mirror of
https://github.com/leon-ai/leon.git
synced 2024-11-23 20:12:08 +03:00
feat(python tcp server): TTS tmp inference
This commit is contained in:
parent
0e959412d5
commit
85af31b614
2
.gitignore
vendored
2
.gitignore
vendored
@ -24,6 +24,7 @@ debug.log
|
||||
leon.json
|
||||
bridges/python/src/Pipfile.lock
|
||||
tcp_server/src/Pipfile.lock
|
||||
tcp_server/src/lib/tts/models/*.pth
|
||||
!tcp_server/**/.gitkeep
|
||||
!bridges/python/**/.gitkeep
|
||||
!bridges/nodejs/**/.gitkeep
|
||||
@ -32,7 +33,6 @@ tcp_server/src/Pipfile.lock
|
||||
skills/**/src/settings.json
|
||||
skills/**/memory/*.json
|
||||
core/data/models/*.nlp
|
||||
core/data/models/tts/*.pth
|
||||
core/data/models/llm/*
|
||||
package.json.backup
|
||||
.python-version
|
||||
|
@ -1,16 +1,13 @@
|
||||
import os
|
||||
|
||||
MODELS_PATH = os.path.join(
|
||||
os.getcwd(),
|
||||
'core',
|
||||
'data',
|
||||
'models'
|
||||
)
|
||||
SRC_PATH = os.path.join(os.getcwd(), 'tcp_server', 'src')
|
||||
|
||||
# TTS
|
||||
TTS_MODEL_VERSION = 'V1'
|
||||
TTS_MODEL_NAME = f'EN-Leon-{TTS_MODEL_VERSION}'
|
||||
TTS_MODEL_FILE_NAME = f'{TTS_MODEL_NAME}.pth'
|
||||
TTS_MODEL_FOLDER_PATH = os.path.join(MODELS_PATH, 'tts')
|
||||
TTS_MODEL_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, TTS_MODEL_FILE_NAME)
|
||||
TTS_LIB_PATH = os.path.join(SRC_PATH, 'lib', 'tts')
|
||||
TTS_MODEL_FOLDER_PATH = os.path.join(TTS_LIB_PATH, 'models')
|
||||
TTS_MODEL_CONFIG_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, 'config.json')
|
||||
TTS_MODEL_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, TTS_MODEL_FILE_NAME)
|
||||
IS_TTS_ENABLED = os.environ.get('LEON_TTS', 'true') == 'true'
|
||||
|
@ -1,9 +1,11 @@
|
||||
import socket
|
||||
import json
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
import lib.nlp as nlp
|
||||
from .tts.tts import TTS
|
||||
from .tts.api import TTS
|
||||
from .constants import TTS_MODEL_CONFIG_PATH, TTS_MODEL_PATH, IS_TTS_ENABLED
|
||||
|
||||
|
||||
class TCPServer:
|
||||
@ -13,12 +15,40 @@ class TCPServer:
|
||||
self.tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
self.conn = None
|
||||
self.addr = None
|
||||
self.tts = TTS()
|
||||
self.tts = None
|
||||
|
||||
@staticmethod
|
||||
def log(*args, **kwargs):
|
||||
print('[TCP Server]', *args, **kwargs)
|
||||
|
||||
def init_tts(self):
|
||||
print('IS_TTS_ENABLED', IS_TTS_ENABLED)
|
||||
# TODO: FIX IT
|
||||
if not IS_TTS_ENABLED:
|
||||
self.log('TTS is disabled')
|
||||
return
|
||||
|
||||
if not os.path.exists(TTS_MODEL_CONFIG_PATH):
|
||||
self.log(f'TTS model config not found at {TTS_MODEL_CONFIG_PATH}')
|
||||
return
|
||||
|
||||
if not os.path.exists(TTS_MODEL_PATH):
|
||||
self.log(f'TTS model not found at {TTS_MODEL_PATH}')
|
||||
return
|
||||
|
||||
self.tts = TTS(language='EN',
|
||||
device='auto',
|
||||
config_path=TTS_MODEL_CONFIG_PATH,
|
||||
ckpt_path=TTS_MODEL_PATH
|
||||
)
|
||||
|
||||
text = 'Hello, I am Leon. How can I help you?'
|
||||
speaker_ids = self.tts.hps.data.spk2id
|
||||
output_path = 'output.wav'
|
||||
speed = 1.0
|
||||
|
||||
self.tts.tts_to_file(text, speaker_ids['EN-Leon-V1'], output_path, speed=speed)
|
||||
|
||||
def init(self):
|
||||
# Make sure to establish TCP connection by reusing the address so it does not conflict with port already in use
|
||||
self.tcp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||
|
@ -17,14 +17,21 @@ class TTS(nn.Module):
|
||||
config_path=None,
|
||||
ckpt_path=None):
|
||||
super().__init__()
|
||||
|
||||
self.log('Loading model...')
