1
1
mirror of https://github.com/kanaka/mal.git synced 2024-09-20 18:18:51 +03:00
mal/ada/types.adb
2016-03-20 21:08:28 +00:00

1195 lines
33 KiB
Ada

with Ada.Characters.Latin_1;
with Ada.Strings.Fixed;
with Ada.Strings.Maps.Constants;
with Ada.Text_IO;
with Ada.Unchecked_Deallocation;
with Envs;
with Eval_Callback;
with Smart_Pointers;
with Types.Vector;
with Types.Hash_Map;
package body Types is
package ACL renames Ada.Characters.Latin_1;
function Nodes_Equal (A, B : Mal_Handle) return Boolean;
function "=" (A, B : Mal_Handle) return Mal_Handle is
begin
return New_Bool_Mal_Type (A = B);
end "=";
function Compare_List_And_Vector (A : List_Mal_Type; B : List_Mal_Type'Class)
return Boolean is
First_Node, First_Index : Mal_Handle;
I : Natural := 0;
begin
First_Node := A.The_List;
loop
if not Is_Null (First_Node) and I < B.Length then
First_Index := B.Nth (I);
if not "=" (Deref_Node (First_Node).Data, First_Index) then
return False;
end if;
First_Node := Deref_Node (First_Node).Next;
I := I + 1;
else
return Is_Null (First_Node) and I = B.Length;
end if;
end loop;
end Compare_List_And_Vector;
function "=" (A, B : Mal_Handle) return Boolean is
use Types.Vector;
use Types.Hash_Map;
begin
if (not Is_Null (A) and not Is_Null (B)) and then
Deref (A).Sym_Type = Deref (B).Sym_Type then
case Deref (A).Sym_Type is
when Nil =>
return True; -- Both nil.
when Int =>
return (Deref_Int (A).Get_Int_Val = Deref_Int (B).Get_Int_Val);
when Floating =>
return (Deref_Float (A).Get_Float_Val = Deref_Float (B).Get_Float_Val);
when Bool =>
return (Deref_Bool (A).Get_Bool = Deref_Bool (B).Get_Bool);
when List =>
-- When Types.Vector was added, the choice was:
-- 1) use interfaces (because you need a class hierachy for the containers
-- and a corresponding hierarchy for the cursors and Ada is single dispatch
-- + interfaces.
-- 2) map out the combinations here and use nth to access vector items.
case Deref_List (A).Get_List_Type is
when List_List =>
case Deref_List (B).Get_List_Type is
when List_List =>
return Nodes_Equal (Deref_List (A).The_List, Deref_List (B).The_List);
when Vector_List =>
return Compare_List_And_Vector
(Deref_List (A).all, Deref_List_Class (B).all);
when Hashed_List => return False; -- Comparing a list and a hash
end case;
when Vector_List =>
case Deref_List (B).Get_List_Type is
when List_List =>
return Compare_List_And_Vector
(Deref_List (B).all, Deref_List_Class (A).all);
when Vector_List =>
return Vector."=" (Deref_Vector (A).all, Deref_Vector (B).all);
when Hashed_List => return False; -- Comparing a vector and a hash
end case;
when Hashed_List =>
case Deref_List (B).Get_List_Type is
when List_List => return False; -- Comparing a list and a hash
when Vector_List => return False; -- Comparing a vector and a hash
when Hashed_List =>
return Hash_Map."=" (Deref_Hash (A).all, Deref_Hash (B).all);
end case;
end case;
when Str =>
return (Deref_String (A).Get_String = Deref_String (B).Get_String);
when Sym =>
return (Deref_Sym (A).Get_Sym = Deref_Sym (B).Get_Sym);
when Atom =>
return (Deref_Atom (A).Get_Atom = Deref_Atom (B).Get_Atom);
when Func =>
return (Deref_Func (A).Get_Func_Name = Deref_Func (B).Get_Func_Name);
when Node =>
return (Deref_Int(A).Get_Int_Val = Deref_Int(B).Get_Int_Val);
when Lambda =>
return (Deref_Int(A).Get_Int_Val = Deref_Int(B).Get_Int_Val);
when Error =>
return (Deref_Int(A).Get_Int_Val = Deref_Int(B).Get_Int_Val);
end case;
elsif Is_Null (A) and Is_Null (B) then
return True;
else -- either one of the args is null or the sym_types don't match
return False;
end if;
end "=";
