mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-04 14:04:24 +03:00
Merge branch 'master' of github.com:emjotde/Marian
This commit is contained in:
commit
4579f059a0
122
src/cudnn.cu
122
src/cudnn.cu
@ -11,47 +11,11 @@
|
||||
|
||||
using namespace marian;
|
||||
|
||||
void CudnnSoftmaxForward(cudnnHandle_t cudnnHandle,
|
||||
Tensor out, Tensor in) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxForward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_LOG,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
in.cudnn(),
|
||||
in.data(),
|
||||
&beta,
|
||||
out.cudnn(),
|
||||
out.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
void CudnnSoftmaxBackward(cudnnHandle_t cudnnHandle,
|
||||
Tensor out, Tensor in) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxBackward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_LOG,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
in.cudnn(),
|
||||
in.data(),
|
||||
out.cudnn(),
|
||||
out.data(),
|
||||
&beta,
|
||||
out.cudnn(),
|
||||
out.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
int main() {
|
||||
cudnnHandle_t cudnnHandle;
|
||||
cudnnCreate(&cudnnHandle);
|
||||
|
||||
int d = 10;
|
||||
int d = 4;
|
||||
|
||||
Tensor in({d, d});
|
||||
Tensor out({d, d});
|
||||
Tensor grad({d, d});
|
||||
Tensor adj({d, d}, 1);
|
||||
|
||||
auto f = uniform(-5, 5);
|
||||
@ -62,88 +26,28 @@ int main() {
|
||||
{
|
||||
boost::timer::cpu_timer timer;
|
||||
for(int i = 0; i < 1; ++i) {
|
||||
CudnnSoftmaxForward(cudnnHandle, out, in);
|
||||
std::cerr << out.Debug() << std::endl;
|
||||
CudnnSoftmaxBackward(cudnnHandle, grad, in);
|
||||
Tensor grad({d, d});
|
||||
CudnnLogSoftmax(out, in);
|
||||
CudnnLogSoftmaxGrad(grad, adj, in);
|
||||
std::cerr << in.Debug() << std::endl;
|
||||
std::cerr << adj.Debug() << std::endl;
|
||||
std::cerr << grad.Debug() << std::endl;
|
||||
}
|
||||
|
||||
std::cerr << timer.format(5, "%ws") << std::endl;
|
||||
}
|
||||
|
||||
{
|
||||
boost::timer::cpu_timer timer;
|
||||
for(int i = 0; i < 1; ++i) {
|
||||
Element(_1 = _2, out, in);
|
||||
Softmax(&out);
|
||||
std::cerr << out.Debug() << std::endl;
|
||||
SoftmaxGrad(grad, adj, out);
|
||||
std::cerr << grad.Debug() << std::endl;
|
||||
Tensor grad({d, d});
|
||||
CudnnLogSoftmax(out, in);
|
||||
LogSoftmaxGrad(grad, adj, in);
|
||||
std::cerr << in.Debug() << std::endl;
|
||||
std::cerr << adj.Debug() << std::endl;
|
||||
std::cerr << grad.Debug() << std::endl;
|
||||
}
|
||||
//std::cerr << grad.Debug() << std::endl;
|
||||
std::cerr << timer.format(5, "%ws") << std::endl;
|
||||
}
|
||||
|
||||
|
||||
//// Copy back
|
||||
//float *result = (float *) malloc(m * c * sizeof(float));
|
||||
//cudaMemcpy(result, d_softmaxData, m * c * sizeof(float), cudaMemcpyDeviceToHost);
|
||||
//cudaDeviceSynchronize();
|
||||
//
|
||||
//// Log
|
||||
//printf("SOFTMAX:\n");
|
||||
//printMatrix(result, c, m);
|
||||
//
|
||||
//// Try backward
|
||||
//cudnnTensorDescriptor_t diffTensorDesc;
|
||||
//cudnnCreateTensorDescriptor(&diffTensorDesc);
|
||||
//cudnnSetTensor4dDescriptor(diffTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT,
|
||||
// m, c, 1, 1);
|
||||
//
|
||||
//float *d_gradData;
|
||||