|
||||
|
||||
if device == 'auto':
|
||||
device = 'cpu'
|
||||
|
||||
if torch.cuda.is_available(): device = 'cuda'
|
||||
else: self.log('GPU not available. CUDA is not installed?')
|
||||
|
||||
if torch.backends.mps.is_available(): device = 'mps'
|
||||
if 'cuda' in device:
|
||||
assert torch.cuda.is_available()
|
||||
|
||||
# config_path =
|
||||
self.log(f'Device: {device}')
|
||||
|
||||
hps = utils.get_hparams_from_file(config_path)
|
||||
|
||||
num_languages = hps.num_languages
|
||||
@ -54,6 +61,8 @@ class TTS(nn.Module):
|
||||
language = language.split('_')[0]
|
||||
self.language = 'ZH_MIX_EN' if language == 'ZH' else language # we support a ZH_MIX_EN model
|
||||
|
||||
self.log('Model loaded')
|
||||
|
||||
@staticmethod
|
||||
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
||||
audio_segments = []
|
||||
@ -125,3 +134,8 @@ class TTS(nn.Module):
|
||||
soundfile.write(output_path, audio, self.hps.data.sampling_rate, format=format)
|
||||
else:
|
||||
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def log(*args, **kwargs):
|
||||
print('[TTS]', *args, **kwargs)
|
@ -3,15 +3,15 @@ import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from melo import commons
|
||||
from melo import modules
|
||||
from melo import attentions
|
||||
from lib.tts import commons
|
||||
from lib.tts import modules
|
||||
from lib.tts import attentions
|
||||
|
||||
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
|
||||
from melo.commons import init_weights, get_padding
|
||||
import melo.monotonic_align as monotonic_align
|
||||
from lib.tts.commons import init_weights, get_padding
|
||||
import lib.tts.monotonic_align as monotonic_align
|
||||
|
||||
|
||||
class DurationDiscriminator(nn.Module): # vits2
|
@ -1,4 +1,328 @@
|
||||
import os
|
||||
import glob
|
||||
import argparse
|
||||
import logging
|
||||
import json
|
||||
import subprocess
|
||||
import torch
|
||||
from lib.tts.text import cleaned_text_to_sequence, get_bert
|
||||
from lib.tts.text.cleaner import clean_text
|
||||
from lib.tts import commons
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
||||
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
||||
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
||||
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
||||
|
||||
if hps.data.add_blank:
|
||||
phone = commons.intersperse(phone, 0)
|
||||
tone = commons.intersperse(tone, 0)
|
||||
language = commons.intersperse(language, 0)
|
||||
for i in range(len(word2ph)):
|
||||
word2ph[i] = word2ph[i] * 2
|
||||
word2ph[0] += 1
|
||||
|
||||
if getattr(hps.data, "disable_bert", False):
|
||||
bert = torch.zeros(1024, len(phone))
|
||||
ja_bert = torch.zeros(768, len(phone))
|
||||
else:
|
||||
bert = get_bert(norm_text, word2ph, language_str, device)
|
||||
print('bert', bert)
|
||||
del word2ph
|
||||
assert bert.shape[-1] == len(phone), phone
|
||||
|
||||
if language_str == "ZH":
|
||||
bert = bert
|
||||
ja_bert = torch.zeros(768, len(phone))
|
||||
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
||||
ja_bert = bert
|
||||
bert = torch.zeros(1024, len(phone))
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
assert bert.shape[-1] == len(
|
||||
phone
|
||||
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
||||
|
||||
phone = torch.LongTensor(phone)
|
||||
tone = torch.LongTensor(tone)
|
||||
language = torch.LongTensor(language)
|
||||
return bert, ja_bert, phone, tone, language
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
iteration = checkpoint_dict.get("iteration", 0)
|
||||
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
||||
if (
|
||||
optimizer is not None
|
||||
and not skip_optimizer
|
||||
and checkpoint_dict["optimizer"] is not None
|
||||
):
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
elif optimizer is None and not skip_optimizer:
|
||||
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
||||
new_opt_dict = optimizer.state_dict()
|
||||
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
||||
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
||||
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
||||
optimizer.load_state_dict(new_opt_dict)
|
||||
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
try:
|
||||
# assert "emb_g" not in k
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
assert saved_state_dict[k].shape == v.shape, (
|
||||
saved_state_dict[k].shape,
|
||||
v.shape,
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
# For upgrading from the old version
|
||||
if "ja_bert_proj" in k:
|
||||
v = torch.zeros_like(v)
|
||||
logger.warn(
|
||||
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
||||
)
|
||||
else:
|
||||
logger.error(f"{k} is not in the checkpoint")
|
||||
|
||||
new_state_dict[k] = v
|
||||
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
|
||||
logger.info(
|
||||
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
||||
)
|
||||
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info(
|
||||
