mirror of
https://github.com/leon-ai/leon.git
synced 2024-11-27 16:16:48 +03:00
feat(python tcp server): TTS tmp inference
This commit is contained in:
parent
0e959412d5
commit
85af31b614
2
.gitignore
vendored
2
.gitignore
vendored
@ -24,6 +24,7 @@ debug.log
|
|||||||
leon.json
|
leon.json
|
||||||
bridges/python/src/Pipfile.lock
|
bridges/python/src/Pipfile.lock
|
||||||
tcp_server/src/Pipfile.lock
|
tcp_server/src/Pipfile.lock
|
||||||
|
tcp_server/src/lib/tts/models/*.pth
|
||||||
!tcp_server/**/.gitkeep
|
!tcp_server/**/.gitkeep
|
||||||
!bridges/python/**/.gitkeep
|
!bridges/python/**/.gitkeep
|
||||||
!bridges/nodejs/**/.gitkeep
|
!bridges/nodejs/**/.gitkeep
|
||||||
@ -32,7 +33,6 @@ tcp_server/src/Pipfile.lock
|
|||||||
skills/**/src/settings.json
|
skills/**/src/settings.json
|
||||||
skills/**/memory/*.json
|
skills/**/memory/*.json
|
||||||
core/data/models/*.nlp
|
core/data/models/*.nlp
|
||||||
core/data/models/tts/*.pth
|
|
||||||
core/data/models/llm/*
|
core/data/models/llm/*
|
||||||
package.json.backup
|
package.json.backup
|
||||||
.python-version
|
.python-version
|
||||||
|
@ -1,16 +1,13 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
MODELS_PATH = os.path.join(
|
SRC_PATH = os.path.join(os.getcwd(), 'tcp_server', 'src')
|
||||||
os.getcwd(),
|
|
||||||
'core',
|
|
||||||
'data',
|
|
||||||
'models'
|
|
||||||
)
|
|
||||||
|
|
||||||
|
# TTS
|
||||||
TTS_MODEL_VERSION = 'V1'
|
TTS_MODEL_VERSION = 'V1'
|
||||||
TTS_MODEL_NAME = f'EN-Leon-{TTS_MODEL_VERSION}'
|
TTS_MODEL_NAME = f'EN-Leon-{TTS_MODEL_VERSION}'
|
||||||
TTS_MODEL_FILE_NAME = f'{TTS_MODEL_NAME}.pth'
|
TTS_MODEL_FILE_NAME = f'{TTS_MODEL_NAME}.pth'
|
||||||
TTS_MODEL_FOLDER_PATH = os.path.join(MODELS_PATH, 'tts')
|
TTS_LIB_PATH = os.path.join(SRC_PATH, 'lib', 'tts')
|
||||||
TTS_MODEL_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, TTS_MODEL_FILE_NAME)
|
TTS_MODEL_FOLDER_PATH = os.path.join(TTS_LIB_PATH, 'models')
|
||||||
TTS_MODEL_CONFIG_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, 'config.json')
|
TTS_MODEL_CONFIG_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, 'config.json')
|
||||||
|
TTS_MODEL_PATH = os.path.join(TTS_MODEL_FOLDER_PATH, TTS_MODEL_FILE_NAME)
|
||||||
IS_TTS_ENABLED = os.environ.get('LEON_TTS', 'true') == 'true'
|
IS_TTS_ENABLED = os.environ.get('LEON_TTS', 'true') == 'true'
|
||||||
|
@ -1,9 +1,11 @@
|
|||||||
import socket
|
import socket
|
||||||
import json
|
import json
|
||||||
|
import os
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
import lib.nlp as nlp
|
import lib.nlp as nlp
|
||||||
from .tts.tts import TTS
|
from .tts.api import TTS
|
||||||
|
from .constants import TTS_MODEL_CONFIG_PATH, TTS_MODEL_PATH, IS_TTS_ENABLED
|
||||||
|
|
||||||
|
|
||||||
class TCPServer:
|
class TCPServer:
|
||||||
@ -13,12 +15,40 @@ class TCPServer:
|
|||||||
self.tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
self.tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||||
self.conn = None
|
self.conn = None
|
||||||
self.addr = None
|
self.addr = None
|
||||||
self.tts = TTS()
|
self.tts = None
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def log(*args, **kwargs):
|
def log(*args, **kwargs):
|
||||||
print('[TCP Server]', *args, **kwargs)
|
print('[TCP Server]', *args, **kwargs)
|
||||||
|
|
||||||
|
def init_tts(self):
|
||||||
|
print('IS_TTS_ENABLED', IS_TTS_ENABLED)
|
||||||
|
# TODO: FIX IT
|
||||||
|
if not IS_TTS_ENABLED:
|
||||||
|
self.log('TTS is disabled')
|
||||||
|
return
|
||||||
|
|
||||||
|
if not os.path.exists(TTS_MODEL_CONFIG_PATH):
|
||||||
|
self.log(f'TTS model config not found at {TTS_MODEL_CONFIG_PATH}')
|
||||||
|
return
|
||||||
|
|
||||||
|
if not os.path.exists(TTS_MODEL_PATH):
|
||||||
|
self.log(f'TTS model not found at {TTS_MODEL_PATH}')
|
||||||
|
return
|
||||||
|
|
||||||
|
self.tts = TTS(language='EN',
|
||||||
|
device='auto',
|
||||||
|
config_path=TTS_MODEL_CONFIG_PATH,
|
||||||
|
ckpt_path=TTS_MODEL_PATH
|
||||||
|
)
|
||||||
|
|
||||||
|
text = 'Hello, I am Leon. How can I help you?'
