mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-04 14:04:24 +03:00
merge
This commit is contained in:
commit
5d114049cf
@ -11,14 +11,15 @@ Installation
|
||||
|
||||
Requirements:
|
||||
|
||||
* g++ with C++11
|
||||
* g++ with c++11
|
||||
* CUDA and CuDNN
|
||||
* Boost (>= 1.56)
|
||||
|
||||
Exporting some paths for CuDNN may be required (put it, for example, in your `.bashrc` file):
|
||||
|
||||
export PATH=$PATH:$HOME/.local/bin:/usr/local/cuda/bin
|
||||
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cudnn-5/lib64
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cudnn-5/lib64
|
||||
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:/usr/local/cudnn-5/lib64
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs:/usr/local/cudnn-5/lib64
|
||||
export CPATH=$CPATH:/usr/local/cudnn-5/include
|
||||
|
||||
Compilation with `cmake > 3.5`:
|
||||
|
@ -153,20 +153,6 @@ inline Expr sum(Expr a, Args ...args) {
|
||||
template <typename ...Args>
|
||||
inline Expr softmax(Expr a, Args ...args) {
|
||||
Expr e = exp(a);
|
||||
#if 0
|
||||
ChainPtr n = a.node();
|
||||
auto print_shape = [n]() -> Shape {
|
||||
std::cerr << "Shape: ";
|
||||
for (auto val : n->val().shape()) {
|
||||
std::cerr << val << " ";
|
||||
}
|
||||
std::cerr << std::endl;
|
||||
return {1,1};
|
||||
};
|
||||
using namespace keywords;
|
||||
Expr one = ones(shape={1, 1}, lazy_shape=print_shape);
|
||||
#endif
|
||||
|
||||
return e / sum(e, args...);
|
||||
}
|
||||
|
||||
|
@ -162,11 +162,10 @@ struct SoftmaxNodeOp : public UnaryNodeOp {
|
||||
// For each row, the Jacobian times vector is given by:
|
||||
// J * dy = p .* (dy - avg*1)
|
||||
// where avg = p'*dy and p is the softmax output (probabilities).
|
||||
Tensor result = adj_;
|
||||
Tensor result(adj_.shape());
|
||||
thrust::copy(adj_.begin(), adj_.end(), result.begin());
|
||||
SubtractMean(&result, val_);
|
||||
// beta set to 1.0 in gemm, C = alpha * dot(A,B) + beta * C
|
||||
// to sum gradients from different graph parts.
|
||||
Prod(a_->grad(), adj_, result, false, false, 1.0);
|
||||
Element(_1 += _2 * _3, a_->grad(), val_, result);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -10,25 +10,42 @@
|
||||
namespace marian {
|
||||
|
||||
void zeros(Tensor t) {
|
||||
std::vector<float> vals(t.size(), 0.0f);
|
||||
thrust::copy(vals.begin(), vals.end(), t.begin());
|
||||
t.set(0.f);
|
||||
}
|
||||
|
||||
void ones(Tensor t) {
|
||||
std::vector<float> vals(t.size(), 1.0f);
|
||||
thrust::copy(vals.begin(), vals.end(), t.begin());
|
||||
t.set(1.0f);
|
||||
}
|
||||
|
||||
void randreal(Tensor t) {
|
||||
template <class Distribution>
|
||||
void distribution(Tensor t, float a=0.0, float b=0.1) {
|
||||
std::random_device device;
|
||||
std::default_random_engine engine(device());
|
||||
std::uniform_real_distribution<> dist(0, 0.01);
|
||||
Distribution dist(a, b);
|
||||
auto gen = std::bind(dist, engine);
|
||||
|
||||
std::vector<float> vals(t.size());
|
||||
std::generate(begin(vals), end(vals), gen);
|
||||
|
||||
thrust::copy(vals.begin(), vals.end(), t.begin());
|
||||
t << vals;
|
||||
}
|
||||
|
||||
std::function<void(Tensor)> normal(float mean = 0.0, float std = 0.1) {
|
||||
return [mean, std](Tensor t) {
|
||||
distribution<std::normal_distribution<float>>(t, mean, std);
|
||||
};
|
||||
}
|
||||
|
||||
std::function<void(Tensor)> uniform(float a = 0.0, float b = 0.1) {
|
||||
return [a, b](Tensor t) {
|
||||
distribution<std::uniform_real_distribution<float>>(t, a, b);
