tp_smapi/tp_smapi.c
2023-07-31 20:05:27 +02:00

1496 lines
44 KiB
C

/*
* tp_smapi.c - ThinkPad SMAPI support
*
* This driver exposes some features of the System Management Application
* Program Interface (SMAPI) BIOS found on ThinkPad laptops. It works on
* models in which the SMAPI BIOS runs in SMM and is invoked by writing
* to the APM control port 0xB2.
* It also exposes battery status information, obtained from the ThinkPad
* embedded controller (via the thinkpad_ec module).
* Ancient ThinkPad models use a different interface, supported by the
* "thinkpad" module from "tpctl".
*
* Many of the battery status values obtained from the EC simply mirror
* values provided by the battery's Smart Battery System (SBS) interface, so
* their meaning is defined by the Smart Battery Data Specification (see
* http://sbs-forum.org/specs/sbdat110.pdf). References to this SBS spec
* are given in the code where relevant.
*
* Copyright (C) 2006 Shem Multinymous <multinymous@gmail.com>.
* SMAPI access code based on the mwave driver by Mike Sullivan.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/mc146818rtc.h> /* CMOS defines */
#include <linux/delay.h>
#include <linux/version.h>
#include "thinkpad_ec.h"
#include <linux/platform_device.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define TP_VERSION "0.44"
#define TP_DESC "ThinkPad SMAPI Support"
#define TP_DIR "smapi"
MODULE_AUTHOR("Shem Multinymous");
MODULE_DESCRIPTION(TP_DESC);
MODULE_VERSION(TP_VERSION);
MODULE_LICENSE("GPL");
static struct platform_device *pdev;
static int tp_debug;
module_param_named(debug, tp_debug, int, 0600);
MODULE_PARM_DESC(debug, "Debug level (0=off, 1=on)");
/* A few macros for printk()ing: */
#define TPRINTK(level, fmt, args...) \
dev_printk(level, &(pdev->dev), "%s: " fmt "\n", __func__, ## args)
#define DPRINTK(fmt, args...) \
do { if (tp_debug) TPRINTK(KERN_DEBUG, fmt, ## args); } while (0)
/*********************************************************************
* SMAPI interface
*/
/* SMAPI functions (register BX when making the SMM call). */
#define SMAPI_GET_INHIBIT_CHARGE 0x2114
#define SMAPI_SET_INHIBIT_CHARGE 0x2115
#define SMAPI_GET_THRESH_START 0x2116
#define SMAPI_SET_THRESH_START 0x2117
#define SMAPI_GET_FORCE_DISCHARGE 0x2118
#define SMAPI_SET_FORCE_DISCHARGE 0x2119
#define SMAPI_GET_THRESH_STOP 0x211a
#define SMAPI_SET_THRESH_STOP 0x211b
/* SMAPI error codes (see ThinkPad 770 Technical Reference Manual p.83 at
http://www-307.ibm.com/pc/support/site.wss/document.do?lndocid=PFAN-3TUQQD */
#define SMAPI_RETCODE_EOF 0xff
static struct { u8 rc; char *msg; int ret; } smapi_retcode[] =
{
{0x00, "OK", 0},
{0x53, "SMAPI function is not available", -ENXIO},
{0x81, "Invalid parameter", -EINVAL},
{0x86, "Function is not supported by SMAPI BIOS", -EOPNOTSUPP},
{0x90, "System error", -EIO},
{0x91, "System is invalid", -EIO},
{0x92, "System is busy, -EBUSY"},
{0xa0, "Device error (disk read error)", -EIO},
{0xa1, "Device is busy", -EBUSY},
{0xa2, "Device is not attached", -ENXIO},
{0xa3, "Device is disbled", -EIO},
{0xa4, "Request parameter is out of range", -EINVAL},
{0xa5, "Request parameter is not accepted", -EINVAL},
{0xa6, "Transient error", -EBUSY}, /* ? */
{SMAPI_RETCODE_EOF, "Unknown error code", -EIO}
};
#define SMAPI_MAX_RETRIES 10
#define SMAPI_PORT2 0x4F /* fixed port, meaning unclear */
static unsigned short smapi_port; /* APM control port, normally 0xB2 */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37)
static DECLARE_MUTEX(smapi_mutex);
#elif LINUX_VERSION_CODE < KERNEL_VERSION(6,4,0)
static DEFINE_SEMAPHORE(smapi_mutex);
#else
static DEFINE_SEMAPHORE(smapi_mutex, 1);
#endif
/**
* find_smapi_port - read SMAPI port from NVRAM
*/
static int __init find_smapi_port(void)
{
u16 smapi_id = 0;
unsigned short port = 0;
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
smapi_id = CMOS_READ(0x7C);
smapi_id |= (CMOS_READ(0x7D) << 8);
spin_unlock_irqrestore(&rtc_lock, flags);
if (smapi_id != 0x5349) {
printk(KERN_ERR "SMAPI not supported (ID=0x%x)\n", smapi_id);
return -ENXIO;
}
spin_lock_irqsave(&rtc_lock, flags);
port = CMOS_READ(0x7E);
port |= (CMOS_READ(0x7F) << 8);
spin_unlock_irqrestore(&rtc_lock, flags);
if (port == 0) {
printk(KERN_ERR "unable to read SMAPI port number\n");
return -ENXIO;
}
return port;
}
/**
* smapi_request - make a SMAPI call
* @inEBX, @inECX, @inEDI, @inESI: input registers
* @outEBX, @outECX, @outEDX, @outEDI, @outESI: outputs registers
* @msg: textual error message
* Invokes the SMAPI SMBIOS with the given input and outpu args.
* All outputs are optional (can be %NULL).
* Returns 0 when successful, and a negative errno constant
* (see smapi_retcode above) upon failure.