|
||||||
|
speaker_ids = self.tts.hps.data.spk2id
|
||||||
|
output_path = 'output.wav'
|
||||||
|
speed = 1.0
|
||||||
|
|
||||||
|
self.tts.tts_to_file(text, speaker_ids['EN-Leon-V1'], output_path, speed=speed)
|
||||||
|
|
||||||
def init(self):
|
def init(self):
|
||||||
# Make sure to establish TCP connection by reusing the address so it does not conflict with port already in use
|
# Make sure to establish TCP connection by reusing the address so it does not conflict with port already in use
|
||||||
self.tcp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
self.tcp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||||
|
@ -17,14 +17,21 @@ class TTS(nn.Module):
|
|||||||
config_path=None,
|
config_path=None,
|
||||||
ckpt_path=None):
|
ckpt_path=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
self.log('Loading model...')
|
||||||
|
|
||||||
if device == 'auto':
|
if device == 'auto':
|
||||||
device = 'cpu'
|
device = 'cpu'
|
||||||
|
|
||||||
if torch.cuda.is_available(): device = 'cuda'
|
if torch.cuda.is_available(): device = 'cuda'
|
||||||
|
else: self.log('GPU not available. CUDA is not installed?')
|
||||||
|
|
||||||
if torch.backends.mps.is_available(): device = 'mps'
|
if torch.backends.mps.is_available(): device = 'mps'
|
||||||
if 'cuda' in device:
|
if 'cuda' in device:
|
||||||
assert torch.cuda.is_available()
|
assert torch.cuda.is_available()
|
||||||
|
|
||||||
# config_path =
|
self.log(f'Device: {device}')
|
||||||
|
|
||||||
hps = utils.get_hparams_from_file(config_path)
|
hps = utils.get_hparams_from_file(config_path)
|
||||||
|
|
||||||
num_languages = hps.num_languages
|
num_languages = hps.num_languages
|
||||||
@ -54,6 +61,8 @@ class TTS(nn.Module):
|
|||||||
language = language.split('_')[0]
|
language = language.split('_')[0]
|
||||||
self.language = 'ZH_MIX_EN' if language == 'ZH' else language # we support a ZH_MIX_EN model
|
self.language = 'ZH_MIX_EN' if language == 'ZH' else language # we support a ZH_MIX_EN model
|
||||||
|
|
||||||
|
self.log('Model loaded')
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
||||||
audio_segments = []
|
audio_segments = []
|
||||||
@ -125,3 +134,8 @@ class TTS(nn.Module):
|
|||||||
soundfile.write(output_path, audio, self.hps.data.sampling_rate, format=format)
|
soundfile.write(output_path, audio, self.hps.data.sampling_rate, format=format)
|
||||||
else:
|
else:
|
||||||
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
||||||
|
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def log(*args, **kwargs):
|
||||||
|
print('[TTS]', *args, **kwargs)
|
@ -3,15 +3,15 @@ import torch
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
|
|
||||||
from melo import commons
|
from lib.tts import commons
|
||||||
from melo import modules
|
from lib.tts import modules
|
||||||
from melo import attentions
|
from lib.tts import attentions
|
||||||
|
|
||||||
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
||||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||||
|
|
||||||
from melo.commons import init_weights, get_padding
|
from lib.tts.commons import init_weights, get_padding
|
||||||
import melo.monotonic_align as monotonic_align
|
import lib.tts.monotonic_align as monotonic_align
|
||||||
|
|
||||||
|
|
||||||
class DurationDiscriminator(nn.Module): # vits2
|
class DurationDiscriminator(nn.Module): # vits2
|
@ -1,4 +1,328 @@
|
|||||||
|
import os
|
||||||
|
import glob
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
import json
|
import json
|
||||||
|
import subprocess
|
||||||
|
import torch
|
||||||
|
from lib.tts.text import cleaned_text_to_sequence, get_bert
|
||||||
|
from lib.tts.text.cleaner import clean_text
|
||||||
|
from lib.tts import commons
|
||||||
|
|
||||||
|
MATPLOTLIB_FLAG = False
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
||||||
|
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
||||||
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
||||||
|
|
||||||
|
if hps.data.add_blank:
|
||||||
|
phone = commons.intersperse(phone, 0)
|
||||||
|
tone = commons.intersperse(tone, 0)
|
||||||
|
language = commons.intersperse(language, 0)
|
||||||
|
for i in range(len(word2ph)):
|
||||||
|
word2ph[i] = word2ph[i] * 2
|
||||||
|
word2ph[0] += 1
|
||||||
|
|
||||||
|
if getattr(hps.data, "disable_bert", False):
|
||||||
|
bert = torch.zeros(1024, len(phone))
|
||||||
|
ja_bert = torch.zeros(768, len(phone))
|
||||||
|
else:
|
||||||
|
bert = get_bert(norm_text, word2ph, language_str, device)
|
||||||
|
print('bert', bert)
|
||||||
|
del word2ph
|
||||||