function Get_Meta (T : Mal_Type) return Mal_Handle is
begin
if T.Meta = Smart_Pointers.Null_Smart_Pointer then
return New_Nil_Mal_Type;
else
return T.Meta;
end if;
end Get_Meta;
procedure Set_Meta (T : in out Mal_Type'Class; SP : Mal_Handle) is
begin
T.Meta := SP;
end Set_Meta;
function Copy (M : Mal_Handle) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Mal_Type'Class'(Deref (M).all));
end Copy;
function To_String (T : Mal_Type'Class; Print_Readably : Boolean := True)
return Mal_String is
begin
return To_Str (T, Print_Readably);
end To_String;
function Is_Macro_Call (T : Mal_Type'Class; Env : Envs.Env_Handle) return Boolean is
L : List_Mal_Type;
First_Elem, Func : Mal_Handle;
begin
if T.Sym_Type /= List then
return False;
end if;
L := List_Mal_Type (T);
if Is_Null (L) then
return False;
end if;
First_Elem := Car (L);
if Deref (First_Elem).Sym_Type /= Sym then
return False;
end if;
Func := Envs.Get (Env, Deref_Sym (First_Elem).Get_Sym);
if Deref (Func).Sym_Type /= Lambda then
return False;
end if;
return Deref_Lambda (Func).Get_Is_Macro;
exception
when Envs.Not_Found => return False;
end Is_Macro_Call;
-- A helper function that just view converts the smart pointer.
function Deref (S : Mal_Handle) return Mal_Ptr is
begin
return Mal_Ptr (Smart_Pointers.Deref (S));
end Deref;
-- A helper function to detect null smart pointers.
function Is_Null (S : Mal_Handle) return Boolean is
use Smart_Pointers;
begin
return Smart_Pointers."="(S, Null_Smart_Pointer);
end Is_Null;
-- To_Str on the abstract type...
function To_Str (T : Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
raise Constraint_Error; -- Tha'll teach 'ee
return ""; -- Keeps the compiler happy.
end To_Str;
function New_Nil_Mal_Type return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Nil_Mal_Type'(Mal_Type with null record));
end New_Nil_Mal_Type;
overriding function Sym_Type (T : Nil_Mal_Type) return Sym_Types is
begin
return Nil;
end Sym_Type;
overriding function To_Str (T : Nil_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
return "nil";
end To_Str;
function New_Int_Mal_Type (Int : Mal_Integer) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Int_Mal_Type'(Mal_Type with Int_Val => Int));
end New_Int_Mal_Type;
overriding function Sym_Type (T : Int_Mal_Type) return Sym_Types is
begin
return Int;
end Sym_Type;
function Get_Int_Val (T : Int_Mal_Type) return Mal_Integer is
begin
return T.Int_Val;
end Get_Int_Val;
overriding function To_Str
(T : Int_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
Res : Mal_String := Mal_Integer'Image (T.Int_Val);
begin
return Ada.Strings.Fixed.Trim (Res, Ada.Strings.Left);
end To_Str;
function Deref_Int (SP : Mal_Handle) return Int_Ptr is
begin
return Int_Ptr (Deref (SP));
end Deref_Int;
function New_Float_Mal_Type (Floating : Mal_Float) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Float_Mal_Type'(Mal_Type with Float_Val => Floating));
end New_Float_Mal_Type;
overriding function Sym_Type (T : Float_Mal_Type) return Sym_Types is
begin
return Floating;
end Sym_Type;
function Get_Float_Val (T : Float_Mal_Type) return Mal_Float is
begin
return T.Float_Val;
end Get_Float_Val;
overriding function To_Str
(T : Float_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
Res : Mal_String := Mal_Float'Image (T.Float_Val);
begin
return Ada.Strings.Fixed.Trim (Res, Ada.Strings.Left);
end To_Str;
function Deref_Float (SP : Mal_Handle) return Float_Ptr is
begin
return Float_Ptr (Deref (SP));
end Deref_Float;
function New_Bool_Mal_Type (Bool : Boolean) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Bool_Mal_Type'(Mal_Type with Bool_Val => Bool));