//cudaMalloc((void**) &d_gradData, m * c * sizeof(float));
|
||||
//
|
||||
//float *diffData = makeDiffData(m, c);
|
||||
//float *d_diffData;
|
||||
//cudaMalloc((void**) &d_diffData, m * c * sizeof(float));
|
||||
//cudaMemcpy(d_diffData, diffData, m * c * sizeof(float), cudaMemcpyHostToDevice);
|
||||
//cudaDeviceSynchronize();
|
||||
//
|
||||
//cudnnSoftmaxBackward(cudnnHandle,
|
||||
// CUDNN_SOFTMAX_ACCURATE,
|
||||
// CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
// &alpha,
|
||||
// srcTensorDesc,
|
||||
// d_softmaxData,
|
||||
// diffTensorDesc,
|
||||
// d_diffData,
|
||||
// &beta,
|
||||
// sftTensorDesc,
|
||||
// d_gradData);
|
||||
//cudaDeviceSynchronize();
|
||||
//
|
||||
//// Copy back
|
||||
//float *result_backward = (float *) malloc(m * c * sizeof(float));
|
||||
//cudaMemcpy(result_backward, d_gradData, m * c * sizeof(float), cudaMemcpyDeviceToHost);
|
||||
//cudaDeviceSynchronize();
|
||||
//
|
||||
//// Log
|
||||
//printf("GRADIENT:\n");
|
||||
//printMatrix(result_backward, c, m);
|
||||
//
|
||||
//// Destruct
|
||||
//free(result);
|
||||
//free(diffData);
|
||||
//free(result_backward);
|
||||
//free(fcLayer);
|
||||
//
|
||||
//cudnnDestroyTensorDescriptor(srcTensorDesc);
|
||||
//cudnnDestroyTensorDescriptor(sftTensorDesc);
|
||||
//cudnnDestroyTensorDescriptor(diffTensorDesc);
|
||||
//cudaFree(d_fcLayer);
|
||||
//cudaFree(d_softmaxData);
|
||||
//cudaFree(d_gradData);
|
||||
//cudaFree(d_diffData);
|
||||
cudnnDestroy(cudnnHandle);
|
||||
|
||||
return 0;
|
||||
}
|
@ -58,6 +58,10 @@ Expr softmax(Expr a) {
|
||||
return Expr(a.graph(), new SoftmaxNodeOp(a));
|
||||
}
|
||||
|
||||
Expr logsoftmax(Expr a) {
|
||||
return Expr(a.graph(), new LogSoftmaxNodeOp(a));
|
||||
}
|
||||
|
||||
Expr argmax(Expr a) {
|
||||
return Expr(a.graph(), new ArgmaxNodeOp(a));
|
||||
}
|
||||
|
@ -106,6 +106,8 @@ Expr softmax_slow(Expr a, Args ...args) {
|
||||
|
||||
Expr softmax(Expr a);
|
||||
|
||||
Expr logsoftmax(Expr a);
|
||||
|
||||
Expr argmax(Expr a);
|
||||
|
||||
// inefficient
|
||||
|
@ -45,8 +45,8 @@ ExpressionGraph build_graph(const std::vector<int>& dims) {
|
||||
auto scores = named(dot(layers.back(), weights.back()) + biases.back(),
|
||||
"scores");
|
||||
|
||||
auto cost = mean(cross_entropy(scores, y), axis=0);
|
||||
//auto cost = mean(-sum(y * log(softmax(scores)), axis=1), axis=0);
|
||||
//auto cost = mean(cross_entropy(scores, y), axis=0);
|
||||
auto cost = mean(-sum(y * logsoftmax(scores), axis=1), axis=0);
|
||||
auto costreg = named(
|
||||
cost, "cost"
|
||||
);
|
||||
@ -115,7 +115,7 @@ int main(int argc, char** argv) {
|
||||
std::cerr << "Done." << std::endl;
|
||||
|
||||
ExpressionGraph g = build_graph({IMAGE_SIZE, 2048, 2048, LABEL_SIZE});
|
||||
std::cout << g.graphviz() << std::endl;
|
||||
//std::cout << g.graphviz() << std::endl;
|
||||
|
||||
Tensor xt({BATCH_SIZE, IMAGE_SIZE});
|
||||
Tensor yt({BATCH_SIZE, LABEL_SIZE});
|
||||
|
@ -239,10 +239,10 @@ struct CrossEntropyNodeOp : public BinaryNodeOp {
|
||||
return shape1;
|
||||
}
|
||||
|
||||
// We're caching the softmax probabilities here because we'll need them for
|
||||
// We're caching the logsoftmax probabilities here because we'll need them for
|
||||
// the backward computation.