|
assert bert.shape[-1] == len(phone), phone
|
||||||
|
|
||||||
|
if language_str == "ZH":
|
||||||
|
bert = bert
|
||||||
|
ja_bert = torch.zeros(768, len(phone))
|
||||||
|
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
||||||
|
ja_bert = bert
|
||||||
|
bert = torch.zeros(1024, len(phone))
|
||||||
|
else:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
assert bert.shape[-1] == len(
|
||||||
|
phone
|
||||||
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
||||||
|
|
||||||
|
phone = torch.LongTensor(phone)
|
||||||
|
tone = torch.LongTensor(tone)
|
||||||
|
language = torch.LongTensor(language)
|
||||||
|
return bert, ja_bert, phone, tone, language
|
||||||
|
|
||||||
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||||||
|
assert os.path.isfile(checkpoint_path)
|
||||||
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||||
|
iteration = checkpoint_dict.get("iteration", 0)
|
||||||
|
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
||||||
|
if (
|
||||||
|
optimizer is not None
|
||||||
|
and not skip_optimizer
|
||||||
|
and checkpoint_dict["optimizer"] is not None
|
||||||
|
):
|
||||||
|
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||||
|
elif optimizer is None and not skip_optimizer:
|
||||||
|
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
||||||
|
new_opt_dict = optimizer.state_dict()
|
||||||
|
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
||||||
|
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
||||||
|
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
||||||
|
optimizer.load_state_dict(new_opt_dict)
|
||||||
|
|
||||||
|
saved_state_dict = checkpoint_dict["model"]
|
||||||
|
if hasattr(model, "module"):
|
||||||
|
state_dict = model.module.state_dict()
|
||||||
|
else:
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
|
||||||
|
new_state_dict = {}
|
||||||
|
for k, v in state_dict.items():
|
||||||
|
try:
|
||||||
|
# assert "emb_g" not in k
|
||||||
|
new_state_dict[k] = saved_state_dict[k]
|
||||||
|
assert saved_state_dict[k].shape == v.shape, (
|
||||||
|
saved_state_dict[k].shape,
|
||||||
|
v.shape,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
# For upgrading from the old version
|
||||||
|
if "ja_bert_proj" in k:
|
||||||
|
v = torch.zeros_like(v)
|
||||||
|
logger.warn(
|
||||||
|
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logger.error(f"{k} is not in the checkpoint")
|
||||||
|
|
||||||
|
new_state_dict[k] = v
|
||||||
|
|
||||||
|
if hasattr(model, "module"):
|
||||||
|
model.module.load_state_dict(new_state_dict, strict=False)
|
||||||
|
else:
|
||||||
|
model.load_state_dict(new_state_dict, strict=False)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
||||||
|
)
|
||||||
|
|
||||||
|
return model, optimizer, learning_rate, iteration
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||||
|
logger.info(
|
||||||
|
"Saving model and optimizer state at iteration {} to {}".format(
|
||||||
|
iteration, checkpoint_path
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if hasattr(model, "module"):
|
||||||
|
state_dict = model.module.state_dict()
|
||||||
|
else:
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
torch.save(
|
||||||
|
{
|
||||||
|
"model": state_dict,
|
||||||
|
"iteration": iteration,
|
||||||
|
"optimizer": optimizer.state_dict(),
|
||||||
|
"learning_rate": learning_rate,
|
||||||
|
},
|
||||||
|
checkpoint_path,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def summarize(
|
||||||
|
writer,
|
||||||
|
global_step,
|
||||||
|
scalars={},
|
||||||
|
histograms={},
|
||||||
|
images={},
|
||||||
|
audios={},
|
||||||
|
audio_sampling_rate=22050,
|
||||||
|
):
|
||||||
|
for k, v in scalars.items():
|
||||||
|
writer.add_scalar(k, v, global_step)
|
||||||
|
for k, v in histograms.items():
|
||||||
|
writer.add_histogram(k, v, global_step)
|
||||||
|
for k, v in images.items():
|
||||||
|
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||||
|
for k, v in audios.items():
|
||||||
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||||
|
|
||||||
|
|
||||||
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||||
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||||
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||||
|
x = f_list[-1]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def plot_spectrogram_to_numpy(spectrogram):
|
||||||
|
global MATPLOTLIB_FLAG
|
||||||
|
if not MATPLOTLIB_FLAG:
|
||||||
|
import matplotlib
|
||||||
|
|
||||||
|
matplotlib.use("Agg")
|
||||||
|
MATPLOTLIB_FLAG = True
|
||||||
|