end New_Bool_Mal_Type;
overriding function Sym_Type (T : Bool_Mal_Type) return Sym_Types is
begin
return Bool;
end Sym_Type;
function Get_Bool (T : Bool_Mal_Type) return Boolean is
begin
return T.Bool_Val;
end Get_Bool;
overriding function To_Str
(T : Bool_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
Res : Mal_String := Boolean'Image (T.Bool_Val);
begin
return Ada.Strings.Fixed.Translate
(Res, Ada.Strings.Maps.Constants.Lower_Case_Map);
end To_Str;
function Deref_Bool (SP : Mal_Handle) return Bool_Ptr is
begin
return Bool_Ptr (Deref (SP));
end Deref_Bool;
function New_String_Mal_Type (Str : Mal_String) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new String_Mal_Type' (Mal_Type with The_String =>
Ada.Strings.Unbounded.To_Unbounded_String (Str)));
end New_String_Mal_Type;
overriding function Sym_Type (T : String_Mal_Type) return Sym_Types is
begin
return Str;
end Sym_Type;
function Get_String (T : String_Mal_Type) return Mal_String is
begin
return Ada.Strings.Unbounded.To_String (T.The_String);
end Get_String;
function Deref_String (SP : Mal_Handle) return String_Ptr is
begin
return String_Ptr (Deref (SP));
end Deref_String;
overriding function To_Str
(T : String_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
use Ada.Strings.Unbounded;
I : Positive := 2;
Str_Len : Natural;
Res : Unbounded_String;
begin
if Print_Readably then
Append (Res, '"');
Str_Len := Length (T.The_String);
while I < Str_Len loop
if Element (T.The_String, I) = '"' then
Append (Res, "\""");
elsif Element (T.The_String, I) = '\' then
Append (Res, "\\");
elsif Element (T.The_String, I) = Ada.Characters.Latin_1.LF then
Append (Res, "\n");
else
Append (Res, Element (T.The_String, I));
end if;
I := I + 1;
end loop;
Append (Res, '"');
return Ada.Strings.Unbounded.To_String (Res);
else
return Slice (T.The_String, 2, Length (T.The_String) - 1);
end if;
end To_Str;
function New_Symbol_Mal_Type (Str : Mal_String) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Symbol_Mal_Type'(Mal_Type with The_Symbol =>
Ada.Strings.Unbounded.To_Unbounded_String (Str)));
end New_Symbol_Mal_Type;
overriding function Sym_Type (T : Symbol_Mal_Type) return Sym_Types is
begin
return Sym;
end Sym_Type;
function Get_Sym (T : Symbol_Mal_Type) return Mal_String is
begin
return Ada.Strings.Unbounded.To_String (T.The_Symbol);
end Get_Sym;
function Deref_Sym (S : Mal_Handle) return Sym_Ptr is
begin
return Sym_Ptr (Deref (S));
end Deref_Sym;
overriding function To_Str
(T : Symbol_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
return Ada.Strings.Unbounded.To_String (T.The_Symbol);
end To_Str;
function New_Atom_Mal_Type (MH : Mal_Handle) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Atom_Mal_Type'(Mal_Type with The_Atom => MH));
end New_Atom_Mal_Type;
overriding function Sym_Type (T : Atom_Mal_Type) return Sym_Types is
begin
return Atom;
end Sym_Type;
function Get_Atom (T : Atom_Mal_Type) return Mal_Handle is
begin
return T.The_Atom;
end Get_Atom;
procedure Set_Atom (T : in out Atom_Mal_Type; New_Val : Mal_Handle) is
begin
T.The_Atom := New_Val;
end Set_Atom;
function Deref_Atom (S : Mal_Handle) return Atom_Ptr is
begin
return Atom_Ptr (Deref (S));
end Deref_Atom;
overriding function To_Str
(T : Atom_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
return "(atom " & To_String (Deref (T.The_Atom).all) & ')';
end To_Str;
function New_Func_Mal_Type (Str : Mal_String; F : Builtin_Func)
return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Func_Mal_Type'(Mal_Type with