*/
static int smapi_request(u32 inEBX, u32 inECX,
u32 inEDI, u32 inESI,
u32 *outEBX, u32 *outECX, u32 *outEDX,
u32 *outEDI, u32 *outESI, const char **msg)
{
int ret = 0;
int i;
int retries;
u8 rc;
/* Must use local vars for output regs, due to reg pressure. */
u32 tmpEAX, tmpEBX, tmpECX, tmpEDX, tmpEDI, tmpESI;
for (retries = 0; retries < SMAPI_MAX_RETRIES; ++retries) {
DPRINTK("req_in: BX=%x CX=%x DI=%x SI=%x",
inEBX, inECX, inEDI, inESI);
/* SMAPI's SMBIOS call and thinkpad_ec end up using use
* different interfaces to the same chip, so play it safe. */
ret = thinkpad_ec_lock();
if (ret)
return ret;
__asm__ __volatile__(
"movl $0x00005380,%%eax\n\t"
"movl %6,%%ebx\n\t"
"movl %7,%%ecx\n\t"
"movl %8,%%edi\n\t"
"movl %9,%%esi\n\t"
"xorl %%edx,%%edx\n\t"
"movw %10,%%dx\n\t"
"out %%al,%%dx\n\t" /* trigger SMI to SMBIOS */
"out %%al,$0x4F\n\t"
"movl %%eax,%0\n\t"
"movl %%ebx,%1\n\t"
"movl %%ecx,%2\n\t"
"movl %%edx,%3\n\t"
"movl %%edi,%4\n\t"
"movl %%esi,%5\n\t"
:"=m"(tmpEAX),
"=m"(tmpEBX),
"=m"(tmpECX),
"=m"(tmpEDX),
"=m"(tmpEDI),
"=m"(tmpESI)
:"m"(inEBX), "m"(inECX), "m"(inEDI), "m"(inESI),
"m"((u16)smapi_port)
:"%eax", "%ebx", "%ecx", "%edx", "%edi",
"%esi");
thinkpad_ec_invalidate();
thinkpad_ec_unlock();
/* Don't let the next SMAPI access happen too quickly,
* may case problems. (We're hold smapi_mutex). */
msleep(50);
if (outEBX) *outEBX = tmpEBX;
if (outECX) *outECX = tmpECX;
if (outEDX) *outEDX = tmpEDX;
if (outESI) *outESI = tmpESI;
if (outEDI) *outEDI = tmpEDI;
/* Look up error code */
rc = (tmpEAX>>8)&0xFF;
for (i = 0; smapi_retcode[i].rc != SMAPI_RETCODE_EOF &&
smapi_retcode[i].rc != rc; ++i) {}
ret = smapi_retcode[i].ret;
if (msg)
*msg = smapi_retcode[i].msg;
DPRINTK("req_out: AX=%x BX=%x CX=%x DX=%x DI=%x SI=%x r=%d",
tmpEAX, tmpEBX, tmpECX, tmpEDX, tmpEDI, tmpESI, ret);
if (ret)
TPRINTK(KERN_NOTICE, "SMAPI error: %s (func=%x)",
smapi_retcode[i].msg, inEBX);
if (ret != -EBUSY)
return ret;
}
return ret;
}
/* Convenience wrapper: discard output arguments */
static int smapi_write(u32 inEBX, u32 inECX,
u32 inEDI, u32 inESI, const char **msg)
{
return smapi_request(inEBX, inECX, inEDI, inESI,
NULL, NULL, NULL, NULL, NULL, msg);
}
/*********************************************************************
* Specific SMAPI services
* All of these functions return 0 upon success, and a negative errno
* constant (see smapi_retcode) on failure.
*/
enum thresh_type {
THRESH_STOP = 0, /* the code assumes this is 0 for brevity */
THRESH_START
};
#define THRESH_NAME(which) ((which == THRESH_START) ? "start" : "stop")
/**
* __get_real_thresh - read battery charge start/stop threshold from SMAPI
* @bat: battery number (0 or 1)
* @which: THRESH_START or THRESH_STOP
* @thresh: 1..99, 0=default 1..99, 0=default (pass this as-is to SMAPI)
* @outEDI: some additional state that needs to be preserved, meaning unknown
* @outESI: some additional state that needs to be preserved, meaning unknown
*/
static int __get_real_thresh(int bat, enum thresh_type which, int *thresh,
u32 *outEDI, u32 *outESI)
{
u32 ebx = (which == THRESH_START) ? SMAPI_GET_THRESH_START
: SMAPI_GET_THRESH_STOP;
u32 ecx = (bat+1)<<8;
const char *msg;
int ret = smapi_request(ebx, ecx, 0, 0, NULL,
&ecx, NULL, outEDI, outESI, &msg);
if (ret) {
TPRINTK(KERN_NOTICE, "cannot get %s_thresh of bat=%d: %s",
THRESH_NAME(which), bat, msg);
return ret;
}
if (!(ecx&0x00000100)) {
TPRINTK(KERN_NOTICE, "cannot get %s_thresh of bat=%d: ecx=0%x",
THRESH_NAME(which), bat, ecx);
return -EIO;
}
if (thresh)
*thresh = ecx&0xFF;
return 0;
}
/**
* get_real_thresh - read battery charge start/stop threshold from SMAPI
* @bat: battery number (0 or 1)
* @which: THRESH_START or THRESH_STOP
* @thresh: 1..99, 0=default (passes as-is to SMAPI)
*/
static int get_real_thresh(int bat, enum thresh_type which, int *thresh)
{
return __get_real_thresh(bat, which, thresh, NULL, NULL);
}
/**
* set_real_thresh - write battery start/top charge threshold to SMAPI
* @bat: battery number (0 or 1)
* @which: THRESH_START or THRESH_STOP
* @thresh: 1..99, 0=default (passes as-is to SMAPI)
*/
static int set_real_thresh(int bat, enum thresh_type which, int thresh)
{
u32 ebx = (which == THRESH_START) ? SMAPI_SET_THRESH_START
: SMAPI_SET_THRESH_STOP;
u32 ecx = ((bat+1)<<8) + thresh;
u32 getDI, getSI;
const char *msg;
int ret;
/* verify read before writing */
ret = __get_real_thresh(bat, which, NULL, &getDI, &getSI);
if (ret)
return ret;
ret = smapi_write(ebx, ecx, getDI, getSI, &msg);
if (ret)
TPRINTK(KERN_NOTICE, "set %s to %d for bat=%d failed: %s",
THRESH_NAME(which), thresh, bat, msg);
else
TPRINTK(KERN_INFO, "set %s to %d for bat=%d",
THRESH_NAME(which), thresh, bat);
return ret;
}
/**
* __get_inhibit_charge_minutes - get inhibit charge period from SMAPI
* @bat: battery number (0 or 1)
* @minutes: period in minutes (1..65535 minutes, 0=disabled)
* @outECX: some additional state that needs to be preserved, meaning unknown
* Note that @minutes is the originally set value, it does not count down.
