mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-04 14:04:24 +03:00
move gArgMax to tensor_operators. Write ArgMax() with tensors
This commit is contained in:
parent
a4111bf1fe
commit
5173e9e550
@ -1,5 +1,7 @@
|
||||
#include "tensor_operators.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace marian {
|
||||
|
||||
__global__ void gSubtractMean(float* out, float* weights,
|
||||
@ -53,6 +55,7 @@ void SubtractMean(Tensor* Out, Tensor &Weights) {
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
__global__ void gSoftMax(float* softMaxP, size_t rows, size_t cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
@ -97,6 +100,35 @@ void Softmax(Tensor* Out) {
|
||||
gSoftMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
///////////////////////////////////////////////////////
|
||||
__global__ void gArgMax(float *out, const float *data, size_t rows, size_t cols) {
|
||||
size_t row = blockIdx.x;
|
||||
size_t startInd = row * cols;
|
||||
float maxScore = -99999;
|
||||
size_t maxInd;
|
||||
for (size_t col = 0; col < cols; ++col) {
|
||||
size_t ind = startInd + col;
|
||||
float score = data[ind];
|
||||
if (score > maxScore) {
|
||||
maxScore = score;
|
||||
maxInd = col;
|
||||
}
|
||||
}
|
||||
out[row] = maxInd;
|
||||
}
|
||||
|
||||
void Argmax(Tensor* Out, const Tensor* In) {
|
||||
size_t m = In->shape()[0];
|
||||
size_t k = In->shape()[1];
|
||||
|
||||
int blocks = m; //std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = k; //std::min(MAX_THREADS, (int) k);
|
||||
//int shared = sizeof(float) * threads * 2;
|
||||
gArgMax<<<blocks, threads>>>(Out->data(), In->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
|
||||
Tensor Prod(cublasHandle_t handle, Tensor C, const Tensor A, const Tensor B,
|
||||
bool transA, bool transB, Float beta) {
|
||||
|
@ -151,6 +151,10 @@ __global__ void gSoftMax(float* softMaxP, size_t rows, size_t cols);
|
||||
|
||||
void Softmax(Tensor* Out);
|
||||
|
||||
__global__ void gArgMax(float *out, const float *data, size_t rows, size_t cols);
|
||||
|
||||
void Argmax(Tensor* Out, const Tensor* In);
|
||||
|
||||
Tensor Prod(cublasHandle_t handle, Tensor C, const Tensor A, const Tensor B,
|
||||
bool transA, bool transB, Float beta);
|
||||
|
||||
|
16
src/test.cu
16
src/test.cu
@ -8,22 +8,6 @@
|
||||
using namespace std;
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
__global__ void gArgMax(float *out, const float *data, size_t rows, size_t cols) {
|
||||
size_t row = blockIdx.x;
|
||||
size_t startInd = row * cols;
|
||||
float maxScore = -99999;
|
||||
size_t maxInd = -1;
|
||||
for (size_t col = 0; col < cols; ++col) {
|
||||
size_t ind = startInd + col;
|
||||
float score = data[ind];
|
||||
if (score > maxScore) {
|
||||
maxScore = score;
|
||||
maxInd = col;
|
||||
}
|
||||
}
|
||||
out[row] = maxInd;
|
||||
}
|
||||
|
||||
string output(const std::vector<float> &vec)
|
||||
{
|
||||
stringstream strm;
|
||||
|
Loading…
Reference in New Issue
Block a user