"Saving model and optimizer state at iteration {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
return x
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--config",
|
||||
type=str,
|
||||
default="./configs/base.json",
|
||||
help="JSON file for configuration",
|
||||
)
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
parser.add_argument('--world-size', type=int, default=1)
|
||||
parser.add_argument('--port', type=int, default=10000)
|
||||
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
||||
parser.add_argument('--pretrain_G', type=str, default=None,
|
||||
help='pretrain model')
|
||||
parser.add_argument('--pretrain_D', type=str, default=None,
|
||||
help='pretrain model D')
|
||||
parser.add_argument('--pretrain_dur', type=str, default=None,
|
||||
help='pretrain model duration')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_dir = os.path.join("./logs", args.model)
|
||||
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
config_path = args.config
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
if init:
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
with open(config_save_path, "w") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
hparams.pretrain_G = args.pretrain_G
|
||||
hparams.pretrain_D = args.pretrain_D
|
||||
hparams.pretrain_dur = args.pretrain_dur
|
||||
hparams.port = args.port
|
||||
return hparams
|
||||
|
||||
|
||||
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
||||
"""Freeing up space by deleting saved ckpts
|
||||
|
||||
Arguments:
|
||||
path_to_models -- Path to the model directory
|
||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||
sort_by_time -- True -> chronologically delete ckpts
|
||||
False -> lexicographically delete ckpts
|
||||
"""
|
||||
import re
|
||||
|
||||
ckpts_files = [
|
||||
f
|
||||
for f in os.listdir(path_to_models)
|
||||
if os.path.isfile(os.path.join(path_to_models, f))
|
||||
]
|
||||
|
||||
def name_key(_f):
|
||||
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
||||
|
||||
def time_key(_f):
|
||||
return os.path.getmtime(os.path.join(path_to_models, _f))
|
||||
|
||||
sort_key = time_key if sort_by_time else name_key
|
||||
|
||||
def x_sorted(_x):
|
||||
return sorted(
|
||||
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
||||
key=sort_key,
|
||||
)
|
||||
|
||||
to_del = [
|
||||
os.path.join(path_to_models, fn)
|
||||
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
||||
]
|
||||
|
||||
def del_info(fn):
|
||||
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
||||
|
||||
def del_routine(x):
|
||||
return [os.remove(x), del_info(x)]
|
||||
|
||||
[del_routine(fn) for fn in to_del]
|
||||
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
@ -8,6 +332,47 @@ def get_hparams_from_file(config_path):
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn(
|
||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn(
|
||||
"git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]
|
||||
)
|
||||
)
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
|
||||
def get_logger(model_dir, filename="train.log"):
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
|
||||
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
|
@ -1,405 +0,0 @@
|
||||
import os
|
||||
import glob
|
||||
import argparse
|
||||
import logging
|
||||
import json
|
||||
import subprocess
|
||||
import torch
|
||||
from melo.text import cleaned_text_to_sequence, get_bert
|
||||
from melo.text.cleaner import clean_text
|
||||
from melo import commons
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
||||
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
||||
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
||||
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
||||
|
||||
if hps.data.add_blank:
|
||||
phone = commons.intersperse(phone, 0)
|
||||
tone = commons.intersperse(tone, 0)
|
||||
language = commons.intersperse(language, 0)
|
||||
for i in range(len(word2ph)):
|
||||
word2ph[i] = word2ph[i] * 2
|
||||
word2ph[0] += 1
|
||||
|
||||
if getattr(hps.data, "disable_bert", False):
|
||||
bert = torch.zeros(1024, len(phone))
|
||||
ja_bert = torch.zeros(768, len(phone))
|
||||
else:
|
||||
bert = get_bert(norm_text, word2ph, language_str, device)
|
||||
print('bert', bert)
|
||||
del word2ph
|
||||
assert bert.shape[-1] == len(phone), phone
|
||||
|
||||
if language_str == "ZH":
|
||||
bert = bert
|
||||
ja_bert = torch.zeros(768, len(phone))
|
||||
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
||||
ja_bert = bert
|
||||
bert = torch.zeros(1024, len(phone))
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
assert bert.shape[-1] == len(
|
||||
phone
|
||||
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
||||
|
||||
phone = torch.LongTensor(phone)
|
||||
tone = torch.LongTensor(tone)
|
||||
language = torch.LongTensor(language)
|
||||
return bert, ja_bert, phone, tone, language
|
||||
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
iteration = checkpoint_dict.get("iteration", 0)
|
||||
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