mpl_logger = logging.getLogger("matplotlib")
|
||||||
|
mpl_logger.setLevel(logging.WARNING)
|
||||||
|
import matplotlib.pylab as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(figsize=(10, 2))
|
||||||
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||||
|
plt.colorbar(im, ax=ax)
|
||||||
|
plt.xlabel("Frames")
|
||||||
|
plt.ylabel("Channels")
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
fig.canvas.draw()
|
||||||
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||||
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||||
|
plt.close()
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
def plot_alignment_to_numpy(alignment, info=None):
|
||||||
|
global MATPLOTLIB_FLAG
|
||||||
|
if not MATPLOTLIB_FLAG:
|
||||||
|
import matplotlib
|
||||||
|
|
||||||
|
matplotlib.use("Agg")
|
||||||
|
MATPLOTLIB_FLAG = True
|
||||||
|
mpl_logger = logging.getLogger("matplotlib")
|
||||||
|
mpl_logger.setLevel(logging.WARNING)
|
||||||
|
import matplotlib.pylab as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(figsize=(6, 4))
|
||||||
|
im = ax.imshow(
|
||||||
|
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||||
|
)
|
||||||
|
fig.colorbar(im, ax=ax)
|
||||||
|
xlabel = "Decoder timestep"
|
||||||
|
if info is not None:
|
||||||
|
xlabel += "\n\n" + info
|
||||||
|
plt.xlabel(xlabel)
|
||||||
|
plt.ylabel("Encoder timestep")
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
fig.canvas.draw()
|
||||||
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||||
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||||
|
plt.close()
|
||||||
|
return data
|
||||||
|
|
||||||
|
def load_filepaths_and_text(filename, split="|"):
|
||||||
|
with open(filename, encoding="utf-8") as f:
|
||||||
|
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||||
|
return filepaths_and_text
|
||||||
|
|
||||||
|
|
||||||
|
def get_hparams(init=True):
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"-c",
|
||||||
|
"--config",
|
||||||
|
type=str,
|
||||||
|
default="./configs/base.json",
|
||||||
|
help="JSON file for configuration",
|
||||||
|
)
|
||||||
|
parser.add_argument('--local_rank', type=int, default=0)
|
||||||
|
parser.add_argument('--world-size', type=int, default=1)
|
||||||
|
parser.add_argument('--port', type=int, default=10000)
|
||||||
|
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
||||||
|
parser.add_argument('--pretrain_G', type=str, default=None,
|
||||||
|
help='pretrain model')
|
||||||
|
parser.add_argument('--pretrain_D', type=str, default=None,
|
||||||
|
help='pretrain model D')
|
||||||
|
parser.add_argument('--pretrain_dur', type=str, default=None,
|
||||||
|
help='pretrain model duration')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
model_dir = os.path.join("./logs", args.model)
|
||||||
|
|
||||||
|
os.makedirs(model_dir, exist_ok=True)
|
||||||
|
|
||||||
|
config_path = args.config
|
||||||
|
config_save_path = os.path.join(model_dir, "config.json")
|
||||||
|
if init:
|
||||||
|
with open(config_path, "r") as f:
|
||||||
|
data = f.read()
|
||||||
|
with open(config_save_path, "w") as f:
|
||||||
|
f.write(data)
|
||||||
|
else:
|
||||||
|
with open(config_save_path, "r") as f:
|
||||||
|
data = f.read()
|
||||||
|
config = json.loads(data)
|
||||||
|
|
||||||
|
hparams = HParams(**config)
|
||||||
|
hparams.model_dir = model_dir
|
||||||
|
hparams.pretrain_G = args.pretrain_G
|
||||||
|
hparams.pretrain_D = args.pretrain_D
|
||||||
|
hparams.pretrain_dur = args.pretrain_dur
|
||||||
|
hparams.port = args.port
|
||||||
|
return hparams
|
||||||
|
|
||||||
|
|
||||||
|
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
||||||
|
"""Freeing up space by deleting saved ckpts
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
path_to_models -- Path to the model directory
|
||||||
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||||||
|
sort_by_time -- True -> chronologically delete ckpts
|
||||||
|
False -> lexicographically delete ckpts
|
||||||
|
"""
|
||||||
|
import re
|
||||||
|
|
||||||
|
ckpts_files = [
|
||||||
|
f
|
||||||
|
for f in os.listdir(path_to_models)
|
||||||
|
if os.path.isfile(os.path.join(path_to_models, f))
|
||||||
|
]
|
||||||
|
|
||||||
|
def name_key(_f):
|
||||||
|
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
||||||
|
|
||||||
|
def time_key(_f):
|
||||||
|
return os.path.getmtime(os.path.join(path_to_models, _f))
|
||||||
|
|
||||||
|
sort_key = time_key if sort_by_time else name_key
|
||||||
|
|
||||||
|
def x_sorted(_x):
|
||||||
|
return sorted(
|
||||||
|