*/
static int __get_inhibit_charge_minutes(int bat, int *minutes, u32 *outECX)
{
u32 ecx = (bat+1)<<8;
u32 esi;
const char *msg;
int ret = smapi_request(SMAPI_GET_INHIBIT_CHARGE, ecx, 0, 0,
NULL, &ecx, NULL, NULL, &esi, &msg);
if (ret) {
TPRINTK(KERN_NOTICE, "failed for bat=%d: %s", bat, msg);
return ret;
}
if (!(ecx&0x0100)) {
TPRINTK(KERN_NOTICE, "bad ecx=0x%x for bat=%d", ecx, bat);
return -EIO;
}
if (minutes)
*minutes = (ecx&0x0001)?esi:0;
if (outECX)
*outECX = ecx;
return 0;
}
/**
* get_inhibit_charge_minutes - get inhibit charge period from SMAPI
* @bat: battery number (0 or 1)
* @minutes: period in minutes (1..65535 minutes, 0=disabled)
* Note that @minutes is the originally set value, it does not count down.
*/
static int get_inhibit_charge_minutes(int bat, int *minutes)
{
return __get_inhibit_charge_minutes(bat, minutes, NULL);
}
/**
* set_inhibit_charge_minutes - write inhibit charge period to SMAPI
* @bat: battery number (0 or 1)
* @minutes: period in minutes (1..65535 minutes, 0=disabled)
*/
static int set_inhibit_charge_minutes(int bat, int minutes)
{
u32 ecx;
const char *msg;
int ret;
/* verify read before writing */
ret = __get_inhibit_charge_minutes(bat, NULL, &ecx);
if (ret)
return ret;
ecx = ((bat+1)<<8) | (ecx&0x00FE) | (minutes > 0 ? 0x0001 : 0x0000);
if (minutes > 0xFFFF)
minutes = 0xFFFF;
ret = smapi_write(SMAPI_SET_INHIBIT_CHARGE, ecx, 0, minutes, &msg);
if (ret)
TPRINTK(KERN_NOTICE,
"set to %d failed for bat=%d: %s", minutes, bat, msg);
else
TPRINTK(KERN_INFO, "set to %d for bat=%d\n", minutes, bat);
return ret;
}
/**
* get_force_discharge - get status of forced discharging from SMAPI
* @bat: battery number (0 or 1)
* @enabled: 1 if forced discharged is enabled, 0 if not
*/
static int get_force_discharge(int bat, int *enabled)
{
u32 ecx = (bat+1)<<8;
const char *msg;
int ret = smapi_request(SMAPI_GET_FORCE_DISCHARGE, ecx, 0, 0,
NULL, &ecx, NULL, NULL, NULL, &msg);
if (ret) {
TPRINTK(KERN_NOTICE, "failed for bat=%d: %s", bat, msg);
return ret;
}
*enabled = (!(ecx&0x00000100) && (ecx&0x00000001))?1:0;
return 0;
}
/**
* set_force_discharge - write status of forced discharging to SMAPI
* @bat: battery number (0 or 1)
* @enabled: 1 if forced discharged is enabled, 0 if not
*/
static int set_force_discharge(int bat, int enabled)
{
u32 ecx = (bat+1)<<8;
const char *msg;
int ret = smapi_request(SMAPI_GET_FORCE_DISCHARGE, ecx, 0, 0,
NULL, &ecx, NULL, NULL, NULL, &msg);
if (ret) {
TPRINTK(KERN_NOTICE, "get failed for bat=%d: %s", bat, msg);
return ret;
}
if (ecx&0x00000100) {
TPRINTK(KERN_NOTICE, "cannot force discharge bat=%d", bat);
return -EIO;
}
ecx = ((bat+1)<<8) | (ecx&0x000000FA) | (enabled?0x00000001:0);
ret = smapi_write(SMAPI_SET_FORCE_DISCHARGE, ecx, 0, 0, &msg);
if (ret)
TPRINTK(KERN_NOTICE, "set to %d failed for bat=%d: %s",
enabled, bat, msg);
else
TPRINTK(KERN_INFO, "set to %d for bat=%d", enabled, bat);
return ret;
}
/*********************************************************************
* Wrappers to threshold-related SMAPI functions, which handle default
* thresholds and related quirks.
*/
/* Minimum, default and minimum difference for battery charging thresholds: */
#define MIN_THRESH_DELTA 4 /* Min delta between start and stop thresh */
#define MIN_THRESH_START 2
#define MAX_THRESH_START (100-MIN_THRESH_DELTA)
#define MIN_THRESH_STOP (MIN_THRESH_START + MIN_THRESH_DELTA)
#define MAX_THRESH_STOP 100
#define DEFAULT_THRESH_START MAX_THRESH_START
#define DEFAULT_THRESH_STOP MAX_THRESH_STOP
/* The GUI of IBM's Battery Maximizer seems to show a start threshold that
* is 1 more than the value we set/get via SMAPI. Since the threshold is
* maintained across reboot, this can be confusing. So we kludge our
* interface for interoperability: */
#define BATMAX_FIX 1
/* Get charge start/stop threshold (1..100),
* substituting default values if needed and applying BATMAT_FIX. */
static int get_thresh(int bat, enum thresh_type which, int *thresh)
{
int ret = get_real_thresh(bat, which, thresh);
if (ret)
return ret;
if (*thresh == 0)
*thresh = (which == THRESH_START) ? DEFAULT_THRESH_START
: DEFAULT_THRESH_STOP;
else if (which == THRESH_START)
*thresh += BATMAX_FIX;
return 0;
}
/* Set charge start/stop threshold (1..100),
* substituting default values if needed and applying BATMAT_FIX. */
static int set_thresh(int bat, enum thresh_type which, int thresh)
{
if (which == THRESH_STOP && thresh == DEFAULT_THRESH_STOP)
thresh = 0; /* 100 is out of range, but default means 100 */
if (which == THRESH_START)
thresh -= BATMAX_FIX;
return set_real_thresh(bat, which, thresh);
}
/*********************************************************************
* ThinkPad embedded controller readout and basic functions
*/
/**
* read_tp_ec_row - read data row from the ThinkPad embedded controller
* @arg0: EC command code
* @bat: battery number, 0 or 1
* @j: the byte value to be used for "junk" (unused) input/outputs
* @dataval: result vector
*/
static int read_tp_ec_row(u8 arg0, int bat, u8 j, u8 *dataval)
{
int ret;
const struct thinkpad_ec_row args = { .mask = 0xFFFF,
.val = {arg0, j,j,j,j,j,j,j,j,j,j,j,j,j,j, (u8)bat} };
struct thinkpad_ec_row data = { .mask = 0xFFFF };
ret = thinkpad_ec_lock();
if (ret)
return ret;
ret = thinkpad_ec_read_row(&args, &data);
thinkpad_ec_unlock();
memcpy(dataval, &data.val, TP_CONTROLLER_ROW_LEN);
return ret;
}
/**
* power_device_present - check for presence of battery or AC power
* @bat: 0 for battery 0, 1 for battery 1, otherwise AC power
* Returns 1 if present, 0 if not present, negative if error.