||||
if (
|
||||
optimizer is not None
|
||||
and not skip_optimizer
|
||||
and checkpoint_dict["optimizer"] is not None
|
||||
):
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
elif optimizer is None and not skip_optimizer:
|
||||
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
||||
new_opt_dict = optimizer.state_dict()
|
||||
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
||||
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
||||
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
||||
optimizer.load_state_dict(new_opt_dict)
|
||||
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items():
|
||||
try:
|
||||
# assert "emb_g" not in k
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
assert saved_state_dict[k].shape == v.shape, (
|
||||
saved_state_dict[k].shape,
|
||||
v.shape,
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
# For upgrading from the old version
|
||||
if "ja_bert_proj" in k:
|
||||
v = torch.zeros_like(v)
|
||||
logger.warn(
|
||||
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
||||
)
|
||||
else:
|
||||
logger.error(f"{k} is not in the checkpoint")
|
||||
|
||||
new_state_dict[k] = v
|
||||
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
|
||||
logger.info(
|
||||
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
||||
)
|
||||
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info(
|
||||
"Saving model and optimizer state at iteration {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
return x
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--config",
|
||||
type=str,
|
||||
default="./configs/base.json",
|
||||
help="JSON file for configuration",
|
||||
)
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
parser.add_argument('--world-size', type=int, default=1)
|
||||
parser.add_argument('--port', type=int, default=10000)
|
||||
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
||||
parser.add_argument('--pretrain_G', type=str, default=None,
|
||||
help='pretrain model')
|
||||
parser.add_argument('--pretrain_D', type=str, default=None,
|
||||
help='pretrain model D')
|
||||
parser.add_argument('--pretrain_dur', type=str, default=None,
|
||||
help='pretrain model duration')
|
||||
|
||||
args = parser.parse_args()
|
||||
model_dir = os.path.join("./logs", args.model)
|
||||
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
config_path = args.config
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
if init:
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
with open(config_save_path, "w") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
hparams.pretrain_G = args.pretrain_G
|
||||
hparams.pretrain_D = args.pretrain_D
|
||||
hparams.pretrain_dur = args.pretrain_dur
|
||||
hparams.port = args.port
|
||||
return hparams
|
||||
|
||||
|
||||
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
||||
"""Freeing up space by deleting saved ckpts
|
||||
|
||||
Arguments:
|
||||
path_to_models -- Path to the model directory
|
||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||
sort_by_time -- True -> chronologically delete ckpts
|
||||
False -> lexicographically delete ckpts
|
||||
"""
|
||||
import re
|
||||
|
||||
ckpts_files = [
|
||||
f
|
||||
for f in os.listdir(path_to_models)
|
||||
if os.path.isfile(os.path.join(path_to_models, f))
|
||||
]
|
||||
|
||||
def name_key(_f):
|
||||
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
||||
|
||||
def time_key(_f):
|
||||
return os.path.getmtime(os.path.join(path_to_models, _f))
|
||||
|
||||
sort_key = time_key if sort_by_time else name_key
|
||||
|
||||
def x_sorted(_x):
|
||||
return sorted(
|
||||
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
||||
key=sort_key,
|
||||
)
|
||||
|
||||
to_del = [
|
||||
os.path.join(path_to_models, fn)
|
||||
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
||||
]
|
||||
|
||||
def del_info(fn):
|
||||
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
||||
|
||||
def del_routine(x):
|
||||
return [os.remove(x), del_info(x)]
|
||||
|
||||
[del_routine(fn) for fn in to_del]
|
||||
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn(
|
||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn(
|
||||
"git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]
|
||||
)
|
||||
)
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
|
||||
def get_logger(model_dir, filename="train.log"):
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
|
||||
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
40
tcp_server/src/lib/tts_to_delete/utils.py
Normal file
40
tcp_server/src/lib/tts_to_delete/utils.py
Normal file
@ -0,0 +1,40 @@
|
||||
import json
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
@ -14,4 +14,5 @@ tcp_server_host = os.environ.get('LEON_PY_TCP_SERVER_HOST', '0.0.0.0')
|
||||
tcp_server_port = os.environ.get('LEON_PY_TCP_SERVER_PORT', 1342)
|
||||
|
||||
tcp_server = TCPServer(tcp_server_host, tcp_server_port)
|
||||
tcp_server.init_tts()
|
||||
tcp_server.init()
|
||||
|
Loading…
Reference in New Issue
Block a user