Func_Name => Ada.Strings.Unbounded.To_Unbounded_String (Str),
Func_P => F));
end New_Func_Mal_Type;
overriding function Sym_Type (T : Func_Mal_Type) return Sym_Types is
begin
return Func;
end Sym_Type;
function Get_Func_Name (T : Func_Mal_Type) return Mal_String is
begin
return Ada.Strings.Unbounded.To_String (T.Func_Name);
end Get_Func_Name;
function Call_Func
(FMT : Func_Mal_Type; Rest_List : Mal_Handle)
return Mal_Handle is
begin
return FMT.Func_P (Rest_List);
end Call_Func;
function Deref_Func (S : Mal_Handle) return Func_Ptr is
begin
return Func_Ptr (Deref (S));
end Deref_Func;
overriding function To_Str
(T : Func_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
return Ada.Strings.Unbounded.To_String (T.Func_Name);
end To_Str;
function New_Error_Mal_Type (Str : Mal_String) return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Error_Mal_Type'(Mal_Type with Error_Msg =>
Ada.Strings.Unbounded.To_Unbounded_String (Str)));
end New_Error_Mal_Type;
overriding function Sym_Type (T : Error_Mal_Type) return Sym_Types is
begin
return Error;
end Sym_Type;
overriding function To_Str
(T : Error_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
return Ada.Strings.Unbounded.To_String (T.Error_Msg);
end To_Str;
function Nodes_Equal (A, B : Mal_Handle) return Boolean is
begin
if (not Is_Null (A) and not Is_Null (B)) and then
Deref (A).Sym_Type = Deref (B).Sym_Type then
if Deref (A).Sym_Type = Node then
return
Nodes_Equal (Deref_Node (A).Data, Deref_Node (B).Data) and then
Nodes_Equal (Deref_Node (A).Next, Deref_Node (B).Next);
else
return A = B;
end if;
elsif Is_Null (A) and Is_Null (B) then
return True;
else -- either one of the args is null or the sym_types don't match
return False;
end if;
end Nodes_Equal;
function New_Node_Mal_Type
(Data : Mal_Handle;
Next : Mal_Handle := Smart_Pointers.Null_Smart_Pointer)
return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Node_Mal_Type'
(Mal_Type with Data => Data, Next => Next));
end New_Node_Mal_Type;
overriding function Sym_Type (T : Node_Mal_Type) return Sym_Types is
begin
return Node;
end Sym_Type;
-- Get the first item in the list:
function Car (L : List_Mal_Type) return Mal_Handle is
begin
if Is_Null (L.The_List) then
return Smart_Pointers.Null_Smart_Pointer;
else
return Deref_Node (L.The_List).Data;
end if;
end Car;
-- Get the rest of the list (second item onwards)
function Cdr (L : List_Mal_Type) return Mal_Handle is
Res : Mal_Handle;
LP : List_Ptr;
begin
Res := New_List_Mal_Type (L.List_Type);
if Is_Null (L.The_List) or else
Is_Null (Deref_Node (L.The_List).Next) then
return Res;
else
LP := Deref_List (Res);
LP.The_List := Deref_Node (L.The_List).Next;
LP.Last_Elem := L.Last_Elem;
return Res;
end if;
end Cdr;
function Length (L : List_Mal_Type) return Natural is
Res : Natural;
NP : Node_Ptr;
begin
Res := 0;
NP := Deref_Node (L.The_List);
while NP /= null loop
Res := Res + 1;
NP := Deref_Node (NP.Next);
end loop;
return Res;
end Length;
function Is_Null (L : List_Mal_Type) return Boolean is
use Smart_Pointers;
begin
return Smart_Pointers."="(L.The_List, Null_Smart_Pointer);
end Is_Null;
function Null_List (L : List_Types) return List_Mal_Type is
begin
return (Mal_Type with List_Type => L,
The_List => Smart_Pointers.Null_Smart_Pointer,
Last_Elem => Smart_Pointers.Null_Smart_Pointer);
end Null_List;
function Map
(Func_Ptr : Func_Access;
L : List_Mal_Type)
return Mal_Handle is
Res, Old_List, First_New_Node, New_List : Mal_Handle;
LP : List_Ptr;
begin
Res := New_List_Mal_Type (List_Type => L.Get_List_Type);
Old_List := L.The_List;
if Is_Null (Old_List) then
return Res;