|
||||
void forward() {
|
||||
// C = -dot(B, log(softmax(A))).
|
||||
// C = -dot(B, logsoftmax(A)).
|
||||
if (probs_) {
|
||||
probs_.set(0.0);
|
||||
} else {
|
||||
|
@ -22,7 +22,6 @@ struct UnaryNodeOp : public Node {
|
||||
|
||||
// use df/dx to calc grad
|
||||
backward();
|
||||
//cerr << "orig a_->val()=" << a_->val().Debug() << endl;
|
||||
//cerr << "orig a_->grad()=" << a_->grad().Debug() << endl;
|
||||
|
||||
calc_numeric_grad(delta, a_->val(), a_->grad(), preCalcGradA);
|
||||
@ -167,10 +166,7 @@ struct SoftmaxNodeOp : public UnaryNodeOp {
|
||||
: UnaryNodeOp(args...) { }
|
||||
|
||||
void forward() {
|
||||
// B = softmax(A).
|
||||
thrust::copy(a_->val().begin(), a_->val().end(), val_.begin());
|
||||
// Safe version of softmax.
|
||||
Softmax(&val_);
|
||||
CudnnSoftmax(val_, a_->val());
|
||||
}
|
||||
|
||||
void backward() {
|
||||
@ -196,6 +192,33 @@ struct SoftmaxNodeOp : public UnaryNodeOp {
|
||||
};
|
||||
};
|
||||
|
||||
struct LogSoftmaxNodeOp : public UnaryNodeOp {
|
||||
template <typename ...Args>
|
||||
LogSoftmaxNodeOp(Args ...args)
|
||||
: UnaryNodeOp(args...) { }
|
||||
|
||||
void forward() {
|
||||
CudnnLogSoftmax(val_, a_->val());
|
||||
}
|
||||
|
||||
void backward() {
|
||||
// Based on the description for softmax, we have logsoftmax:
|
||||
// J * dy = dy - avg*1
|
||||
// where avg = exp(p)'*dy and p is the softmax output (probabilities).
|
||||
CudnnLogSoftmaxGrad(a_->grad(), adj_, val_);
|
||||
//LogSoftmaxGrad(a_->grad(), adj_, val_);
|
||||
}
|
||||
|
||||
virtual std::string graphviz() {
|
||||
std::stringstream ss;
|
||||
ss << "\"" << this << "\" [shape=\"box\", label=" << label("log-softmax")
|
||||
<< ", style=\"filled\", fillcolor=\"yellow\"]" << std::endl;
|
||||
ss << "\"" << a_ << "\" -> \"" << this << "\"" << std::endl << std::endl;
|
||||
return ss.str();
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
struct ArgmaxNodeOp : public UnaryNodeOp {
|
||||
template <typename ...Args>
|
||||
ArgmaxNodeOp(ChainPtr a, Args ...args)
|
||||
@ -285,8 +308,6 @@ struct NegNodeOp : public UnaryNodeOp {
|
||||
|
||||
void backward() {
|
||||
Element(_1 += -_2, a_->grad(), adj_);
|
||||
|
||||
//std::cerr << "a_->grad=" << a_->grad().Debug() << std::endl;
|
||||
}
|
||||
|
||||
virtual std::string graphviz() {
|
||||
|
@ -39,6 +39,166 @@ static cudnnHandle_t create_handle_dnn() {
|
||||
cublasHandle_t cublasHandle = create_handle();
|
||||
cudnnHandle_t cudnnHandle = create_handle_dnn();
|
||||
|
||||
void CudnnSoftmax(Tensor out, Tensor in) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxForward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_ACCURATE,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
in.cudnn(),
|
||||
in.data(),
|
||||
&beta,
|
||||
out.cudnn(),
|
||||
out.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
void CudnnLogSoftmax(Tensor out, Tensor in) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxForward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_LOG,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
in.cudnn(),
|
||||
in.data(),
|
||||
&beta,
|
||||
out.cudnn(),
|
||||
out.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
void CudnnSoftmaxGrad(Tensor grad, Tensor adj, Tensor val) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxBackward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_ACCURATE,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
val.cudnn(),