|
||||
};
|
||||
}
|
||||
|
||||
std::function<void(Tensor)> from_vector(const std::vector<float>& v) {
|
||||
return [&v](Tensor t) {
|
||||
t << v;
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace marian
|
||||
|
144
src/test.cu
144
src/test.cu
@ -9,6 +9,7 @@ int main(int argc, char** argv) {
|
||||
/*auto images = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numImg);*/
|
||||
/*auto labels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numImg);*/
|
||||
|
||||
#if 1
|
||||
using namespace marian;
|
||||
using namespace keywords;
|
||||
|
||||
@ -19,7 +20,7 @@ int main(int argc, char** argv) {
|
||||
//Expr b = param(shape={1, 2}, name="b0");
|
||||
|
||||
std::cerr << "Building model...";
|
||||
auto predict = softmax(dot(x, w),
|
||||
auto predict = softmax_fast(dot(x, w),
|
||||
axis=1, name="pred");
|
||||
auto graph = -mean(sum(y * log(predict), axis=1),
|
||||
axis=0, name="cost");
|
||||
@ -41,75 +42,80 @@ int main(int argc, char** argv) {
|
||||
std::cerr << graph.val().Debug() << std::endl;
|
||||
std::cerr << w.grad().Debug() << std::endl;
|
||||
//std::cerr << b.grad().Debug() << std::endl;
|
||||
#else
|
||||
|
||||
// using namespace marian;
|
||||
// using namespace keywords;
|
||||
//
|
||||
// const size_t BATCH_SIZE = 500;
|
||||
// const size_t IMAGE_SIZE = 784;
|
||||
// const size_t LABEL_SIZE = 10;
|
||||
//
|
||||
// Expr x = input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
// Expr y = input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
//
|
||||
// Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0");
|
||||
// Expr b = param(shape={1, LABEL_SIZE}, name="b0");
|
||||
//
|
||||
// Expr z = dot(x, w) + b;
|
||||
// Expr lr = softmax(z, axis=1, name="pred");
|
||||
// Expr graph = -mean(sum(y * log(lr), axis=1), axis=0, name="cost");
|
||||
// //cerr << "x=" << Debug(lr.val().shape()) << endl;
|
||||
//
|
||||
// int numofdata;
|
||||
// //vector<float> images = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
// //vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
// vector<float> images = datasets::mnist::ReadImages("../examples/mnist/train-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
// vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/train-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
// cerr << "images=" << images.size() << " labels=" << labels.size() << endl;
|
||||
// cerr << "numofdata=" << numofdata << endl;
|
||||
//
|
||||
// size_t startInd = 0;
|
||||
// size_t startIndData = 0;
|
||||
// while (startInd < numofdata) {
|
||||
// size_t batchSize = (startInd + BATCH_SIZE < numofdata) ? BATCH_SIZE : numofdata - startInd;
|
||||
// cerr << "startInd=" << startInd
|
||||
// << " startIndData=" << startIndData
|
||||
// << " batchSize=" << batchSize << endl;
|
||||
//
|
||||
// Tensor tx({numofdata, IMAGE_SIZE}, 1);
|
||||
// Tensor ty({numofdata, LABEL_SIZE}, 1);
|
||||
//
|
||||
// tx.Load(images.begin() + startIndData, images.begin() + startIndData + batchSize * IMAGE_SIZE);
|
||||
// ty.Load(labels.begin() + startInd, labels.begin() + startInd + batchSize);
|
||||
//
|
||||
// //cerr << "tx=" << Debug(tx.shape()) << endl;
|
||||
// //cerr << "ty=" << Debug(ty.shape()) << endl;
|
||||
//
|
||||
// x = tx;
|
||||
// y = ty;
|
||||
//
|
||||
// cerr << "x=" << Debug(x.val().shape()) << endl;
|
||||
// cerr << "y=" << Debug(y.val().shape()) << endl;
|
||||
//
|
||||
//
|
||||