end if;
First_New_Node := New_Node_Mal_Type (Func_Ptr.all (Deref_Node (Old_List).Data));
New_List := First_New_Node;
Old_List := Deref_Node (Old_List).Next;
while not Is_Null (Old_List) loop
Deref_Node (New_List).Next :=
New_Node_Mal_Type (Func_Ptr.all (Deref_Node (Old_List).Data));
New_List := Deref_Node (New_List).Next;
Old_List := Deref_Node (Old_List).Next;
end loop;
LP := Deref_List (Res);
LP.The_List := First_New_Node;
LP.Last_Elem := New_List;
return Res;
end Map;
function Reduce
(Func_Ptr : Binary_Func_Access;
L : List_Mal_Type)
return Mal_Handle is
C_Node : Node_Ptr;
Res : Mal_Handle;
use Smart_Pointers;
begin
C_Node := Deref_Node (L.The_List);
if C_Node = null then
return Smart_Pointers.Null_Smart_Pointer;
end if;
Res := C_Node.Data;
while not Is_Null (C_Node.Next) loop
C_Node := Deref_Node (C_Node.Next);
Res := Func_Ptr (Res, C_Node.Data);
end loop;
return Res;
end Reduce;
overriding function To_Str
(T : Node_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
if Is_Null (T.Data) then
-- Left is null and by implication so is right.
return "";
elsif Is_Null (T.Next) then
-- Left is not null but right is.
return To_Str (Deref (T.Data).all, Print_Readably);
else
-- Left and right are both not null.
return To_Str (Deref (T.Data).all, Print_Readably) &
" " &
To_Str (Deref (T.Next).all, Print_Readably);
end if;
end To_Str;
function Cat_Str (T : Node_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
if Is_Null (T.Data) then
-- Left is null and by implication so is right.
return "";
elsif Is_Null (T.Next) then
-- Left is not null but right is.
return To_Str (Deref (T.Data).all, Print_Readably);
-- Left and right are both not null.
else
return To_Str (Deref (T.Data).all, Print_Readably) &
Cat_Str (Deref_Node (T.Next).all, Print_Readably);
end if;
end Cat_Str;
function Deref_Node (SP : Mal_Handle) return Node_Ptr is
begin
return Node_Ptr (Deref (SP));
end Deref_Node;
function "=" (A, B : List_Mal_Type) return Boolean is
begin
return Nodes_Equal (A.The_List, B.The_List);
end "=";
function New_List_Mal_Type
(The_List : List_Mal_Type)
return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new List_Mal_Type'(Mal_Type with
List_Type => The_List.List_Type,
The_List => The_List.The_List,
Last_Elem => The_List.Last_Elem));
end New_List_Mal_Type;
function New_List_Mal_Type
(List_Type : List_Types;
The_First_Node : Mal_Handle := Smart_Pointers.Null_Smart_Pointer)
return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new List_Mal_Type'
(Mal_Type with
List_Type => List_Type,
The_List => The_First_Node,
Last_Elem => The_First_Node));
end New_List_Mal_Type;
function Make_New_List (Handle_List : Handle_Lists) return Mal_Handle is
List_SP : Mal_Handle;
List_P : List_Ptr;
begin
List_SP := New_List_Mal_Type (List_Type => List_List);
List_P := Deref_List (List_SP);
for I in Handle_List'Range loop
Append (List_P.all, Handle_List (I));
end loop;
return List_SP;
end Make_New_List;
overriding function Sym_Type (T : List_Mal_Type) return Sym_Types is
begin
return List;
end Sym_Type;
function Get_List_Type (L : List_Mal_Type) return List_Types is
begin
return L.List_Type;
end Get_List_Type;
function Prepend (Op : Mal_Handle; To_List : List_Mal_Type)
return Mal_Handle is
begin
return New_List_Mal_Type
(List_List,
New_Node_Mal_Type (Op, To_List.The_List));
end Prepend;
procedure Append (To_List : in out List_Mal_Type; Op : Mal_Handle) is
begin
if Is_Null (Op) then
return; -- Say what
end if;
-- If the list is null just insert the new element
-- else use the last_elem pointer to insert it and then update it.