|
||||
val.data(),
|
||||
adj.cudnn(),
|
||||
adj.data(),
|
||||
&beta,
|
||||
grad.cudnn(),
|
||||
grad.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
void CudnnLogSoftmaxGrad(Tensor grad, Tensor adj, Tensor val) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxBackward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_LOG,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
val.cudnn(),
|
||||
val.data(),
|
||||
adj.cudnn(),
|
||||
adj.data(),
|
||||
&beta,
|
||||
grad.cudnn(),
|
||||
grad.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
__global__ void gSubtractMax(float* out, size_t rows, size_t cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
if (j < rows) {
|
||||
extern __shared__ float _share[];
|
||||
float* _max = _share + blockDim.x;
|
||||
float* sp = out + j * cols;
|
||||
_max[threadIdx.x] = sp[threadIdx.x];
|
||||
for(int tid = 1; tid < cols; tid += blockDim.x) {
|
||||
int id = tid + threadIdx.x;
|
||||
if (id < cols) {
|
||||
if (sp[id] > _max[threadIdx.x]) _max[threadIdx.x] = sp[id];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
int len = blockDim.x;
|
||||
while(len != 1) {
|
||||
__syncthreads();
|
||||
int skip = (len + 1) >> 1;
|
||||
if (threadIdx.x < (len >> 1)) {
|
||||
if (_max[threadIdx.x + skip] > _max[threadIdx.x]) {
|
||||
_max[threadIdx.x] = _max[threadIdx.x + skip];
|
||||
}
|
||||
}
|
||||
len = (len + 1) >> 1;
|
||||
}
|
||||
__syncthreads();
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x){
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols)
|
||||
sp[id] -= _max[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SubtractMax(Tensor* Out) {
|
||||
// Out is a m-by-k matrix, passed as input.
|
||||
// The max element of each row of Out is computed and subtracted from Out.
|
||||
// Out is both input and output.
|
||||
size_t m = Out->shape()[0];
|
||||
size_t k = Out->shape()[1];
|
||||
|
||||
int blocks = std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = std::min(MAX_THREADS, (int) k);
|
||||
int shared = sizeof(float) * threads * 2;
|
||||
gSubtractMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
__global__ void gSoftMax(float* softMaxP, size_t rows, size_t cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
if(j < rows) {
|
||||
extern __shared__ float _share[];
|
||||
float* _sum = _share + blockDim.x;
|
||||
float* sp = softMaxP + j * cols;
|
||||
_sum[threadIdx.x] = 0.0;
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x) {
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols) {
|
||||
sp[id] = __expf(sp[id]);
|
||||
_sum[threadIdx.x] += sp[id];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
int len = blockDim.x;
|
||||
while(len != 1) {
|
||||
__syncthreads();
|
||||
int skip = (len + 1) >> 1;
|
||||
if(threadIdx.x < (len >> 1))
|
||||
_sum[threadIdx.x] += _sum[threadIdx.x + skip];
|
||||
len = (len + 1) >> 1;
|
||||
}
|
||||
__syncthreads();
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x){
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols)
|
||||
sp[id] /= _sum[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Softmax(Tensor* Out) {
|
||||
size_t m = Out->shape()[0];
|
||||
size_t k = Out->shape()[1];
|
||||
|
||||
int blocks = std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = std::min(MAX_THREADS, (int) k);
|
||||
int shared = sizeof(float) * threads * 2;
|
||||
// Subtract the max rowwise for numerical stability (safe softmax).