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
||||||
|
key=sort_key,
|
||||||
|
)
|
||||||
|
|
||||||
|
to_del = [
|
||||||
|
os.path.join(path_to_models, fn)
|
||||||
|
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
||||||
|
]
|
||||||
|
|
||||||
|
def del_info(fn):
|
||||||
|
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
||||||
|
|
||||||
|
def del_routine(x):
|
||||||
|
return [os.remove(x), del_info(x)]
|
||||||
|
|
||||||
|
[del_routine(fn) for fn in to_del]
|
||||||
|
|
||||||
|
|
||||||
|
def get_hparams_from_dir(model_dir):
|
||||||
|
config_save_path = os.path.join(model_dir, "config.json")
|
||||||
|
with open(config_save_path, "r", encoding="utf-8") as f:
|
||||||
|
data = f.read()
|
||||||
|
config = json.loads(data)
|
||||||
|
|
||||||
|
hparams = HParams(**config)
|
||||||
|
hparams.model_dir = model_dir
|
||||||
|
return hparams
|
||||||
|
|
||||||
|
|
||||||
def get_hparams_from_file(config_path):
|
def get_hparams_from_file(config_path):
|
||||||
with open(config_path, "r", encoding="utf-8") as f:
|
with open(config_path, "r", encoding="utf-8") as f:
|
||||||
@ -8,6 +332,47 @@ def get_hparams_from_file(config_path):
|
|||||||
hparams = HParams(**config)
|
hparams = HParams(**config)
|
||||||
return hparams
|
return hparams
|
||||||
|
|
||||||
|
|
||||||
|
def check_git_hash(model_dir):
|
||||||
|
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||||
|
logger.warn(
|
||||||
|
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||||
|
source_dir
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||||
|
|
||||||
|
path = os.path.join(model_dir, "githash")
|
||||||
|
if os.path.exists(path):
|
||||||
|
saved_hash = open(path).read()
|
||||||
|
if saved_hash != cur_hash:
|
||||||
|
logger.warn(
|
||||||
|
"git hash values are different. {}(saved) != {}(current)".format(
|
||||||
|
saved_hash[:8], cur_hash[:8]
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
open(path, "w").write(cur_hash)
|
||||||
|
|
||||||
|
|
||||||
|
def get_logger(model_dir, filename="train.log"):
|
||||||
|
global logger
|
||||||
|
logger = logging.getLogger(os.path.basename(model_dir))
|
||||||
|
logger.setLevel(logging.DEBUG)
|
||||||
|
|
||||||
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||||
|
if not os.path.exists(model_dir):
|
||||||
|
os.makedirs(model_dir, exist_ok=True)
|
||||||
|
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||||
|
h.setLevel(logging.DEBUG)
|
||||||
|
h.setFormatter(formatter)
|
||||||
|
logger.addHandler(h)
|
||||||
|
return logger
|
||||||
|
|
||||||
|
|
||||||
class HParams:
|
class HParams:
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
for k, v in kwargs.items():
|
for k, v in kwargs.items():
|
||||||
|
@ -1,405 +0,0 @@
|
|||||||
import os
|
|
||||||
import glob
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import json
|
|
||||||
import subprocess
|
|
||||||
import torch
|
|
||||||
from melo.text import cleaned_text_to_sequence, get_bert
|
|
||||||
from melo.text.cleaner import clean_text
|
|
||||||
from melo import commons
|
|
||||||
|
|
||||||
MATPLOTLIB_FLAG = False
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
|
||||||
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
|
||||||
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
|
||||||
|
|
||||||
if hps.data.add_blank:
|
|
||||||
phone = commons.intersperse(phone, 0)
|
|
||||||
tone = commons.intersperse(tone, 0)
|
|
||||||
language = commons.intersperse(language, 0)
|
|
||||||
for i in range(len(word2ph)):
|
|
||||||
word2ph[i] = word2ph[i] * 2
|
|
||||||
word2ph[0] += 1
|
|
||||||
|
|
||||||
if getattr(hps.data, "disable_bert", False):
|
|
||||||
bert = torch.zeros(1024, len(phone))
|
|
||||||
ja_bert = torch.zeros(768, len(phone))
|
|
||||||
else:
|
|
||||||
bert = get_bert(norm_text, word2ph, language_str, device)
|
|
||||||
print('bert', bert)
|
|
||||||
del word2ph
|
|
||||||
assert bert.shape[-1] == len(phone), phone
|
|
||||||
|
|
||||||
if language_str == "ZH":
|
|
||||||
bert = bert
|
|
||||||
ja_bert = torch.zeros(768, len(phone))
|
|
||||||
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
|
||||||
ja_bert = bert
|
|
||||||
bert = torch.zeros(1024, len(phone))
|
|
||||||
else:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
assert bert.shape[-1] == len(
|
|
||||||
phone
|
|
||||||
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
|
||||||
|
|
||||||
phone = torch.LongTensor(phone)
|
|
||||||
tone = torch.LongTensor(tone)
|
|
||||||
language = torch.LongTensor(language)
|
|
||||||
return bert, ja_bert, phone, tone, language
