#include #include #include #include #include "types.h" #include "readline.h" #include "reader.h" #include "core.h" // Declarations MalVal *EVAL(MalVal *ast, Env *env); // read MalVal *READ(char prompt[], char *str) { char *line; MalVal *ast; if (str) { line = str; } else { line = _readline(prompt); if (!line) { _error("EOF"); return NULL; } } ast = read_str(line); if (!str) { MAL_GC_FREE(line); } return ast; } // eval MalVal *eval_ast(MalVal *ast, Env *env) { if (!ast || mal_error) return NULL; if (ast->type == MAL_SYMBOL) { //g_print("EVAL symbol: %s\n", ast->val.string); return env_get(env, ast); } else if ((ast->type == MAL_LIST) || (ast->type == MAL_VECTOR)) { //g_print("EVAL sequential: %s\n", _pr_str(ast,1)); MalVal *el = _map2((MalVal *(*)(void*, void*))EVAL, ast, env); if (!el || mal_error) return NULL; el->type = ast->type; return el; } else if (ast->type == MAL_HASH_MAP) { //g_print("EVAL hash_map: %s\n", _pr_str(ast,1)); GHashTableIter iter; gpointer key, value; MalVal *seq = malval_new_list(MAL_LIST, g_array_sized_new(TRUE, TRUE, sizeof(MalVal*), _count(ast))); g_hash_table_iter_init (&iter, ast->val.hash_table); while (g_hash_table_iter_next (&iter, &key, &value)) { MalVal *kname = malval_new_string((char *)key); g_array_append_val(seq->val.array, kname); MalVal *new_val = EVAL((MalVal *)value, env); g_array_append_val(seq->val.array, new_val); } return _hash_map(seq); } else { //g_print("EVAL scalar: %s\n", _pr_str(ast,1)); return ast; } } MalVal *EVAL(MalVal *ast, Env *env) { while (TRUE) { if (!ast || mal_error) return NULL; //g_print("EVAL: %s\n", _pr_str(ast,1)); if (ast->type != MAL_LIST) { return eval_ast(ast, env); } if (!ast || mal_error) return NULL; // apply list //g_print("EVAL apply list: %s\n", _pr_str(ast,1)); int i, len; if (_count(ast) == 0) { return ast; } MalVal *a0 = _nth(ast, 0); if ((a0->type & MAL_SYMBOL) && strcmp("def!", a0->val.string) == 0) { //g_print("eval apply def!\n"); MalVal *a1 = _nth(ast, 1), *a2 = _nth(ast, 2); MalVal *res = EVAL(a2, env); if (mal_error) return NULL; env_set(env, a1, res); return res; } else if ((a0->type & MAL_SYMBOL) && strcmp("let*", a0->val.string) == 0) { //g_print("eval apply let*\n"); MalVal *a1 = _nth(ast, 1), *a2 = _nth(ast, 2), *key, *val; assert_type(a1, MAL_LIST|MAL_VECTOR, "let* bindings must be list or vector"); len = _count(a1); assert((len % 2) == 0, "odd number of let* bindings forms"); Env *let_env = new_env(env, NULL, NULL); for(i=0; ival.array, MalVal*, i); val = g_array_index(a1->val.array, MalVal*, i+1); assert_type(key, MAL_SYMBOL, "let* bind to non-symbol"); env_set(let_env, key, EVAL(val, let_env)); } ast = a2; env = let_env; // Continue loop } else if ((a0->type & MAL_SYMBOL) && strcmp("do", a0->val.string) == 0) { //g_print("eval apply do\n"); eval_ast(_slice(ast, 1, _count(ast)-1), env); ast = _last(ast); // Continue loop } else if ((a0->type & MAL_SYMBOL) && strcmp("if", a0->val.string) == 0) { //g_print("eval apply if\n"); MalVal *a1 = _nth(ast, 1); MalVal *cond = EVAL(a1, env); if (!cond || mal_error) return NULL; if (cond->type & (MAL_FALSE|MAL_NIL)) { // eval false slot form if (ast->val.array->len > 3) { ast = _nth(ast, 3); } else { return &mal_nil; } } else { // eval true slot form ast = _nth(ast, 2); } // Continue loop } else if ((a0->type & MAL_SYMBOL) && strcmp("fn*", a0->val.string) == 0) { //g_print("eval apply fn*\n"); MalVal *mf = malval_new(MAL_FUNCTION_MAL, NULL); mf->val.func.evaluator = EVAL; mf->val.func.args = _nth(ast, 1); mf->val.func.body = _nth(ast, 2); mf->val.func.env = env; return mf; } else { //g_print("eval apply\n"); MalVal *el = eval_ast(ast, env); if (!el || mal_error) { return NULL; } MalVal *f = _first(el), *args = _rest(el); assert_type(f, MAL_FUNCTION_C|MAL_FUNCTION_MAL, "cannot apply '%s'", _pr_str(f,1)); if (f->type & MAL_FUNCTION_MAL) { ast = f->val.func.body; env = new_env(f->val.func.env, f->val.func.args, args); // Continue loop } else { return _apply(f, args); } } } // TCO while loop } // print char *PRINT(MalVal *exp) { if (mal_error) { return NULL; } return _pr_str(exp,1); } // repl // read and eval MalVal *RE(Env *env, char *prompt, char *str) { MalVal *ast, *exp; ast = READ(prompt, str); if (!ast || mal_error) return NULL; exp = EVAL(ast, env); if (ast != exp) { malval_free(ast); // Free input structure } return exp; } // Setup the initial REPL environment Env *repl_env; MalVal *do_eval(MalVal *ast) { return EVAL(ast, repl_env); } void init_repl_env(int argc, char *argv[]) { repl_env = new_env(NULL, NULL, NULL); // core.c: defined using C int i; for(i=0; i < (sizeof(core_ns) / sizeof(core_ns[0])); i++) { env_set(repl_env, malval_new_symbol(core_ns[i].name), malval_new_function(core_ns[i].func, core_ns[i].arg_cnt)); } env_set(repl_env, malval_new_symbol("eval"), malval_new_function((void*(*)(void *))do_eval, 1)); MalVal *_argv = _listX(0); for (i=2; i < argc; i++) { MalVal *arg = malval_new_string(argv[i]); g_array_append_val(_argv->val.array, arg); } env_set(repl_env, malval_new_symbol("*ARGV*"), _argv); // core.mal: defined using the language itself RE(repl_env, "", "(def! not (fn* (a) (if a false true)))"); RE(repl_env, "", "(def! load-file (fn* (f) (eval (read-string (str \"(do \" (slurp f) \"\nnil)\")))))"); } int main(int argc, char *argv[]) { MalVal *exp; char *output; char prompt[100]; MAL_GC_SETUP(); // Set the initial prompt and environment snprintf(prompt, sizeof(prompt), "user> "); init_repl_env(argc, argv); if (argc > 1) { char *cmd = g_strdup_printf("(load-file \"%s\")", argv[1]); RE(repl_env, "", cmd); return 0; } // repl loop for(;;) { exp = RE(repl_env, prompt, NULL); if (mal_error && strcmp("EOF", mal_error->val.string) == 0) { return 0; } output = PRINT(exp); if (mal_error) { fprintf(stderr, "Error: %s\n", _pr_str(mal_error,1)); malval_free(mal_error); mal_error = NULL; } else if (output) { puts(output); MAL_GC_FREE(output); // Free output string } //malval_free(exp); // Free evaluated expression } }