|
||||
gSubtractMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
gSoftMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
|
||||
__global__ void gSoftmaxGrad(float* grad, const float* adj, const float* val,
|
||||
const int rows, const int cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
@ -107,7 +267,7 @@ __global__ void gLogSoftmaxGrad(float* grad, const float* adj, const float* val,
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x) {
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols) {
|
||||
_sum[threadIdx.x] += expf(valRow[id]) * adjRow[id]; // exp becaus we chached logsoftmax
|
||||
_sum[threadIdx.x] += expf(valRow[id]) * adjRow[id]; // exp because we chached logsoftmax
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
@ -146,158 +306,6 @@ void LogSoftmaxGrad(Tensor grad, Tensor adj, Tensor val) {
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
__global__ void gSubtractMax(float* out, size_t rows, size_t cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
if (j < rows) {
|
||||
extern __shared__ float _share[];
|
||||
float* _max = _share + blockDim.x;
|
||||
float* sp = out + j * cols;
|
||||
_max[threadIdx.x] = sp[threadIdx.x];
|
||||
for(int tid = 1; tid < cols; tid += blockDim.x) {
|
||||
int id = tid + threadIdx.x;
|
||||
if (id < cols) {
|
||||
if (sp[id] > _max[threadIdx.x]) _max[threadIdx.x] = sp[id];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
int len = blockDim.x;
|
||||
while(len != 1) {
|
||||
__syncthreads();
|
||||
int skip = (len + 1) >> 1;
|
||||
if (threadIdx.x < (len >> 1)) {
|
||||
if (_max[threadIdx.x + skip] > _max[threadIdx.x]) {
|
||||
_max[threadIdx.x] = _max[threadIdx.x + skip];
|
||||
}
|
||||
}
|
||||
len = (len + 1) >> 1;
|
||||
}
|
||||
__syncthreads();
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x){
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols)
|
||||
sp[id] -= _max[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SubtractMax(Tensor* Out) {
|
||||
// Out is a m-by-k matrix, passed as input.
|
||||
// The max element of each row of Out is computed and subtracted from Out.
|
||||
// Out is both input and output.
|
||||
size_t m = Out->shape()[0];
|
||||
size_t k = Out->shape()[1];
|
||||
|
||||
int blocks = std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = std::min(MAX_THREADS, (int) k);
|
||||
int shared = sizeof(float) * threads * 2;
|
||||
gSubtractMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
|
||||
//template <class T>
|
||||
//__global__ void gClipNorm(T t) {
|
||||
// int rows = t.rows();
|
||||
// int cols = t.cols();
|
||||
//
|
||||
// for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
// int i = bid + blockIdx.x;
|
||||
// if(i < rows) {
|
||||
// extern __shared__ float _share[];
|
||||
// float* _sum = _share + blockDim.x;
|
||||
// _sum[threadIdx.x] = 0.0;
|
||||
// for(int tid = 0; tid < cols; tid += blockDim.x) {
|
||||
// int j = tid + threadIdx.x;
|
||||
// if(j < cols)
|
||||
// _sum[threadIdx.x] += powf(t(i,j), 2.0f);
|
||||
// }
|
||||
// __syncthreads();
|
||||
// int len = blockDim.x;
|
||||
// while(len != 1) {
|
||||
// __syncthreads();
|
||||
// int skip = (len + 1) >> 1;
|
||||
// if(threadIdx.x < (len >> 1))
|
||||
// _sum[threadIdx.x] += _sum[threadIdx.x + skip];
|
||||
// len = (len + 1) >> 1;
|
||||
// }
|
||||
// __syncthreads();
|
||||
// float total = 0;
|
||||
// if(j == 0) {
|
||||
// for()
|
||||
// }
|
||||
// for(int tid = 0; tid < cols; tid += blockDim.x){
|
||||
// int j = tid + threadIdx.x;
|
||||
// if(j < cols)
|
||||
// sp[j] /= _sum[0];
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//void ClipNorm(Tensor out, float threshold);
|
||||
// size_t m = out.shape()[0];
|
||||
// size_t k = out.shape()[1];
|
||||
//
|
||||
// int blocks = std::min(MAX_BLOCKS, (int) m);
|
||||
// int threads = std::min(MAX_THREADS, (int) k);
|
||||
// int shared = sizeof(float) * threads * 2;
|
||||