|
|
||||||
|
|
||||||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
|
||||||
assert os.path.isfile(checkpoint_path)
|
|
||||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
|
||||||
iteration = checkpoint_dict.get("iteration", 0)
|
|
||||||
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
|
||||||
if (
|
|
||||||
optimizer is not None
|
|
||||||
and not skip_optimizer
|
|
||||||
and checkpoint_dict["optimizer"] is not None
|
|
||||||
):
|
|
||||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
|
||||||
elif optimizer is None and not skip_optimizer:
|
|
||||||
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
|
||||||
new_opt_dict = optimizer.state_dict()
|
|
||||||
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
|
||||||
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
|
||||||
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
|
||||||
optimizer.load_state_dict(new_opt_dict)
|
|
||||||
|
|
||||||
saved_state_dict = checkpoint_dict["model"]
|
|
||||||
if hasattr(model, "module"):
|
|
||||||
state_dict = model.module.state_dict()
|
|
||||||
else:
|
|
||||||
state_dict = model.state_dict()
|
|
||||||
|
|
||||||
new_state_dict = {}
|
|
||||||
for k, v in state_dict.items():
|
|
||||||
try:
|
|
||||||
# assert "emb_g" not in k
|
|
||||||
new_state_dict[k] = saved_state_dict[k]
|
|
||||||
assert saved_state_dict[k].shape == v.shape, (
|
|
||||||
saved_state_dict[k].shape,
|
|
||||||
v.shape,
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
# For upgrading from the old version
|
|
||||||
if "ja_bert_proj" in k:
|
|
||||||
v = torch.zeros_like(v)
|
|
||||||
logger.warn(
|
|
||||||
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logger.error(f"{k} is not in the checkpoint")
|
|
||||||
|
|
||||||
new_state_dict[k] = v
|
|
||||||
|
|
||||||
if hasattr(model, "module"):
|
|
||||||
model.module.load_state_dict(new_state_dict, strict=False)
|
|
||||||
else:
|
|
||||||
model.load_state_dict(new_state_dict, strict=False)
|
|
||||||
|
|
||||||
logger.info(
|
|
||||||
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
|
||||||
)
|
|
||||||
|
|
||||||
return model, optimizer, learning_rate, iteration
|
|
||||||
|
|
||||||
|
|
||||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
||||||
logger.info(
|
|
||||||
"Saving model and optimizer state at iteration {} to {}".format(
|
|
||||||
iteration, checkpoint_path
|
|
||||||
)
|
|
||||||
)
|
|
||||||
if hasattr(model, "module"):
|
|
||||||
state_dict = model.module.state_dict()
|
|
||||||
else:
|
|
||||||
state_dict = model.state_dict()
|
|
||||||
torch.save(
|
|
||||||
{
|
|
||||||
"model": state_dict,
|
|
||||||
"iteration": iteration,
|
|
||||||
"optimizer": optimizer.state_dict(),
|
|
||||||
"learning_rate": learning_rate,
|
|
||||||
},
|
|
||||||
checkpoint_path,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def summarize(
|
|
||||||
writer,
|
|
||||||
global_step,
|
|
||||||
scalars={},
|
|
||||||
histograms={},
|
|
||||||
images={},
|
|
||||||
audios={},
|
|
||||||
audio_sampling_rate=22050,
|
|
||||||
):
|
|
||||||
for k, v in scalars.items():
|
|
||||||
writer.add_scalar(k, v, global_step)
|
|
||||||
for k, v in histograms.items():
|
|
||||||
writer.add_histogram(k, v, global_step)
|
|
||||||
for k, v in images.items():
|
|
||||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
|
||||||
for k, v in audios.items():
|
|
||||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
||||||
|
|
||||||
|
|
||||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
||||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
||||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
||||||
x = f_list[-1]
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def plot_spectrogram_to_numpy(spectrogram):
|
|
||||||
global MATPLOTLIB_FLAG
|
|
||||||
if not MATPLOTLIB_FLAG:
|
|
||||||
import matplotlib
|
|
||||||
|
|
||||||
matplotlib.use("Agg")
|
|
||||||
MATPLOTLIB_FLAG = True
|
|
||||||
mpl_logger = logging.getLogger("matplotlib")
|
|
||||||
mpl_logger.setLevel(logging.WARNING)
|
|
||||||
import matplotlib.pylab as plt
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=(10, 2))
|
|
||||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
||||||
plt.colorbar(im, ax=ax)
|
|
||||||
plt.xlabel("Frames")
|
|
||||||
plt.ylabel("Channels")
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
fig.canvas.draw()
|
|
||||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
||||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
||||||
plt.close()
|
|
||||||
return data
|
|
||||||
|
|
||||||
|
|
||||||