if Is_Null (To_List.The_List) then
To_List.The_List := New_Node_Mal_Type (Op);
To_List.Last_Elem := To_List.The_List;
else
Deref_Node (To_List.Last_Elem).Next := New_Node_Mal_Type (Op);
To_List.Last_Elem := Deref_Node (To_List.Last_Elem).Next;
end if;
end Append;
-- Duplicate copies the list (logically). This is to allow concatenation,
-- The result is always a List_List.
function Duplicate (The_List : List_Mal_Type) return Mal_Handle is
Res, Old_List, First_New_Node, New_List : Mal_Handle;
LP : List_Ptr;
begin
Res := New_List_Mal_Type (List_List);
Old_List := The_List.The_List;
if Is_Null (Old_List) then
return Res;
end if;
First_New_Node := New_Node_Mal_Type (Deref_Node (Old_List).Data);
New_List := First_New_Node;
Old_List := Deref_Node (Old_List).Next;
while not Is_Null (Old_List) loop
Deref_Node (New_List).Next := New_Node_Mal_Type (Deref_Node (Old_List).Data);
New_List := Deref_Node (New_List).Next;
Old_List := Deref_Node (Old_List).Next;
end loop;
LP := Deref_List (Res);
LP.The_List := First_New_Node;
LP.Last_Elem := New_List;
return Res;
end Duplicate;
function Nth (L : List_Mal_Type; N : Natural) return Mal_Handle is
C : Natural;
Next : Mal_Handle;
begin
C := 0;
Next := L.The_List;
while not Is_Null (Next) loop
if C >= N then
return Deref_Node (Next).Data;
end if;
C := C + 1;
Next := Deref_Node (Next).Next;
end loop;
raise Mal_Exception with "Nth (list): Index out of range";
end Nth;
function Concat (Rest_Handle : List_Mal_Type)
return Types.Mal_Handle is
Rest_List : Types.List_Mal_Type;
List : Types.List_Class_Ptr;
Res_List_Handle, Dup_List : Mal_Handle;
Last_Node_P : Mal_Handle := Smart_Pointers.Null_Smart_Pointer;
begin
Rest_List := Rest_Handle;
-- Set the result to the null list.
Res_List_Handle := New_List_Mal_Type (List_List);
while not Is_Null (Rest_List) loop
-- Find the next list in the list...
List := Deref_List_Class (Car (Rest_List));
-- Duplicate nodes to its contents.
Dup_List := Duplicate (List.all);
-- If we haven't inserted a list yet, then take the duplicated list whole.
if Is_Null (Last_Node_P) then
Res_List_Handle := Dup_List;
else
-- Note that the first inserted list may have been the null list
-- and so may the newly duplicated one...