*/
static int power_device_present(int bat)
{
u8 row[TP_CONTROLLER_ROW_LEN];
u8 test;
int ret = read_tp_ec_row(1, bat, 0, row);
if (ret)
return ret;
switch (bat) {
case 0: test = 0x40; break; /* battery 0 */
case 1: test = 0x20; break; /* battery 1 */
default: test = 0x80; /* AC power */
}
return (row[0] & test) ? 1 : 0;
}
/**
* bat_has_status - check if battery can report detailed status
* @bat: 0 for battery 0, 1 for battery 1
* Returns 1 if yes, 0 if no, negative if error.
*/
static int bat_has_status(int bat)
{
u8 row[TP_CONTROLLER_ROW_LEN];
int ret = read_tp_ec_row(1, bat, 0, row);
if (ret)
return ret;
if ((row[0] & (bat?0x20:0x40)) == 0) /* no battery */
return 0;
if ((row[1] & (0x60)) == 0) /* no status */
return 0;
return 1;
}
/**
* get_tp_ec_bat_16 - read a 16-bit value from EC battery status data
* @arg0: first argument to EC
* @off: offset in row returned from EC
* @bat: battery (0 or 1)
* @val: the 16-bit value obtained
* Returns nonzero on error.
*/
static int get_tp_ec_bat_16(u8 arg0, int offset, int bat, u16 *val)
{
u8 row[TP_CONTROLLER_ROW_LEN];
int ret;
if (bat_has_status(bat) != 1)
return -ENXIO;
ret = read_tp_ec_row(arg0, bat, 0, row);
if (ret)
return ret;
*val = *(u16 *)(row+offset);
return 0;
}
/*********************************************************************
* sysfs attributes for batteries -
* definitions and helper functions
*/
/* A custom device attribute struct which holds a battery number */
struct bat_device_attribute {
struct device_attribute dev_attr;
int bat;
};
/**
* attr_get_bat - get the battery to which the attribute belongs
*/
static int attr_get_bat(struct device_attribute *attr)
{
return container_of(attr, struct bat_device_attribute, dev_attr)->bat;
}
/**
* show_tp_ec_bat_u16 - show an unsigned 16-bit battery attribute
* @arg0: specified 1st argument of EC raw to read
* @offset: byte offset in EC raw data
* @mul: correction factor to multiply by
* @na_msg: string to output is value not available (0xFFFFFFFF)
* @attr: battery attribute
* @buf: output buffer
* The 16-bit value is read from the EC, treated as unsigned,
* transformed as x->mul*x, and printed to the buffer.
* If the value is 0xFFFFFFFF and na_msg!=%NULL, na_msg is printed instead.
*/
static ssize_t show_tp_ec_bat_u16(u8 arg0, int offset, int mul,
const char *na_msg,
struct device_attribute *attr, char *buf)
{
u16 val;
int ret = get_tp_ec_bat_16(arg0, offset, attr_get_bat(attr), &val);
if (ret)
return ret;
if (na_msg && val == 0xFFFF)
return sprintf(buf, "%s\n", na_msg);
else
return sprintf(buf, "%u\n", mul*(unsigned int)val);
}
/**
* show_tp_ec_bat_s16 - show an signed 16-bit battery attribute
* @arg0: specified 1st argument of EC raw to read
* @offset: byte offset in EC raw data
* @mul: correction factor to multiply by
* @add: correction term to add after multiplication
* @attr: battery attribute
* @buf: output buffer
* The 16-bit value is read from the EC, treated as signed,
* transformed as x->mul*x+add, and printed to the buffer.
*/
static ssize_t show_tp_ec_bat_s16(u8 arg0, int offset, int mul, int add,
struct device_attribute *attr, char *buf)
{
u16 val;
int ret = get_tp_ec_bat_16(arg0, offset, attr_get_bat(attr), &val);
if (ret)
return ret;
return sprintf(buf, "%d\n", mul*(s16)val+add);
}
/**
* show_tp_ec_bat_str - show a string from EC battery status data
* @arg0: specified 1st argument of EC raw to read
* @offset: byte offset in EC raw data
* @maxlen: maximum string length
* @attr: battery attribute
* @buf: output buffer
*/
static ssize_t show_tp_ec_bat_str(u8 arg0, int offset, int maxlen,
struct device_attribute *attr, char *buf)
{
int bat = attr_get_bat(attr);
u8 row[TP_CONTROLLER_ROW_LEN];
int ret;
if (bat_has_status(bat) != 1)
return -ENXIO;
ret = read_tp_ec_row(arg0, bat, 0, row);
if (ret)
return ret;
strncpy(buf, (char *)row+offset, maxlen);
buf[maxlen] = 0;
strcat(buf, "\n");
return strlen(buf);
}
/**
* show_tp_ec_bat_power - show a power readout from EC battery status data
* @arg0: specified 1st argument of EC raw to read
* @offV: byte offset of voltage in EC raw data
* @offI: byte offset of current in EC raw data
* @attr: battery attribute
* @buf: output buffer
* Computes the power as current*voltage from the two given readout offsets.
