mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-04 14:04:24 +03:00
resolved conflict
This commit is contained in:
commit
5439e52abf
72
scripts/train_test_model_multi.py
Executable file
72
scripts/train_test_model_multi.py
Executable file
@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import sys
|
||||
import os
|
||||
import numpy as np
|
||||
from keras.datasets import mnist
|
||||
from keras.utils import np_utils
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense
|
||||
from keras.layers import Dropout
|
||||
|
||||
def softmax(x):
|
||||
return np.exp(x) / np.sum(np.exp(x), axis=1)[:, None]
|
||||
|
||||
|
||||
def baseline_model(pixels_count, classes_count):
|
||||
model = Sequential()
|
||||
model.add(Dense(100, input_dim=pixels_count, init='normal', activation='tanh'))
|
||||
model.add(Dense(classes_count, input_dim=100, init='normal', activation='softmax'))
|
||||
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
### Load trainset from mnist
|
||||
|
||||
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
||||
|
||||
### Flatten pictures into vectors
|
||||
|
||||
pixels_count = X_train.shape[1] * X_train.shape[2]
|
||||
X_train = X_train.reshape(X_train.shape[0], pixels_count).astype('float32')
|
||||
print "X shape: ", X_train.shape
|
||||
|
||||
X_test = X_test.reshape(X_test.shape[0], pixels_count).astype('float32')
|
||||
|
||||
### Normalize data to (0, 1)
|
||||
|
||||
X_train = X_train / 255
|
||||
X_test = X_test / 255
|
||||
|
||||
### Change classes to one hot encoding matrixes
|
||||
|
||||
y_train = np_utils.to_categorical(y_train)
|
||||
classes_count = y_train.shape[1]
|
||||
print "Y shape: ", y_train.shape
|
||||
|
||||
y_test = np_utils.to_categorical(y_test)
|
||||
|
||||
# Train weight matrix
|
||||
|
||||
# Build the model
|
||||
model = baseline_model(pixels_count, classes_count)
|
||||
# Fit the model
|
||||
model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=10, batch_size=200, verbose=2)
|
||||
# Final evaluation of the model
|
||||
scores = model.evaluate(X_test, y_test, verbose=0)
|
||||
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
|
||||
|
||||
### Weight and bias matrixes - we extract them from the model
|
||||
|
||||
# weights_ones = np.ones((pixels_count, classes_count))
|
||||
# print weights_ones.shape
|
||||
|
||||
weights1, bias1, weights2, bias2 = model.get_weights()
|
||||
### Save model to npz files
|
||||
if not os.path.exists("test_model_multi"):
|
||||
os.makedirs("test_model_multi")
|
||||
# np.savez("test_model_multi/model", *model)
|
||||
np.savez("test_model_multi/model", weights1 = weights1, bias1 = bias1, weights2 = weights2, bias2 = bias2)
|
||||
|
||||
print "Model saved! Check test_model_multi directory"
|
@ -84,8 +84,8 @@ if __name__ == "__main__":
|
||||
# print np.count_nonzero(lr)i
|
||||
|
||||
### Save model to npz files
|
||||
if not os.path.exists("test_model"):
|
||||
os.makedirs("test_model")
|
||||
np.savez("test_model/model", weights = weights, bias = bias)
|
||||
if not os.path.exists("test_model_single"):
|
||||
os.makedirs("test_model_single")
|
||||
np.savez("test_model_single/model", weights = weights, bias = bias)
|
||||
|
||||
print "Model saved! Check test_model directory"
|
||||
print "Model saved! Check test_model_single directory"
|
@ -5,4 +5,5 @@
|
||||
#include "graph_operators.h"
|
||||
#include "expressions.h"
|
||||
#include "expression_operators.h"
|
||||
#include "param_initializers.h"
|
||||
|
||||
|
34
src/param_initializers.h
Normal file
34
src/param_initializers.h
Normal file
@ -0,0 +1,34 @@
|
||||
#pragma once
|
||||
|
||||
#include <random>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <functional>
|
||||
|
||||
#include "tensor.h"
|
||||
|
||||
namespace marian {
|
||||
|
||||
void zeros(Tensor t) {
|
||||
std::vector<float> vals(t.size(), 0.0f);
|
||||
thrust::copy(vals.begin(), vals.end(), t.begin());
|
||||
}
|
||||
|
||||
void ones(Tensor t) {
|
||||
std::vector<float> vals(t.size(), 1.0f);
|
||||
thrust::copy(vals.begin(), vals.end(), t.begin());
|
||||
}
|
||||
|
||||
void randreal(Tensor t) {
|
||||
std::random_device device;
|
||||
std::default_random_engine engine(device());
|
||||
std::uniform_real_distribution<> dist(0, 1);
|
||||
auto gen = std::bind(dist, engine);
|
||||
|
||||
std::vector<float> vals(t.size());
|
||||
std::generate(begin(vals), end(vals), gen);
|
||||
|
||||
thrust::copy(vals.begin(), vals.end(), t.begin());
|
||||
}
|
||||
|
||||
} // namespace marian
|
Loading…
Reference in New Issue
Block a user