faster set/get

This commit is contained in:
Marcin Junczys-Dowmunt 2016-09-14 23:17:53 +02:00
parent 5439e52abf
commit 0be1b07308
4 changed files with 34 additions and 162 deletions

View File

@ -60,8 +60,8 @@ class SGD {
std::vector<float> y(yData_.begin() + startId * numClasses_,
yData_.begin() + endId * numClasses_);
xt.Load(x);
yt.Load(y);
xt.set(x);
yt.set(y);
}
void UpdateModel() {

View File

@ -5,91 +5,12 @@ using namespace std;
namespace marian {
inline std::vector<std::string> Tokenize(const std::string& str,
const std::string& delimiters = " \t")
{
std::vector<std::string> tokens;
// Skip delimiters at beginning.
std::string::size_type lastPos = str.find_first_not_of(delimiters, 0);
// Find first "non-delimiter".
std::string::size_type pos = str.find_first_of(delimiters, lastPos);
while (std::string::npos != pos || std::string::npos != lastPos) {
// Found a token, add it to the vector.
tokens.push_back(str.substr(lastPos, pos - lastPos));
// Skip delimiters. Note the "not_of"
lastPos = str.find_first_not_of(delimiters, pos);
// Find next "non-delimiter"
pos = str.find_first_of(delimiters, lastPos);
}
return tokens;
}
//! convert string to variable of type T. Used to reading floats, int etc from files
template<typename T>
T Scan(const std::string &input)
{
std::stringstream stream(input);
T ret;
stream >> ret;
return ret;
}
//! convert vectors of string to vectors of type T variables
template<typename T>
inline std::vector<T> Scan(const std::vector< std::string > &input)
{
std::vector<T> output(input.size());
for (size_t i = 0 ; i < input.size() ; i++) {
output[i] = Scan<T>( input[i] );
}
return output;
}
//! tokenise input string to vector of type T
template<typename T>
inline std::vector<T> Tokenize( const std::string &input
, const std::string& delimiters = " \t")
{
std::vector<std::string> stringVector = Tokenize(input, delimiters);
return Scan<T>( stringVector );
}
void Tensor::Load(const std::string &path)
{
size_t totSize = GetTotalSize(pimpl_->shape());
cerr << "totSize=" << totSize << endl;
std::vector<float> hostData(totSize);
fstream strm;
strm.open(path.c_str());
string line;
size_t ind = 0;
while ( getline (strm, line) )
{
cerr << line << '\n';
vector<Float> toks = Tokenize<Float>(line);
for (size_t i = 0; i < toks.size(); ++i) {
hostData[ind] = toks[i];
}
++ind;
}
strm.close();
Load(hostData.begin(), hostData.begin());
}
void Tensor::Load(const std::vector<float>& data)
void Tensor::set(const std::vector<float>& data)
{
pimpl_->set(data.begin(), data.end());
}
void Tensor::Load(const std::vector<float>::const_iterator &begin, const std::vector<float>::const_iterator &end)
void Tensor::set(const std::vector<float>::const_iterator &begin, const std::vector<float>::const_iterator &end)
{
pimpl_->set(begin, end);
}