*/
static ssize_t show_tp_ec_bat_power(u8 arg0, int offV, int offI,
struct device_attribute *attr, char *buf)
{
u8 row[TP_CONTROLLER_ROW_LEN];
int milliamp, millivolt, ret;
int bat = attr_get_bat(attr);
if (bat_has_status(bat) != 1)
return -ENXIO;
ret = read_tp_ec_row(1, bat, 0, row);
if (ret)
return ret;
millivolt = *(u16 *)(row+offV);
milliamp = *(s16 *)(row+offI);
return sprintf(buf, "%d\n", milliamp*millivolt/1000); /* units: mW */
}
/**
* show_tp_ec_bat_date - decode and show a date from EC battery status data
* @arg0: specified 1st argument of EC raw to read
* @offset: byte offset in EC raw data
* @attr: battery attribute
* @buf: output buffer
*/
static ssize_t show_tp_ec_bat_date(u8 arg0, int offset,
struct device_attribute *attr, char *buf)
{
u8 row[TP_CONTROLLER_ROW_LEN];
u16 v;
int ret;
int day, month, year;
int bat = attr_get_bat(attr);
if (bat_has_status(bat) != 1)
return -ENXIO;
ret = read_tp_ec_row(arg0, bat, 0, row);
if (ret)
return ret;
/* Decode bit-packed: v = day | (month<<5) | ((year-1980)<<9) */
v = *(u16 *)(row+offset);
day = v & 0x1F;
month = (v >> 5) & 0xF;
year = (v >> 9) + 1980;
return sprintf(buf, "%04d-%02d-%02d\n", year, month, day);
}
/*********************************************************************
* sysfs attribute I/O for batteries -
* the actual attribute show/store functions
*/
static ssize_t show_battery_start_charge_thresh(struct device *dev,
struct device_attribute *attr, char *buf)
{
int thresh;
int bat = attr_get_bat(attr);
int ret = get_thresh(bat, THRESH_START, &thresh);
if (ret)
return ret;
return sprintf(buf, "%d\n", thresh); /* units: percent */
}
static ssize_t show_battery_stop_charge_thresh(struct device *dev,
struct device_attribute *attr, char *buf)
{
int thresh;
int bat = attr_get_bat(attr);
int ret = get_thresh(bat, THRESH_STOP, &thresh);
if (ret)
return ret;
return sprintf(buf, "%d\n", thresh); /* units: percent */
}
/**
* store_battery_start_charge_thresh - store battery_start_charge_thresh attr
* Since this is a kernel<->user interface, we ensure a valid state for
* the hardware. We do this by clamping the requested threshold to the
* valid range and, if necessary, moving the other threshold so that
* it's MIN_THRESH_DELTA away from this one.
*/
static ssize_t store_battery_start_charge_thresh(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int thresh, other_thresh, ret;
int bat = attr_get_bat(attr);
if (sscanf(buf, "%d", &thresh) != 1 || thresh < 1 || thresh > 100)
return -EINVAL;
if (thresh < MIN_THRESH_START) /* clamp up to MIN_THRESH_START */
thresh = MIN_THRESH_START;
if (thresh > MAX_THRESH_START) /* clamp down to MAX_THRESH_START */
thresh = MAX_THRESH_START;
down(&smapi_mutex);
ret = get_thresh(bat, THRESH_STOP, &other_thresh);
if (ret != -EOPNOTSUPP && ret != -ENXIO) {
if (ret) /* other threshold is set? */
goto out;
ret = get_real_thresh(bat, THRESH_START, NULL);
if (ret) /* this threshold is set? */
goto out;
if (other_thresh < thresh+MIN_THRESH_DELTA) {
/* move other thresh to keep it above this one */
ret = set_thresh(bat, THRESH_STOP,
thresh+MIN_THRESH_DELTA);
if (ret)
goto out;
}
}
ret = set_thresh(bat, THRESH_START, thresh);
out:
up(&smapi_mutex);
return count;
}
/**
* store_battery_stop_charge_thresh - store battery_stop_charge_thresh attr
* Since this is a kernel<->user interface, we ensure a valid state for
* the hardware. We do this by clamping the requested threshold to the
* valid range and, if necessary, moving the other threshold so that
* it's MIN_THRESH_DELTA away from this one.
*/
static ssize_t store_battery_stop_charge_thresh(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int thresh, other_thresh, ret;
int bat = attr_get_bat(attr);
if (sscanf(buf, "%d", &thresh) != 1 || thresh < 1 || thresh > 100)
return -EINVAL;
if (thresh < MIN_THRESH_STOP) /* clamp up to MIN_THRESH_STOP */
thresh = MIN_THRESH_STOP;
down(&smapi_mutex);
ret = get_thresh(bat, THRESH_START, &other_thresh);
if (ret != -EOPNOTSUPP && ret != -ENXIO) { /* other threshold exists? */
if (ret)
goto out;
/* this threshold exists? */
ret = get_real_thresh(bat, THRESH_STOP, NULL);
if (ret)
goto out;
if (other_thresh >= thresh-MIN_THRESH_DELTA) {
/* move other thresh to be below this one */
ret = set_thresh(bat, THRESH_START,
thresh-MIN_THRESH_DELTA);
if (ret)
goto out;
}
}
ret = set_thresh(bat, THRESH_STOP, thresh);
out:
up(&smapi_mutex);
return count;
}
static ssize_t show_battery_inhibit_charge_minutes(struct device *dev,
struct device_attribute *attr, char *buf)
{
int minutes;
int bat = attr_get_bat(attr);
int ret = get_inhibit_charge_minutes(bat, &minutes);
if (ret)
return ret;
return sprintf(buf, "%d\n", minutes); /* units: minutes */
}
static ssize_t store_battery_inhibit_charge_minutes(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
int minutes;
int bat = attr_get_bat(attr);
if (sscanf(buf, "%d", &minutes) != 1 || minutes < 0) {
TPRINTK(KERN_ERR, "inhibit_charge_minutes: "
"must be a non-negative integer");
return -EINVAL;
}
ret = set_inhibit_charge_minutes(bat, minutes);
if (ret)
return ret;
return count;
}
static ssize_t show_battery_force_discharge(struct device *dev,
struct device_attribute *attr, char *buf)
{
int enabled;
int bat = attr_get_bat(attr);
int ret = get_force_discharge(bat, &enabled);
if (ret)
return ret;
return sprintf(buf, "%d\n", enabled); /* type: boolean */
}
static ssize_t store_battery_force_discharge(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int ret;
int enabled;
int bat = attr_get_bat(attr);
if (sscanf(buf, "%d", &enabled) != 1 || enabled < 0 || enabled > 1)
return -EINVAL;
ret = set_force_discharge(bat, enabled);
if (ret)
return ret;
return count;
}
static ssize_t show_battery_installed(
struct device *dev, struct device_attribute *attr, char *buf)
{
int bat = attr_get_bat(attr);
int ret = power_device_present(bat);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", ret); /* type: boolean */
}
static ssize_t show_battery_state(
struct device *dev, struct device_attribute *attr, char *buf)
{
u8 row[TP_CONTROLLER_ROW_LEN];
const char *txt;
int ret;
int bat = attr_get_bat(attr);
if (bat_has_status(bat) != 1)
return sprintf(buf, "none\n");