Deref_Node (Last_Node_P).Next := Deref_List (Dup_List).The_List;
if Is_Null (Deref_List (Res_List_Handle).The_List) then
Deref_List (Res_list_Handle).The_List :=
Deref_List (Dup_List).The_List;
end if;
if not Is_Null (Deref_List (Dup_List).Last_Elem) then
Deref_List (Res_List_Handle).Last_Elem :=
Deref_List (Dup_List).Last_Elem;
end if;
end if;
Last_Node_P := Deref_List (Dup_List).Last_Elem;
Rest_List := Deref_List (Cdr (Rest_List)).all;
end loop;
return Res_List_Handle;
end Concat;
procedure Add_Defs (Defs : List_Mal_Type; Env : Envs.Env_Handle) is
D, L : List_Mal_Type;
begin
D := Defs;
while not Is_Null (D) loop
L := Deref_List (Cdr (D)).all;
Envs.Set
(Env,
Deref_Sym (Car (D)).Get_Sym,
Eval_Callback.Eval.all (Car (L), Env));
D := Deref_List (Cdr(L)).all;
end loop;
end Add_Defs;
function Deref_List (SP : Mal_Handle) return List_Ptr is
begin
return List_Ptr (Deref (SP));
end Deref_List;
function Deref_List_Class (SP : Mal_Handle) return List_Class_Ptr is
begin
return List_Class_Ptr (Deref (SP));
end Deref_List_Class;
overriding function To_Str
(T : List_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
if Is_Null (T.The_List) then
return Opening (T.List_Type) &
Closing (T.List_Type);
else
return Opening (T.List_Type) &
To_String (Deref (T.The_List).all, Print_Readably) &
Closing (T.List_Type);
end if;
end To_Str;
function Pr_Str (T : List_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
if Is_Null (T.The_List) then
return "";
else
return To_String (Deref_Node (T.The_List).all, Print_Readably);
end if;
end Pr_Str;
function Cat_Str (T : List_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
if Is_Null (T.The_List) then
return "";
else
return Cat_Str (Deref_Node (T.The_List).all, Print_Readably);
end if;
end Cat_Str;
function Opening (LT : List_Types) return Character is
Res : Character;
begin
case LT is
when List_List =>
Res := '(';
when Vector_List =>
Res := '[';
when Hashed_List =>
Res := '{';
end case;
return Res;
end Opening;
function Closing (LT : List_Types) return Character is
Res : Character;
begin
case LT is
when List_List =>
Res := ')';
when Vector_List =>
Res := ']';
when Hashed_List =>
Res := '}';
end case;
return Res;
end Closing;
function New_Lambda_Mal_Type
(Params : Mal_Handle; Expr : Mal_Handle; Env : Envs.Env_Handle)
return Mal_Handle is
begin
return Smart_Pointers.New_Ptr
(new Lambda_Mal_Type'
(Mal_Type with
Params => Params,
Expr => Expr,
Env => Env,
Is_Macro => False));
end New_Lambda_Mal_Type;
overriding function Sym_Type (T : Lambda_Mal_Type) return Sym_Types is
begin
return Lambda;
end Sym_Type;
function Get_Env (L : Lambda_Mal_Type) return Envs.Env_Handle is
begin
return L.Env;
end Get_Env;
procedure Set_Env (L : in out Lambda_Mal_Type; Env : Envs.Env_Handle) is
begin
L.Env := Env;
end Set_Env;
function Get_Params (L : Lambda_Mal_Type) return Mal_Handle is
begin
if Deref (L.Params).Sym_Type = List and then
Deref_List (L.Params).Get_List_Type = Vector_List then
-- Its a vector and we need a list...
