marian/doc/layer.md

242 lines
13 KiB
Markdown
Raw Normal View History

# Layers
In a typical deep neural network, highest-level blocks, which perform different kinds of
transformations on their inputs are called layers. A layer wraps a group of nodes and performs a
specific mathematical computation, offering a shortcut for building a more complex neural network.
In Marian, for example, the `mlp::dense` layer represents a fully connected layer, which implements
the operation `output = activation(input * weight + bias)`. A dense layer in the graph can be
constructed with the following code:
```cpp
// add input node x
auto x = graph->constant({120,5}, inits::fromVector(inputData));
// construct a dense layer in the graph
auto layer1 = mlp::dense()
("prefix", "layer1") // prefix name is layer1
("dim", 5) // output dimension is 5
("activation", (int)mlp::act::tanh) // activation function is tanh
.construct(graph)->apply(x); // construct this layer in graph
// and link node x as the input
```
The options are passed to the layer using pairs of `(key, value)`, where `key` is a predefined
option, and `value` is the option value. Then `construct()` is called to create a layer instance in
the graph, and `apply()` to link the input with this layer.
Alternatively, the same layer can be created defining nodes and operations directly:
```cpp
// construct a dense layer using nodes
auto W1 = graph->param("W1", {120, 5}, inits::glorotUniform());
auto b1 = graph->param("b1", {1, 5}, inits::zeros());
auto h = tanh(affine(x, W1, b1));
```
There are four categories of layers implemented in Marian, described in the sections below.
## Convolution layer
To use a `convolution` layer, you first need to install [NVIDIA cuDNN](https://developer.nvidia.com/cudnn).
The convolution layer supported by Marian is a 2D
[convolution layer](https://en.wikipedia.org/wiki/Convolutional_neural_network#Convolutional_layers).
This layer creates a convolution kernel which is used to convolved with the input. The options that
can be passed to a `convolution` layer are the following:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
| kernel-dims | The height and width of the kernel | `std::pair<int, int>` | `None`|
| kernel-num | The number of kernel | `int` | `None` |
| paddings | The height and width of paddings | `std::pair<int, int>` | `(0,0)`|
| strides | The height and width of strides | `std::pair<int, int>` | `(1,1)` |
Example:
```cpp
// construct a convolution layer
auto conv_1 = convolution(graph) // pass graph pointer to the layer
("prefix", "conv_1") // prefix name is conv_1
("kernel-dims", std::make_pair(3,3)) // kernel is 3*3
("kernel-num", 32) // kernel no. is 32
.apply(x); // link node x as the input
```
## MLP layers
Marian offers `mlp::mlp`, which creates a
[multilayer perceptron (MLP)](https://en.wikipedia.org/wiki/Multilayer_perceptron) network.
It is a container which can stack multiple layers using `push_back()` function. There are two types
of MLP layers provided by Marian: `mlp::dense` and `mlp::output`.
The `mlp::dense` layer, as introduced before, is a fully connected layer, and it accepts the
following options:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
| dim | Output dimension | `int` | `None` |
| layer-normalization | Whether to normalise the layer output or not | `bool` | `false` |
| nematus-normalization | Whether to use Nematus layer normalisation or not | `bool` | `false` |
| activation | Activation function | `int` | `mlp::act::linear` |
The available activation functions for mlp are `mlp::act::linear`, `mlp::act::tanh`,
`mlp::act::sigmoid`, `mlp::act::ReLU`, `mlp::act::LeakyReLU`, `mlp::act::PReLU`, and
`mlp::act::swish`.
Example:
```cpp
// construct a mlp::dense layer
auto dense_layer = mlp::dense()
("prefix", "dense_layer") // prefix name is dense_layer
("dim", 3) // output dimension is 3
("activation", (int)mlp::act::sigmoid) // activation function is sigmoid
.construct(graph)->apply(x); // construct this layer in graph and link node x as the input
```
The `mlp::output` layer is used, as the name suggests, to construct an output layer. You can tie
embedding layers to `mlp::output` layer using `tieTransposed()`, or set shortlisted words using
`setShortlist()`. The general options of `mlp::output` layer are listed below:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
| dim | Output dimension | `int` | `None` |
| vocab | File path to the factored vocabulary | `std::string` | `None` |
| output-omit-bias | Whether this layer has a bias parameter | `bool` | `true` |
| lemma-dim-emb | Re-embedding dimension of lemma in factors, must be used with `vocab` option | `int` | `0` |
| output-approx-knn | Parameters for LSH-based output approximation, i.e., `k` (the first element) and `nbit` (the second element) | `std::vector<int>` | None |
Example:
```cpp
// construct a mlp::output layer
auto last = mlp::output()
("prefix", "last") // prefix name is dense_layer
("dim", 5); // output dimension is 5
```
Finally, an example showing how to create a `mlp::mlp` network containing multiple layers:
```cpp
// construct a mlp::mlp network
auto mlp_networks = mlp::mlp() // construct a mpl container
.push_back(mlp::dense() // construct a dense layer
("prefix", "dense") // prefix name is dense
("dim", 5) // dimension is 5
("activation", (int)mlp::act::tanh))// activation function is tanh
.push_back(mlp::output() // construct a output layer
("dim", 5)) // dimension is 5
("prefix", "mlp_network") // prefix name is mlp_network
.construct(graph); // construct this mlp layers in graph
```
## RNN layers
Marian offers `rnn::rnn` for creating a [recurrent neural network
(RNN)](https://en.wikipedia.org/wiki/Recurrent_neural_network) network. Just like `mlp::mlp`,
`rnn::rnn` is a container which can stack multiple layers using `push_back()` function. Unlike mlp
layers, Marian only provides cell-level APIs to construct RNN. RNN cells only process a single
timestep instead of the whole batches of input sequences. There are two types of rnn layers provided
by Marian: `rnn::cell` and `rnn::stacked_cell`.