ret = read_tp_ec_row(1, bat, 0, row);
if (ret)
return ret;
switch (row[1] & 0xf0) {
case 0xc0: txt = "idle"; break;
case 0xd0: txt = "discharging"; break;
case 0xe0: txt = "charging"; break;
default: return sprintf(buf, "unknown (0x%x)\n", row[1]);
}
return sprintf(buf, "%s\n", txt); /* type: string from fixed set */
}
static ssize_t show_battery_manufacturer(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: string. SBS spec v1.1 p34: ManufacturerName() */
return show_tp_ec_bat_str(4, 2, TP_CONTROLLER_ROW_LEN-2, attr, buf);
}
static ssize_t show_battery_model(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: string. SBS spec v1.1 p34: DeviceName() */
return show_tp_ec_bat_str(5, 2, TP_CONTROLLER_ROW_LEN-2, attr, buf);
}
static ssize_t show_battery_barcoding(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: string */
return show_tp_ec_bat_str(7, 2, TP_CONTROLLER_ROW_LEN-2, attr, buf);
}
static ssize_t show_battery_chemistry(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: string. SBS spec v1.1 p34-35: DeviceChemistry() */
return show_tp_ec_bat_str(6, 2, 5, attr, buf);
}
static ssize_t show_battery_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV. SBS spec v1.1 p24: Voltage() */
return show_tp_ec_bat_u16(1, 6, 1, NULL, attr, buf);
}
static ssize_t show_battery_design_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV. SBS spec v1.1 p32: DesignVoltage() */
return show_tp_ec_bat_u16(3, 4, 1, NULL, attr, buf);
}
static ssize_t show_battery_charging_max_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV. SBS spec v1.1 p37,39: ChargingVoltage() */
return show_tp_ec_bat_u16(9, 8, 1, NULL, attr, buf);
}
static ssize_t show_battery_group0_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV */
return show_tp_ec_bat_u16(0xA, 12, 1, NULL, attr, buf);
}
static ssize_t show_battery_group1_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV */
return show_tp_ec_bat_u16(0xA, 10, 1, NULL, attr, buf);
}
static ssize_t show_battery_group2_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV */
return show_tp_ec_bat_u16(0xA, 8, 1, NULL, attr, buf);
}
static ssize_t show_battery_group3_voltage(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mV */
return show_tp_ec_bat_u16(0xA, 6, 1, NULL, attr, buf);
}
static ssize_t show_battery_current_now(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mA. SBS spec v1.1 p24: Current() */
return show_tp_ec_bat_s16(1, 8, 1, 0, attr, buf);
}
static ssize_t show_battery_current_avg(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mA. SBS spec v1.1 p24: AverageCurrent() */
return show_tp_ec_bat_s16(1, 10, 1, 0, attr, buf);
}
static ssize_t show_battery_charging_max_current(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mA. SBS spec v1.1 p36,38: ChargingCurrent() */
return show_tp_ec_bat_s16(9, 6, 1, 0, attr, buf);
}
static ssize_t show_battery_power_now(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mW. SBS spec v1.1: Voltage()*Current() */
return show_tp_ec_bat_power(1, 6, 8, attr, buf);
}
static ssize_t show_battery_power_avg(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mW. SBS spec v1.1: Voltage()*AverageCurrent() */
return show_tp_ec_bat_power(1, 6, 10, attr, buf);
}
static ssize_t show_battery_remaining_percent(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: percent. SBS spec v1.1 p25: RelativeStateOfCharge() */
return show_tp_ec_bat_u16(1, 12, 1, NULL, attr, buf);
}
static ssize_t show_battery_remaining_percent_error(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: percent. SBS spec v1.1 p25: MaxError() */
return show_tp_ec_bat_u16(9, 4, 1, NULL, attr, buf);
}
static ssize_t show_battery_remaining_charging_time(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: minutes. SBS spec v1.1 p27: AverageTimeToFull() */
return show_tp_ec_bat_u16(2, 8, 1, "not_charging", attr, buf);
}
static ssize_t show_battery_remaining_running_time(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: minutes. SBS spec v1.1 p27: RunTimeToEmpty() */
return show_tp_ec_bat_u16(2, 6, 1, "not_discharging", attr, buf);
}
static ssize_t show_battery_remaining_running_time_now(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: minutes. SBS spec v1.1 p27: RunTimeToEmpty() */
return show_tp_ec_bat_u16(2, 4, 1, "not_discharging", attr, buf);
}
static ssize_t show_battery_remaining_capacity(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mWh. SBS spec v1.1 p26. */
return show_tp_ec_bat_u16(1, 14, 10, "", attr, buf);
}
static ssize_t show_battery_last_full_capacity(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mWh. SBS spec v1.1 p26: FullChargeCapacity() */
return show_tp_ec_bat_u16(2, 2, 10, "", attr, buf);
}
static ssize_t show_battery_design_capacity(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: mWh. SBS spec v1.1 p32: DesignCapacity() */
return show_tp_ec_bat_u16(3, 2, 10, "", attr, buf);
}
static ssize_t show_battery_cycle_count(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: ordinal. SBS spec v1.1 p32: CycleCount() */
return show_tp_ec_bat_u16(2, 12, 1, "", attr, buf);
}
static ssize_t show_battery_temperature(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* units: millicelsius. SBS spec v1.1: Temperature()*10 */
return show_tp_ec_bat_s16(1, 4, 100, -273100, attr, buf);
}
static ssize_t show_battery_serial(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: int. SBS spec v1.1 p34: SerialNumber() */
return show_tp_ec_bat_u16(3, 10, 1, "", attr, buf);
}
static ssize_t show_battery_manufacture_date(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: YYYY-MM-DD. SBS spec v1.1 p34: ManufactureDate() */
return show_tp_ec_bat_date(3, 8, attr, buf);
}
static ssize_t show_battery_first_use_date(
struct device *dev, struct device_attribute *attr, char *buf)
{
/* type: YYYY-MM-DD */
return show_tp_ec_bat_date(8, 2, attr, buf);
}
/**
* show_battery_dump - show the battery's dump attribute
* The dump attribute gives a hex dump of all EC readouts related to a
* battery. Some of the enumerated values don't really exist (i.e., the
* EC function just leaves them untouched); we use a kludge to detect and
* denote these.