return Deref_List_Class (L.Params).Duplicate;
else
return L.Params;
end if;
end Get_Params;
function Get_Expr (L : Lambda_Mal_Type) return Mal_Handle is
begin
return L.Expr;
end Get_Expr;
function Get_Is_Macro (L : Lambda_Mal_Type) return Boolean is
begin
return L.Is_Macro;
end Get_Is_Macro;
procedure Set_Is_Macro (L : in out Lambda_Mal_Type; B : Boolean) is
begin
L.Is_Macro := B;
end Set_Is_Macro;
function Apply
(L : Lambda_Mal_Type;
Param_List : Mal_Handle)
return Mal_Handle is
E : Envs.Env_Handle;
Param_Names : List_Mal_Type;
Res : Mal_Handle;
begin
E := Envs.New_Env (L.Env);
Param_Names := Deref_List (L.Get_Params).all;
if Envs.Bind (E, Param_Names, Deref_List (Param_List).all) then
Res := Eval_Callback.Eval.all (L.Get_Expr, E);
else
raise Mal_Exception with "Bind failed in Apply";
end if;
return Res;
end Apply;
function Get_Macro (T : Mal_Handle; Env : Envs.Env_Handle) return Lambda_Ptr is
L : List_Mal_Type;
First_Elem, Func : Mal_Handle;
begin
if Deref (T).Sym_Type /= List then
return null;
end if;
L := Deref_List (T).all;
if Is_Null (L) then
return null;
end if;
First_Elem := Car (L);
if Deref (First_Elem).Sym_Type /= Sym then
return null;
end if;
Func := Envs.Get (Env, Deref_Sym (First_Elem).Get_Sym);
if Deref (Func).Sym_Type /= Lambda then
return null;
end if;
return Deref_Lambda (Func);
exception
when Envs.Not_Found => return null;
end Get_Macro;
overriding function To_Str
(T : Lambda_Mal_Type; Print_Readably : Boolean := True)
return Mal_String is
begin
-- return "(lambda " & Ada.Strings.Unbounded.To_String (T.Rep) & ")";
return "#<function>";
end To_Str;
function Deref_Lambda (SP : Mal_Handle) return Lambda_Ptr is
begin
return Lambda_Ptr (Deref (SP));
end Deref_Lambda;
function Arith_Op (A, B : Mal_Handle) return Mal_Handle is
use Types;
A_Sym_Type : Sym_Types;
B_Sym_Type : Sym_Types;
begin
if Is_Null (A) then
if Is_Null (B) then
-- both null, gotta be zero.
return New_Int_Mal_Type (0);
else -- A is null but B is not.
return Arith_Op (New_Int_Mal_Type (0), B);
end if;
elsif Is_Null (B) then
-- A is not null but B is.
return Arith_Op (A, New_Int_Mal_Type (0));
end if;
-- else both A and B and not null.:wq
A_Sym_Type := Deref (A).Sym_Type;
B_Sym_Type := Deref (B).Sym_Type;
if A_Sym_Type = Int and B_Sym_Type = Int then
return New_Int_Mal_Type
(Int_Op (Deref_Int (A).Get_Int_Val, Deref_Int (B).Get_Int_Val));
elsif A_Sym_Type = Int and B_Sym_Type = Floating then
return New_Float_Mal_Type
(Float_Op (Mal_Float (Deref_Int (A).Get_Int_Val),
Deref_Float (B).Get_Float_Val));
elsif A_Sym_Type = Floating and B_Sym_Type = Int then
return New_Float_Mal_Type
(Float_Op (Deref_Float (A).Get_Float_Val,
Mal_Float (Deref_Float (B).Get_Float_Val)));
elsif A_Sym_Type = Floating and B_Sym_Type = Floating then
return New_Float_Mal_Type
(Float_Op (Deref_Float (A).Get_Float_Val,
Deref_Float (B).Get_Float_Val));
else
if A_Sym_Type = Error then
return A;
elsif B_Sym_Type = Error then
return B;
else
return New_Error_Mal_Type ("Invalid operands");
end if;
end if;
end Arith_Op;
function Rel_Op (A, B : Mal_Handle) return Mal_Handle is
use Types;
A_Sym_Type : Sym_Types := Deref (A).Sym_Type;
B_Sym_Type : Sym_Types := Deref (B).Sym_Type;
begin
if A_Sym_Type = Int and B_Sym_Type = Int then
return New_Bool_Mal_Type
(Int_Rel_Op (Deref_Int (A).Get_Int_Val, Deref_Int (B).Get_Int_Val));
elsif A_Sym_Type = Int and B_Sym_Type = Floating then
return New_Bool_Mal_Type
(Float_Rel_Op (Mal_Float (Deref_Int (A).Get_Int_Val),
Deref_Float (B).Get_Float_Val));
elsif A_Sym_Type = Floating and B_Sym_Type = Int then
return New_Bool_Mal_Type
(Float_Rel_Op (Deref_Float (A).Get_Float_Val,
Mal_Float (Deref_Float (B).Get_Float_Val)));
else
return New_Bool_Mal_Type
(Float_Rel_Op (Deref_Float (A).Get_Float_Val,
Deref_Float (B).Get_Float_Val));
end if;
end Rel_Op;
end Types;