// gClipNorm<<<blocks, threads, shared>>>(out.gpu());
|
||||
// cudaStreamSynchronize(0);
|
||||
//}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
__global__ void gSoftMax(float* softMaxP, size_t rows, size_t cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
if(j < rows) {
|
||||
extern __shared__ float _share[];
|
||||
float* _sum = _share + blockDim.x;
|
||||
float* sp = softMaxP + j * cols;
|
||||
_sum[threadIdx.x] = 0.0;
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x) {
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols) {
|
||||
sp[id] = __expf(sp[id]);
|
||||
_sum[threadIdx.x] += sp[id];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
int len = blockDim.x;
|
||||
while(len != 1) {
|
||||
__syncthreads();
|
||||
int skip = (len + 1) >> 1;
|
||||
if(threadIdx.x < (len >> 1))
|
||||
_sum[threadIdx.x] += _sum[threadIdx.x + skip];
|
||||
len = (len + 1) >> 1;
|
||||
}
|
||||
__syncthreads();
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x){
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols)
|
||||
sp[id] /= _sum[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Softmax(Tensor* Out) {
|
||||
size_t m = Out->shape()[0];
|
||||
size_t k = Out->shape()[1];
|
||||
|
||||
int blocks = std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = std::min(MAX_THREADS, (int) k);
|
||||
int shared = sizeof(float) * threads * 2;
|
||||
// Subtract the max rowwise for numerical stability (safe softmax).
|
||||
gSubtractMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
gSoftMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
__global__ void gArgmax(float *out, const float *data, size_t rows, size_t cols) {
|
||||
size_t row = blockIdx.x;
|
||||
@ -382,58 +390,5 @@ Tensor SumRowwise(const Tensor A, Tensor result) {
|
||||
return temp;
|
||||
}
|
||||
|
||||
// @TODO: replace this by something else when broadcast elementwise operations
|
||||
// are ready.
|
||||
__global__ void gScaleRowwise(Float* out, const Float* scalingFactors,
|
||||
size_t rows, size_t cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
if(j < rows) {
|
||||
Float* rowOut = out + j * cols;
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x) {
|
||||
int i = tid + threadIdx.x;
|
||||
if(i < cols) rowOut[i] *= scalingFactors[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ScaleRowwise(Tensor Out, const Tensor ScalingFactors) {
|
||||
Float* d_out = Out.data();
|
||||
const Float* d_in = ScalingFactors.data();
|
||||
int blocks = std::min(MAX_BLOCKS, (int)Out.shape()[0]);
|
||||
int threads = std::min(MAX_THREADS, (int)Out.shape()[1]);
|
||||
gScaleRowwise<<<blocks, threads>>>(d_out, d_in,
|
||||
Out.shape()[0], Out.shape()[1]);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
void CudnnSoftmax(Tensor out, Tensor in) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxForward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_ACCURATE,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
in.cudnn(),
|
||||
in.data(),
|
||||
&beta,
|
||||
out.cudnn(),
|
||||
out.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
void CudnnLogSoftmax(Tensor out, Tensor in) {
|
||||
float alpha = 1, beta = 0;
|
||||
cudnnSoftmaxForward(cudnnHandle,
|
||||
CUDNN_SOFTMAX_LOG,
|
||||
CUDNN_SOFTMAX_MODE_CHANNEL,
|
||||
&alpha,
|
||||
in.cudnn(),
|
||||
in.data(),
|
||||
&beta,
|
||||
out.cudnn(),
|
||||
out.data());
|
||||
cudaDeviceSynchronize();
|
||||
}
|
||||
|
||||
}
|
@ -161,7 +161,10 @@ void SoftmaxGrad(Tensor grad, Tensor adj, Tensor val);
|
||||
void LogSoftmaxGrad(Tensor grad, Tensor adj, Tensor val);
|
||||
|
||||
void CudnnSoftmax(Tensor out, Tensor in);
|
||||
void CudnnSoftmaxGrad(Tensor grad, Tensor adj, Tensor val);
|
||||
|
||||
void CudnnLogSoftmax(Tensor out, Tensor in);
|
||||
void CudnnLogSoftmaxGrad(Tensor grad, Tensor adj, Tensor val);
|
||||
|
||||
void Argmax(Tensor* Out, const Tensor* In);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user