def plot_alignment_to_numpy(alignment, info=None):
|
|
||||||
global MATPLOTLIB_FLAG
|
|
||||||
if not MATPLOTLIB_FLAG:
|
|
||||||
import matplotlib
|
|
||||||
|
|
||||||
matplotlib.use("Agg")
|
|
||||||
MATPLOTLIB_FLAG = True
|
|
||||||
mpl_logger = logging.getLogger("matplotlib")
|
|
||||||
mpl_logger.setLevel(logging.WARNING)
|
|
||||||
import matplotlib.pylab as plt
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=(6, 4))
|
|
||||||
im = ax.imshow(
|
|
||||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
|
||||||
)
|
|
||||||
fig.colorbar(im, ax=ax)
|
|
||||||
xlabel = "Decoder timestep"
|
|
||||||
if info is not None:
|
|
||||||
xlabel += "\n\n" + info
|
|
||||||
plt.xlabel(xlabel)
|
|
||||||
plt.ylabel("Encoder timestep")
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
fig.canvas.draw()
|
|
||||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
||||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
||||||
plt.close()
|
|
||||||
return data
|
|
||||||
|
|
||||||
def load_filepaths_and_text(filename, split="|"):
|
|
||||||
with open(filename, encoding="utf-8") as f:
|
|
||||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
||||||
return filepaths_and_text
|
|
||||||
|
|
||||||
|
|
||||||
def get_hparams(init=True):
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"-c",
|
|
||||||
"--config",
|
|
||||||
type=str,
|
|
||||||
default="./configs/base.json",
|
|
||||||
help="JSON file for configuration",
|
|
||||||
)
|
|
||||||
parser.add_argument('--local_rank', type=int, default=0)
|
|
||||||
parser.add_argument('--world-size', type=int, default=1)
|
|
||||||
parser.add_argument('--port', type=int, default=10000)
|
|
||||||
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
|
||||||
parser.add_argument('--pretrain_G', type=str, default=None,
|
|
||||||
help='pretrain model')
|
|
||||||
parser.add_argument('--pretrain_D', type=str, default=None,
|
|
||||||
help='pretrain model D')
|
|
||||||
parser.add_argument('--pretrain_dur', type=str, default=None,
|
|
||||||
help='pretrain model duration')
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
model_dir = os.path.join("./logs", args.model)
|
|
||||||
|
|
||||||
os.makedirs(model_dir, exist_ok=True)
|
|
||||||
|
|
||||||
config_path = args.config
|
|
||||||
config_save_path = os.path.join(model_dir, "config.json")
|
|
||||||
if init:
|
|
||||||
with open(config_path, "r") as f:
|
|
||||||
data = f.read()
|
|
||||||
with open(config_save_path, "w") as f:
|
|
||||||
f.write(data)
|
|
||||||
else:
|
|
||||||
with open(config_save_path, "r") as f:
|
|
||||||
data = f.read()
|
|
||||||
config = json.loads(data)
|
|
||||||
|
|
||||||
hparams = HParams(**config)
|
|
||||||
hparams.model_dir = model_dir
|
|
||||||
hparams.pretrain_G = args.pretrain_G
|
|
||||||
hparams.pretrain_D = args.pretrain_D
|
|
||||||
hparams.pretrain_dur = args.pretrain_dur
|
|
||||||
hparams.port = args.port
|
|
||||||
return hparams
|
|
||||||
|
|
||||||
|
|
||||||
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
|
||||||
"""Freeing up space by deleting saved ckpts
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
path_to_models -- Path to the model directory
|
|
||||||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
|
||||||
sort_by_time -- True -> chronologically delete ckpts
|
|
||||||
False -> lexicographically delete ckpts
|
|
||||||
"""
|
|
||||||
import re
|
|
||||||
|
|
||||||
ckpts_files = [
|
|
||||||
f
|
|
||||||
for f in os.listdir(path_to_models)
|
|
||||||
if os.path.isfile(os.path.join(path_to_models, f))
|
|
||||||
]
|
|
||||||
|
|
||||||
def name_key(_f):
|
|
||||||
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
|
||||||
|
|
||||||
def time_key(_f):
|
|
||||||
return os.path.getmtime(os.path.join(path_to_models, _f))
|
|
||||||
|
|
||||||
sort_key = time_key if sort_by_time else name_key
|
|
||||||
|
|
||||||
def x_sorted(_x):
|
|
||||||
return sorted(
|
|
||||||
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
|
||||||
key=sort_key,
|
|
||||||
)
|
|
||||||
|
|
||||||
to_del = [
|
|
||||||
os.path.join(path_to_models, fn)
|
|
||||||
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
|
||||||
]
|
|
||||||
|
|
||||||
def del_info(fn):
|
|
||||||
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
|
||||||
|
|
||||||
def del_routine(x):
|
|
||||||
return [os.remove(x), del_info(x)]
|
|
||||||
|
|
||||||
[del_routine(fn) for fn in to_del]
|
|
||||||
|
|
||||||
|
|
||||||
def get_hparams_from_dir(model_dir):
|
|
||||||
config_save_path = os.path.join(model_dir, "config.json")
|
|
