import path from 'path' import fs from 'fs' import { composeFromPattern } from '@nlpjs/utils' import { LogHelper } from '@/helpers/log-helper' import { StringHelper } from '@/helpers/string-helper' import { SkillDomainHelper } from '@/helpers/skill-domain-helper' /** * Train skills actions */ export default (lang, nlp) => new Promise(async (resolve) => { LogHelper.title('Skills actions training') const supportedActionTypes = ['dialog', 'logic'] const skillDomains = await SkillDomainHelper.getSkillDomains() for (const [domainName, currentDomain] of skillDomains) { const skillKeys = Object.keys(currentDomain.skills) LogHelper.info(`[${lang}] Training "${domainName}" domain model...`) for (let j = 0; j < skillKeys.length; j += 1) { const { name: skillName } = currentDomain.skills[skillKeys[j]] const currentSkill = currentDomain.skills[skillKeys[j]] LogHelper.info(`[${lang}] Using "${skillKeys[j]}" skill config data`) const configFilePath = path.join( currentSkill.path, 'config', `${lang}.json` ) if (fs.existsSync(configFilePath)) { const { actions, variables } = await SkillDomainHelper.getSkillConfig( configFilePath, lang ) const actionsKeys = Object.keys(actions) for (let k = 0; k < actionsKeys.length; k += 1) { const actionName = actionsKeys[k] const actionObj = actions[actionName] const intent = `${skillName}.${actionName}` const { utterance_samples: utteranceSamples, answers, slots } = actionObj if ( !actionObj.type || !supportedActionTypes.includes(actionObj.type) ) { LogHelper.error( `This action type isn't supported: ${actionObj.type}` ) process.exit(1) } nlp.assignDomain(lang, intent, currentDomain.name) if (slots) { for (let l = 0; l < slots.length; l += 1) { const slotObj = slots[l] /** * TODO: handle entity within questions such as "Where does {{ hero }} live?" * https://github.com/axa-group/nlp.js/issues/328 * https://github.com/axa-group/nlp.js/issues/291 * https://github.com/axa-group/nlp.js/issues/307 */ if (slotObj.item.type === 'entity') { nlp.slotManager.addSlot( intent, `${slotObj.name}#${slotObj.item.name}`, true, { [lang]: slotObj.questions } ) } /* nlp.slotManager .addSlot(intent, 'boolean', true, { [lang]: 'How many players?' }) */ } } for (let l = 0; l < utteranceSamples?.length; l += 1) { const utterance = utteranceSamples[l] // Achieve Cartesian training const utteranceAlternatives = composeFromPattern(utterance) utteranceAlternatives.forEach((utteranceAlternative) => { nlp.addDocument(lang, utteranceAlternative, intent) }) } // Train NLG if the action has a dialog type if (actionObj.type === 'dialog') { const variablesObj = {} // Dynamic variables binding if any variable is declared if (variables) { const variableKeys = Object.keys(variables) for (let l = 0; l < variableKeys.length; l += 1) { const key = variableKeys[l] variablesObj[`%${key}%`] = variables[variableKeys[l]] } } for (let l = 0; l < answers?.length; l += 1) { const variableKeys = Object.keys(variablesObj) if (variableKeys.length > 0) { answers[l] = StringHelper.findAndMap(answers[l], variablesObj) } nlp.addAnswer(lang, `${skillName}.${actionName}`, answers[l]) } } } } } LogHelper.success(`[${lang}] "${domainName}" domain trained`) } resolve() })