mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-03 20:13:47 +03:00
Add test model training script
This commit is contained in:
parent
76cda34544
commit
2c39bad1d6
91
scripts/train_test_model.py
Executable file
91
scripts/train_test_model.py
Executable file
@ -0,0 +1,91 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import os
|
||||
import numpy as np
|
||||
from keras.datasets import mnist
|
||||
from keras.utils import np_utils
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense
|
||||
from keras.layers import Dropout
|
||||
|
||||
def softmax(x):
|
||||
return np.exp(x) / np.sum(np.exp(x), axis=1)[:, None]
|
||||
|
||||
|
||||
def baseline_model(pixels_count, classes_count):
|
||||
model = Sequential()
|
||||
# model.add(Dense(pixels_count, input_dim=pixels_count, init='normal', activation='relu'))
|
||||
model.add(Dense(classes_count, input_dim=pixels_count, init='normal', activation='softmax'))
|
||||
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
### Load trainset from mnist
|
||||
|
||||
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||
|
||||
### Flatten pictures into vectors
|
||||
|
||||
pixels_count = X_train.shape[1] * X_train.shape[2]
|
||||
X_train = X_train.reshape(X_train.shape[0], pixels_count).astype('float32')
|
||||
print "X shape: ", X_train.shape
|
||||
|
||||
X_test = X_test.reshape(X_test.shape[0], pixels_count).astype('float32')
|
||||
|
||||
### Normalize data to (0, 1)
|
||||
|
||||
X_train = X_train / 255
|
||||
X_test = X_test / 255
|
||||
|
||||
### Change classes to one hot encoding matrixes
|
||||
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
classes_count = y_train.shape[1]
|
||||
print "Y shape: ", y_train.shape
|
||||
|
||||
y_test = np_utils.to_categorical(y_test)
|
||||
|
||||
# Train weight matrix
|
||||
|
||||
# Build the model
|
||||
model = baseline_model(pixels_count, classes_count)
|
||||
# Fit the model
|
||||
model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=10, batch_size=200, verbose=2)
|
||||
# Final evaluation of the model
|
||||
scores = model.evaluate(X_test, y_test, verbose=0)
|
||||
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
|
||||
|
||||
### Weight and bias matrixes - we extract them from the model
|
||||
|
||||
# weights_ones = np.ones((pixels_count, classes_count))
|
||||
# print weights_ones.shape
|
||||
|
||||
weights, bias = model.get_weights()
|
||||
print weights.shape
|
||||
print bias.shape
|
||||
print bias
|
||||
|
||||
### We calculate lr using softmax!
|
||||
|
||||
dot_out = np.dot(X_train, weights)
|
||||
print "dot_out shape: ", dot_out.shape
|
||||
# print dot_out[:10]
|
||||
|
||||
add_out = np.add(bias, dot_out)
|
||||
print "add_out shape: ", add_out.shape
|
||||
# print add_out[:10]
|
||||
|
||||
# lr = np.around(softmax(add_out), decimals = 6)
|
||||
lr = softmax(add_out)
|
||||
print "lr shape: ", lr.shape
|
||||
# print lr[:10]
|
||||
# print np.count_nonzero(lr)i
|
||||
|
||||
### Save model to npz files
|
||||
if not os.path.exists("test_model"):
|
||||
os.makedirs("test_model")
|
||||
np.savez("test_model/model", weights = weights, bias = bias)
|
||||
|
||||
print "Model saved! Check test_model directory"
|
Loading…
Reference in New Issue
Block a user