||||||
with open(config_save_path, "r", encoding="utf-8") as f:
|
|
||||||
data = f.read()
|
|
||||||
config = json.loads(data)
|
|
||||||
|
|
||||||
hparams = HParams(**config)
|
|
||||||
hparams.model_dir = model_dir
|
|
||||||
return hparams
|
|
||||||
|
|
||||||
|
|
||||||
def get_hparams_from_file(config_path):
|
|
||||||
with open(config_path, "r", encoding="utf-8") as f:
|
|
||||||
data = f.read()
|
|
||||||
config = json.loads(data)
|
|
||||||
|
|
||||||
hparams = HParams(**config)
|
|
||||||
return hparams
|
|
||||||
|
|
||||||
|
|
||||||
def check_git_hash(model_dir):
|
|
||||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
||||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
||||||
logger.warn(
|
|
||||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
||||||
source_dir
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return
|
|
||||||
|
|
||||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
||||||
|
|
||||||
path = os.path.join(model_dir, "githash")
|
|
||||||
if os.path.exists(path):
|
|
||||||
saved_hash = open(path).read()
|
|
||||||
if saved_hash != cur_hash:
|
|
||||||
logger.warn(
|
|
||||||
"git hash values are different. {}(saved) != {}(current)".format(
|
|
||||||
saved_hash[:8], cur_hash[:8]
|
|
||||||
)
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
open(path, "w").write(cur_hash)
|
|
||||||
|
|
||||||
|
|
||||||
def get_logger(model_dir, filename="train.log"):
|
|
||||||
global logger
|
|
||||||
logger = logging.getLogger(os.path.basename(model_dir))
|
|
||||||
logger.setLevel(logging.DEBUG)
|
|
||||||
|
|
||||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
||||||
if not os.path.exists(model_dir):
|
|
||||||
os.makedirs(model_dir, exist_ok=True)
|
|
||||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
||||||
h.setLevel(logging.DEBUG)
|
|
||||||
h.setFormatter(formatter)
|
|
||||||
logger.addHandler(h)
|
|
||||||
return logger
|
|
||||||
|
|
||||||
|
|
||||||
class HParams:
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
for k, v in kwargs.items():
|
|
||||||
if type(v) == dict:
|
|
||||||
v = HParams(**v)
|
|
||||||
self[k] = v
|
|
||||||
|
|
||||||
def keys(self):
|
|
||||||
return self.__dict__.keys()
|
|
||||||
|
|
||||||
def items(self):
|
|
||||||
return self.__dict__.items()
|
|
||||||
|
|
||||||
def values(self):
|
|
||||||
return self.__dict__.values()
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.__dict__)
|
|
||||||
|
|
||||||
def __getitem__(self, key):
|
|
||||||
return getattr(self, key)
|
|
||||||
|
|
||||||
def __setitem__(self, key, value):
|
|
||||||
return setattr(self, key, value)
|
|
||||||
|
|
||||||
def __contains__(self, key):
|
|
||||||
return key in self.__dict__
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
return self.__dict__.__repr__()
|
|
40
tcp_server/src/lib/tts_to_delete/utils.py
Normal file
40
tcp_server/src/lib/tts_to_delete/utils.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
import json
|
||||||
|
|
||||||
|
def get_hparams_from_file(config_path):
|
||||||
|
with open(config_path, "r", encoding="utf-8") as f:
|
||||||
|
data = f.read()
|
||||||
|
config = json.loads(data)
|
||||||
|
|
||||||
|
hparams = HParams(**config)
|
||||||
|
return hparams
|
||||||
|
|
||||||
|
class HParams:
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
if type(v) == dict:
|
||||||
|
v = HParams(**v)
|
||||||
|
self[k] = v
|
||||||
|
|
||||||
|
def keys(self):
|
||||||
|
return self.__dict__.keys()
|
||||||
|
|
||||||
|
def items(self):
|
||||||
|
return self.__dict__.items()
|
||||||
|
|
||||||
|
def values(self):
|
||||||
|
return self.__dict__.values()
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.__dict__)
|
||||||
|
|
||||||
|
def __getitem__(self, key):
|
||||||
|
return getattr(self, key)
|
||||||
|
|
||||||
|
def __setitem__(self, key, value):
|
||||||
|
return setattr(self, key, value)
|
||||||
|
|
||||||
|
def __contains__(self, key):
|
||||||
|
return key in self.__dict__
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return self.__dict__.__repr__()
|
@ -14,4 +14,5 @@ tcp_server_host = os.environ.get('LEON_PY_TCP_SERVER_HOST', '0.0.0.0')
|
|||||||
tcp_server_port = os.environ.get('LEON_PY_TCP_SERVER_PORT', 1342)
|
tcp_server_port = os.environ.get('LEON_PY_TCP_SERVER_PORT', 1342)
|
||||||
|
|
||||||
tcp_server = TCPServer(tcp_server_host, tcp_server_port)
|
tcp_server = TCPServer(tcp_server_host, tcp_server_port)
|
||||||
|
tcp_server.init_tts()
|
||||||
tcp_server.init()
|
tcp_server.init()
|
||||||
|
Loading…
Reference in New Issue
Block a user