View File

@ -12,30 +12,6 @@
namespace marian {
//struct Handles {
// //cudnnHandle_t cudnnHandle;
// //cublasHandle_t cublasHandle;
//
// //cudnnOpTensorDescriptor_t add;
//
// Handles() {
// cudnnCreate(&cudnnHandle);
// cublasCreate(&cublasHandle);
// cudnnCreateOpTensorDescriptor(&add);
// cudnnSetOpTensorDescriptor(add, CUDNN_OP_TENSOR_ADD, CUDNN_DATA_FLOAT, CUDNN_NOT_PROPAGATE_NAN);
// }
//
// ~Handles() {
// cudnnDestroy(cudnnHandle);
// cublasDestroy(cublasHandle);
// cudnnDestroyOpTensorDescriptor(add);
// }
//};
//
//const Handles handles;
// typedef std::vector<int> Shape;
inline std::string Debug(const Shape &shape)
{
std::stringstream strm;
@ -59,18 +35,9 @@ class TensorImpl {
private:
Shape shape_;
thrust::device_vector<Float> data_;
//cudnnTensorDescriptor_t desc_;
size_t tno_;
static size_t tensorCounter;
//cudnnDataType_t dataType() {
// switch(sizeof(Float)) {
// case 2: return CUDNN_DATA_HALF;
// case 8: return CUDNN_DATA_DOUBLE;
// default: return CUDNN_DATA_FLOAT;
// }
//}
public:
typedef Float value_type;
@ -89,30 +56,11 @@ class TensorImpl {
int size = GetTotalSize(shape_);
data_.resize(size, value);
//cudnnCreateTensorDescriptor(&desc_);
//switch (shape_.size()) {
// case 1:
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
// shape_[0], 1, 1, 1); break;
// case 2:
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
// shape_[0], shape_[1], 1, 1); break;
// case 3:
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
// shape_[0], shape_[1], shape_[2], 1); break;
// case 4:
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
// shape_[0], shape_[1], shape_[2], shape_[3]); break;
//}
}
TensorImpl(const TensorImpl&) = delete;
TensorImpl(TensorImpl&&) = delete;
~TensorImpl() {
//cudnnDestroyTensorDescriptor(desc_);
}
value_type operator[](size_t i) const {
return data_[i];
}
@ -145,10 +93,6 @@ class TensorImpl {
return thrust::raw_pointer_cast(data_.data());
}
//cudnnTensorDescriptor_t desc() const {
// return desc_;
//}
size_t id() const {
return tno_;
}
@ -158,12 +102,13 @@ class TensorImpl {
}
void set(const std::vector<float>::const_iterator &begin, const std::vector<float>::const_iterator &end) {
size_t totSize = GetTotalSize(shape());
//std::cerr << "tensor size=" << totSize << " vector size=" << values.size() << std::endl;
//assert(totSize == values.size());
thrust::copy(begin, end, data_.begin());
}
void get(std::vector<float>::iterator out) {
thrust::copy(data_.begin(), data_.end(), out);
}
std::string Debug() const
{
std::stringstream strm;
@ -245,10 +190,6 @@ class Tensor {
return pimpl_->shape();
}
//cudnnTensorDescriptor_t desc() const {
// return pimpl_->desc();
//}
void set(value_type value) {
pimpl_->set(value);
}
@ -273,10 +214,17 @@ class Tensor {
std::cerr << std::endl;
}
void Load(const std::string &path);
void Load(const std::vector<float>& data);
void Load(const std::vector<float>::const_iterator &begin, const std::vector<float>::const_iterator &end);
//void Load(const std::string &path);
void set(const std::vector<float>& data);
void set(const std::vector<float>::const_iterator &begin, const std::vector<float>::const_iterator &end);
void get(std::vector<float>::iterator out) {
pimpl_->get(out);
}
void get(std::vector<float> &vout) {
pimpl_->get(vout.begin());
}
};
}

View File

@ -31,21 +31,21 @@ int main(int argc, char** argv) {
converter.Load("bias", bData, bShape);
auto initW = [wData](Tensor t) {
thrust::copy(wData.begin(), wData.end(), t.begin());
t.set(wData.begin(), wData.end());
};
auto initB = [bData](Tensor t) {
thrust::copy(bData.begin(), bData.end(), t.begin());
t.set(bData.begin(), bData.end());
};
std::cerr << "\tDone." << std::endl;
Expr x = input(shape={whatevs, IMAGE_SIZE}, name="X");
Expr y = input(shape={whatevs, LABEL_SIZE}, name="Y");
auto x = input(shape={whatevs, IMAGE_SIZE}, name="X");
auto y = input(shape={whatevs, LABEL_SIZE}, name="Y");
Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0", init=initW);
Expr b = param(shape={1, LABEL_SIZE}, name="b0", init=initB);
auto w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0", init=initW);
auto b = param(shape={1, LABEL_SIZE}, name="b0", init=initB);
std::cerr << "Building model...";
auto predict = softmax(dot(x, w) + b,
@ -53,13 +53,13 @@ int main(int argc, char** argv) {
auto graph = -mean(sum(y * log(predict), axis=1),
axis=0, name="cost");
std::cerr << "\tDone." << std::endl;
std::cerr << "Done." << std::endl;
Tensor xt({numofdata, IMAGE_SIZE});
xt.Load(testImages);
xt.set(testImages);
Tensor yt({numofdata, LABEL_SIZE});
yt.Load(testLabels);
yt.set(testLabels);
x = xt;
y = yt;
@ -68,6 +68,9 @@ int main(int argc, char** argv) {
auto results = predict.val();
graph.backward();
std::vector<float> resultsv(results.size());
results.get(resultsv);
std::cerr << b.grad().Debug() << std::endl;
size_t acc = 0;
@ -76,14 +79,14 @@ int main(int argc, char** argv) {
size_t predicted = 0;
for (size_t j = 0; j < LABEL_SIZE; ++j) {
if (testLabels[i+j]) correct = j;
if (results[i + j] > results[i + predicted]) predicted = j;
if (resultsv[i + j] > resultsv[i + predicted]) predicted = j;
}
acc += (correct == predicted);
//std::cerr << "corect: " << correct << " | " << predicted << "(";
//std::cerr << correct << " | " << predicted << " ( ";
//for (size_t j = 0; j < LABEL_SIZE; ++j) {
// std::cerr << results[i+j] << " ";
// std::cerr << resultsv[i+j] << " ";
//}
//std::cerr << std::endl;
//std::cerr << ")" << std::endl;
}
std::cerr << "ACC: " << float(acc)/numofdata << std::endl;