](http://www.deeplearningbook.org/) * [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python) * [Deep Learning with JavaScript]-(https://www.manning.com/books/deep-learning-with-javascript) Early access book * [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning) Early access book * [Deep Learning for Search](https://www.manning.com/books/deep-learning-for-search) Early access book * [Deep Learning and the Game of Go](https://www.manning.com/books/deep-learning-and-the-game-of-go) Early access book * [Machine Learning for Business](https://www.manning.com/books/machine-learning-for-business) Early access book * [Deep Learning for Search](https://www.manning.com/books/deep-learning-for-search) Early access book ## Natural Language Processing * [Coursera Course Book on NLP](http://www.cs.columbia.edu/~mcollins/notes-spring2013.html) * [NLTK](http://www.nltk.org/book/) * [NLP w/ Python](http://victoria.lviv.ua/html/fl5/NaturalLanguageProcessingWithPython.pdf) * [Foundations of Statistical Natural Language Processing](http://nlp.stanford.edu/fsnlp/promo/) * [Natural Language Processing in Action](https://www.manning.com/books/natural-language-processing-in-action) Early access book ## Information Retrieval * [An Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf) ## Neural Networks * [A Brief Introduction to Neural Networks](http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf) * [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/) ## Probability & Statistics * [Think Stats](http://www.greenteapress.com/thinkstats/) - Book + Python Code * [From Algorithms to Z-Scores](http://heather.cs.ucdavis.edu/probstatbook) - Book * [The Art of R Programming](http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf) - Book (Not Finished) * [Introduction to statistical thought](http://people.math.umass.edu/~lavine/Book/book.pdf) * [Basic Probability Theory](http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf) * [Introduction to probability](https://math.dartmouth.edu/~prob/prob/prob.pdf) - By Dartmouth College * [Principle of Uncertainty](http://www.stat.cmu.edu/~kadane/principles.pdf) * [Probability & Statistics Cookbook](http://statistics.zone/) * [Advanced Data Analysis From An Elementary Point of View](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf) - Book * [Introduction to Probability](http://athenasc.com/probbook.html) - Book and course by MIT * [The Elements of Statistical Learning: Data Mining, Inference, and Prediction.](https://web.stanford.edu/~hastie/ElemStatLearn/) - Book * [An Introduction to Statistical Learning with Applications in R](http://www-bcf.usc.edu/~gareth/ISL/) - Book * [Introduction to Probability and Statistics Using R](http://ipsur.r-forge.r-project.org/book/download/IPSUR.pdf) - Book * [Advanced R Programming](http://adv-r.had.co.nz) - Book * [Practical Regression and Anova using R](http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf) - Book * [R practicals](http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/practicalsBookNoAns.pdf) - Book * [The R Inferno](http://www.burns-stat.com/pages/Tutor/R_inferno.pdf) - Book * [Probability Theory: The Logic of Science](https://bayes.wustl.edu/etj/prob/book.pdf) - By Jaynes ## Linear Algebra * [The Matrix Cookbook](https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf) * [Linear Algebra by Shilov](https://cosmathclub.files.wordpress.com/2014/10/georgi-shilov-linear-algebra4.pdf) * [Linear Algebra Done Wrong](http://www.math.brown.edu/~treil/papers/LADW/LADW.html) * [Linear Algebra, Theory, and Applications](https://math.byu.edu/~klkuttle/Linearalgebra.pdf) * [Convex Optimization](http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) * [Applied Numerical Computing](http://www.seas.ucla.edu/~vandenbe/ee133a.html) * [Applied Numerical Linear Algebra](http://egrcc.github.io/docs/math/applied-numerical-linear-algebra.pdf)