*/
#define MIN_DUMP_ARG0 0x00
#define MAX_DUMP_ARG0 0x0a /* 0x0b is useful too but hangs old EC firmware */
static ssize_t show_battery_dump(
struct device *dev, struct device_attribute *attr, char *buf)
{
int i;
char *p = buf;
int bat = attr_get_bat(attr);
u8 arg0; /* first argument to EC */
u8 rowa[TP_CONTROLLER_ROW_LEN],
rowb[TP_CONTROLLER_ROW_LEN];
const u8 junka = 0xAA,
junkb = 0x55; /* junk values for testing changes */
int ret;
for (arg0 = MIN_DUMP_ARG0; arg0 <= MAX_DUMP_ARG0; ++arg0) {
if ((p-buf) > PAGE_SIZE-TP_CONTROLLER_ROW_LEN*5)
return -ENOMEM; /* don't overflow sysfs buf */
/* Read raw twice with different junk values,
* to detect unused output bytes which are left unchaged: */
ret = read_tp_ec_row(arg0, bat, junka, rowa);
if (ret)
return ret;
ret = read_tp_ec_row(arg0, bat, junkb, rowb);
if (ret)
return ret;
for (i = 0; i < TP_CONTROLLER_ROW_LEN; i++) {
if (rowa[i] == junka && rowb[i] == junkb)
p += sprintf(p, "-- "); /* unused by EC */
else
p += sprintf(p, "%02x ", rowa[i]);
}
p += sprintf(p, "\n");
}
return p-buf;
}
/*********************************************************************
* sysfs attribute I/O, other than batteries
*/
static ssize_t show_ac_connected(
struct device *dev, struct device_attribute *attr, char *buf)
{
int ret = power_device_present(0xFF);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", ret); /* type: boolean */
}
/*********************************************************************
* The the "smapi_request" sysfs attribute executes a raw SMAPI call.
* You write to make a request and read to get the result. The state
* is saved globally rather than per fd (sysfs limitation), so
* simultaenous requests may get each other's results! So this is for
* development and debugging only.
*/
#define MAX_SMAPI_ATTR_ANSWER_LEN 128
static char smapi_attr_answer[MAX_SMAPI_ATTR_ANSWER_LEN] = "";
static ssize_t show_smapi_request(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret = snprintf(buf, PAGE_SIZE, "%s", smapi_attr_answer);
smapi_attr_answer[0] = '\0';
return ret;
}
static ssize_t store_smapi_request(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int inEBX, inECX, inEDI, inESI;
u32 outEBX, outECX, outEDX, outEDI, outESI;
const char *msg;
int ret;
if (sscanf(buf, "%x %x %x %x", &inEBX, &inECX, &inEDI, &inESI) != 4) {
smapi_attr_answer[0] = '\0';
return -EINVAL;
}
ret = smapi_request(
inEBX, inECX, inEDI, inESI,
&outEBX, &outECX, &outEDX, &outEDI, &outESI, &msg);
snprintf(smapi_attr_answer, MAX_SMAPI_ATTR_ANSWER_LEN,
"%x %x %x %x %x %d '%s'\n",
(unsigned int)outEBX, (unsigned int)outECX,
(unsigned int)outEDX, (unsigned int)outEDI,
(unsigned int)outESI, ret, msg);
if (ret)
return ret;
else
return count;
}
/*********************************************************************
* Power management: the embedded controller forgets the battery
* thresholds when the system is suspended to disk and unplugged from
* AC and battery, so we restore it upon resume.
*/
static int saved_threshs[4] = {-1, -1, -1, -1}; /* -1 = don't know */
static int tp_suspend(struct platform_device *dev, pm_message_t state)
{
int restore = (state.event == PM_EVENT_HIBERNATE ||
state.event == PM_EVENT_FREEZE);
if (!restore || get_real_thresh(0, THRESH_STOP , &saved_threshs[0]))
saved_threshs[0] = -1;
if (!restore || get_real_thresh(0, THRESH_START, &saved_threshs[1]))
saved_threshs[1] = -1;
if (!restore || get_real_thresh(1, THRESH_STOP , &saved_threshs[2]))
saved_threshs[2] = -1;
if (!restore || get_real_thresh(1, THRESH_START, &saved_threshs[3]))
saved_threshs[3] = -1;
DPRINTK("suspend saved: %d %d %d %d", saved_threshs[0],
saved_threshs[1], saved_threshs[2], saved_threshs[3]);
return 0;
}
static int tp_resume(struct platform_device *dev)
{
DPRINTK("resume restoring: %d %d %d %d", saved_threshs[0],
saved_threshs[1], saved_threshs[2], saved_threshs[3]);
if (saved_threshs[0] >= 0)
set_real_thresh(0, THRESH_STOP , saved_threshs[0]);
if (saved_threshs[1] >= 0)
set_real_thresh(0, THRESH_START, saved_threshs[1]);
if (saved_threshs[2] >= 0)
set_real_thresh(1, THRESH_STOP , saved_threshs[2]);
if (saved_threshs[3] >= 0)
set_real_thresh(1, THRESH_START, saved_threshs[3]);
return 0;
}
/*********************************************************************
* Driver model
*/
static struct platform_driver tp_driver = {
.suspend = tp_suspend,
.resume = tp_resume,
.driver = {
.name = "smapi",
.owner = THIS_MODULE
},
};
/*********************************************************************
* Sysfs device model
*/
/* Attributes in /sys/devices/platform/smapi/ */
static DEVICE_ATTR(ac_connected, 0444, show_ac_connected, NULL);
static DEVICE_ATTR(smapi_request, 0600, show_smapi_request,
store_smapi_request);
static struct attribute *tp_root_attributes[] = {
&dev_attr_ac_connected.attr,
&dev_attr_smapi_request.attr,
NULL
};
static struct attribute_group tp_root_attribute_group = {
.attrs = tp_root_attributes
};
/* Attributes under /sys/devices/platform/smapi/BAT{0,1}/ :
* Every attribute needs to be defined (i.e., statically allocated) for
* each battery, and then referenced in the attribute list of each battery.
* We use preprocessor voodoo to avoid duplicating the list of attributes 4
* times. The preprocessor output is just normal sysfs attributes code.