The `rnn::cell` is the base component of RNN and `rnn::stacked_cell` is a stack of `rnn::cell`. The
few options of `rnn::cell` layer are listed below:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| type | Type of RNN cell | `std::string` | `None` |
There are nine types of RNN cells provided by Marian: `gru`, `gru-nematus`, `lstm`, `mlstm`, `mgru`,
`tanh`, `relu`, `sru`, `ssru`. The general options for all RNN cells are the following:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| dimInput | Input dimension | `int` | `None` |
| dimState | Dimension of hidden state | `int` | `None` |
| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
| layer-normalization | Whether to normalise the layer output or not | `bool` | `false` |
| dropout | Dropout probability | `float` | `0` |
| transition | Whether it is a transition layer | `bool` | `false` |
| final | Whether it is an RNN final layer or hidden layer | `bool` | `false` |
```{note}
Not all the options listed above are available for all the cells. For example, `final` option is
only used for `gru` and `gru-nematus` cells.
```
Example for `rnn::cell`:
```cpp
// construct a rnn cell
auto rnn_cell = rnn::cell()
("type", "gru") // type of rnn cell is gru
("prefix", "gru_cell") // prefix name is gru_cell
("final", false); // this cell is the final layer
```
Example for `rnn::stacked_cell`:
```cpp
// construct a stack of rnn cells
auto highCell = rnn::stacked_cell();
// for loop to add rnn cells into the stack
for(size_t j = 1; j <= 512; j++) {
auto paramPrefix ="cell" + std::to_string(j);
highCell.push_back(rnn::cell()("prefix", paramPrefix));
}
```
The list of available options for `rnn::rnn` layers:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| type | Type of RNN layer | `std::string` | `gru` |
| direction | RNN direction | `int` | `rnn::dir::forward` |
| dimInput | Input dimension | `int` | `None` |
| dimState | Dimension of hidden state | `int` | `None` |
| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
| layer-normalization | Whether to normalise the layer output or not | `bool` | `false` |
| nematus-normalization | Whether to use Nematus layer normalisation or not | `bool` | `false` |
| dropout | Dropout probability | `float` | `0` |
| skip | Whether to use skip connections | `bool` | `false` |
| skipFirst | Whether to use skip connections for the layer(s) with `index > 0` | `bool` | `false` |
Examples for `rnn::rnn()`:
```cpp
// construct a `rnn::rnn()` container
auto rnn_container = rnn::rnn(
"type", "gru", // type of rnn cell is gru
"prefix", "rnn_layers", // prefix name is rnn_layers
"dimInput", 10, // input dimension is 10
"dimState", 5, // dimension of hidden state is 5
"dropout", 0, // dropout probability is 0
"layer-normalization", false) // do not normalise the layer output
.push_back(rnn::cell()) // add a rnn::cell in this rnn container
.construct(graph); // construct this rnn container in graph
```
Marian provides four RNN directions in `rnn::dir` enumerator: `rnn::dir::forward`,
`rnn::dir::backward`, `rnn::dir::alternating_forward` and `rnn::dir::alternating_backward`.
For rnn::rnn(), you can use `transduce()` to map the input state to the output state.
An example for `transduce()`:
```cpp
auto output = rnn.construct(graph)->transduce(input);
```
## Embedding layer
Marian provides a shortcut to construct a regular embedding layer `embedding` for words embedding.
For `embedding` layers, there are following options available:
| Option Name | Definition | Value Type | Default Value |
| ------------- |----------------|---------------|---------------|
| dimVocab | Size of vocabulary| `int` | `None` |
| dimEmb | Size of embedding vector | `int` | `None` |
| dropout | Dropout probability | `float` | `0` |
| inference | Whether it is used for inference | `bool` | `false` |
| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
| fixed | whether this layer is fixed (not trainable) | `bool` | `false` |
| dimFactorEmb | Size of factored embedding vector | `int` | `None` |
| factorsCombine | Which strategy is chosen to combine the factor embeddings; it can be `"concat"` | `std::string` | `None` |
| vocab | File path to the factored vocabulary | `std::string` | `None` |
| embFile | Paths to the factored embedding vectors | `std::string>` | `None` |
| normalization | Whether to normalise the layer output or not | `bool` | `false` |
Example to construct an embedding layer:
```cpp
// construct an embedding layer
auto embedding_layer = embedding()
("prefix", "embedding") // prefix name is embedding
("dimVocab", 1024) // vocabulary size is 1024
("dimEmb", 512) // size of embedding vector is 512
.construct(graph); // construct this embedding layer in graph
```