*/
/**
* FOREACH_BAT_ATTR - invoke the given macros on all our battery attributes
* @_BAT: battery number (0 or 1)
* @_ATTR_RW: macro to invoke for each read/write attribute
* @_ATTR_R: macro to invoke for each read-only attribute
*/
#define FOREACH_BAT_ATTR(_BAT, _ATTR_RW, _ATTR_R) \
_ATTR_RW(_BAT, start_charge_thresh) \
_ATTR_RW(_BAT, stop_charge_thresh) \
_ATTR_RW(_BAT, inhibit_charge_minutes) \
_ATTR_RW(_BAT, force_discharge) \
_ATTR_R(_BAT, installed) \
_ATTR_R(_BAT, state) \
_ATTR_R(_BAT, manufacturer) \
_ATTR_R(_BAT, model) \
_ATTR_R(_BAT, barcoding) \
_ATTR_R(_BAT, chemistry) \
_ATTR_R(_BAT, voltage) \
_ATTR_R(_BAT, group0_voltage) \
_ATTR_R(_BAT, group1_voltage) \
_ATTR_R(_BAT, group2_voltage) \
_ATTR_R(_BAT, group3_voltage) \
_ATTR_R(_BAT, current_now) \
_ATTR_R(_BAT, current_avg) \
_ATTR_R(_BAT, charging_max_current) \
_ATTR_R(_BAT, power_now) \
_ATTR_R(_BAT, power_avg) \
_ATTR_R(_BAT, remaining_percent) \
_ATTR_R(_BAT, remaining_percent_error) \
_ATTR_R(_BAT, remaining_charging_time) \
_ATTR_R(_BAT, remaining_running_time) \
_ATTR_R(_BAT, remaining_running_time_now) \
_ATTR_R(_BAT, remaining_capacity) \
_ATTR_R(_BAT, last_full_capacity) \
_ATTR_R(_BAT, design_voltage) \
_ATTR_R(_BAT, charging_max_voltage) \
_ATTR_R(_BAT, design_capacity) \
_ATTR_R(_BAT, cycle_count) \
_ATTR_R(_BAT, temperature) \
_ATTR_R(_BAT, serial) \
_ATTR_R(_BAT, manufacture_date) \
_ATTR_R(_BAT, first_use_date) \
_ATTR_R(_BAT, dump)
/* Define several macros we will feed into FOREACH_BAT_ATTR: */
#define DEFINE_BAT_ATTR_RW(_BAT,_NAME) \
static struct bat_device_attribute dev_attr_##_NAME##_##_BAT = { \
.dev_attr = __ATTR(_NAME, 0644, show_battery_##_NAME, \
store_battery_##_NAME), \
.bat = _BAT \
};
#define DEFINE_BAT_ATTR_R(_BAT,_NAME) \
static struct bat_device_attribute dev_attr_##_NAME##_##_BAT = { \
.dev_attr = __ATTR(_NAME, 0644, show_battery_##_NAME, 0), \
.bat = _BAT \
};
#define REF_BAT_ATTR(_BAT,_NAME) \
&dev_attr_##_NAME##_##_BAT.dev_attr.attr,
/* This provide all attributes for one battery: */
#define PROVIDE_BAT_ATTRS(_BAT) \
FOREACH_BAT_ATTR(_BAT, DEFINE_BAT_ATTR_RW, DEFINE_BAT_ATTR_R) \
static struct attribute *tp_bat##_BAT##_attributes[] = { \
FOREACH_BAT_ATTR(_BAT, REF_BAT_ATTR, REF_BAT_ATTR) \
NULL \
}; \
static struct attribute_group tp_bat##_BAT##_attribute_group = { \
.name = "BAT" #_BAT, \
.attrs = tp_bat##_BAT##_attributes \
};
/* Finally genereate the attributes: */
PROVIDE_BAT_ATTRS(0)
PROVIDE_BAT_ATTRS(1)
/* List of attribute groups */
static struct attribute_group *attr_groups[] = {
&tp_root_attribute_group,
&tp_bat0_attribute_group,
&tp_bat1_attribute_group,
NULL
};
/*********************************************************************
* Init and cleanup
*/
static struct attribute_group **next_attr_group; /* next to register */
static int __init tp_init(void)
{
int ret;
printk(KERN_INFO "tp_smapi " TP_VERSION " loading...\n");
ret = find_smapi_port();
if (ret < 0)
goto err;
else
smapi_port = ret;
if (!request_region(smapi_port, 1, "smapi")) {
printk(KERN_ERR "tp_smapi cannot claim port 0x%x\n",
smapi_port);
ret = -ENXIO;
goto err;
}
if (!request_region(SMAPI_PORT2, 1, "smapi")) {
printk(KERN_ERR "tp_smapi cannot claim port 0x%x\n",
SMAPI_PORT2);
ret = -ENXIO;
goto err_port1;
}
ret = platform_driver_register(&tp_driver);
if (ret)
goto err_port2;
pdev = platform_device_alloc("smapi", -1);
if (!pdev) {
ret = -ENOMEM;
goto err_driver;
}
ret = platform_device_add(pdev);
if (ret)
goto err_device_free;
for (next_attr_group = attr_groups; *next_attr_group;
++next_attr_group) {
ret = sysfs_create_group(&pdev->dev.kobj, *next_attr_group);
if (ret)
goto err_attr;
}
printk(KERN_INFO "tp_smapi successfully loaded (smapi_port=0x%x).\n",
smapi_port);
return 0;
err_attr:
while (--next_attr_group >= attr_groups)
sysfs_remove_group(&pdev->dev.kobj, *next_attr_group);
platform_device_unregister(pdev);
err_device_free:
platform_device_put(pdev);
err_driver:
platform_driver_unregister(&tp_driver);
err_port2:
release_region(SMAPI_PORT2, 1);
err_port1:
release_region(smapi_port, 1);
err:
printk(KERN_ERR "tp_smapi init failed (ret=%d)!\n", ret);
return ret;
}
static void __exit tp_exit(void)
{
while (next_attr_group && --next_attr_group >= attr_groups)
sysfs_remove_group(&pdev->dev.kobj, *next_attr_group);
platform_device_unregister(pdev);
platform_driver_unregister(&tp_driver);
release_region(SMAPI_PORT2, 1);
if (smapi_port)
release_region(smapi_port, 1);
printk(KERN_INFO "tp_smapi unloaded.\n");
}
module_init(tp_init);
module_exit(tp_exit);