// graph.forward(batchSize);
|
||||
//
|
||||
// cerr << "w=" << Debug(w.val().shape()) << endl;
|
||||
// cerr << "b=" << Debug(b.val().shape()) << endl;
|
||||
// std::cerr << "z: " << Debug(z.val().shape()) << endl;
|
||||
// std::cerr << "lr: " << Debug(lr.val().shape()) << endl;
|
||||
// std::cerr << "Log-likelihood: " << Debug(graph.val().shape()) << endl ;
|
||||
//
|
||||
// //std::cerr << "scores=" << scores.val().Debug() << endl;
|
||||
// //std::cerr << "lr=" << lr.val().Debug() << endl;
|
||||
//
|
||||
// //graph.backward();
|
||||
//
|
||||
// //std::cerr << graph["pred"].val()[0] << std::endl;
|
||||
//
|
||||
// startInd += batchSize;
|
||||
// startIndData += batchSize * IMAGE_SIZE;
|
||||
// }
|
||||
|
||||
using namespace marian;
|
||||
using namespace keywords;
|
||||
using namespace std;
|
||||
|
||||
const size_t BATCH_SIZE = 500;
|
||||
const size_t IMAGE_SIZE = 784;
|
||||
const size_t LABEL_SIZE = 10;
|
||||
|
||||
Expr x = input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
Expr y = input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
|
||||
Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0");
|
||||
Expr b = param(shape={1, LABEL_SIZE}, name="b0");
|
||||
|
||||
Expr z = dot(x, w) + b;
|
||||
Expr lr = softmax(z, axis=1, name="pred");
|
||||
Expr graph = -mean(sum(y * log(lr), axis=1), axis=0, name="cost");
|
||||
//cerr << "x=" << Debug(lr.val().shape()) << endl;
|
||||
|
||||
int numofdata;
|
||||
//vector<float> images = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
//vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
vector<float> images = datasets::mnist::ReadImages("../examples/mnist/train-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/train-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
cerr << "images=" << images.size() << " labels=" << labels.size() << endl;
|
||||
cerr << "numofdata=" << numofdata << endl;
|
||||
|
||||
size_t startInd = 0;
|
||||
size_t startIndData = 0;
|
||||
while (startInd < numofdata) {
|
||||
size_t batchSize = (startInd + BATCH_SIZE < numofdata) ? BATCH_SIZE : numofdata - startInd;
|
||||
cerr << "startInd=" << startInd
|
||||
<< " startIndData=" << startIndData
|
||||
<< " batchSize=" << batchSize << endl;
|
||||
|
||||
Tensor tx({numofdata, IMAGE_SIZE}, 1);
|
||||
Tensor ty({numofdata, LABEL_SIZE}, 1);
|
||||
|
||||
tx.set(images.begin() + startIndData, images.begin() + startIndData + batchSize * IMAGE_SIZE);
|
||||
ty.set(labels.begin() + startInd, labels.begin() + startInd + batchSize);
|
||||
|
||||
//cerr << "tx=" << Debug(tx.shape()) << endl;
|
||||
//cerr << "ty=" << Debug(ty.shape()) << endl;
|
||||
|
||||
x = tx;
|
||||
y = ty;
|
||||
|
||||
cerr << "x=" << Debug(x.val().shape()) << endl;
|
||||
cerr << "y=" << Debug(y.val().shape()) << endl;
|
||||
|
||||
|
||||
graph.forward(batchSize);
|
||||
|
||||
cerr << "w=" << Debug(w.val().shape()) << endl;
|
||||
cerr << "b=" << Debug(b.val().shape()) << endl;
|
||||
std::cerr << "z: " << Debug(z.val().shape()) << endl;
|
||||
std::cerr << "lr: " << Debug(lr.val().shape()) << endl;
|
||||
std::cerr << "Log-likelihood: " << graph.val().Debug() << endl ;
|
||||
|
||||
//std::cerr << "scores=" << scores.val().Debug() << endl;
|
||||
//std::cerr << "lr=" << lr.val().Debug() << endl;
|
||||
|
||||
graph.backward();
|
||||
std::cerr << w.grad().Debug() << std::endl;
|
||||
|
||||
//std::cerr << graph["pred"].val()[0] << std::endl;
|
||||
|
||||
startInd += batchSize;
|
||||
startIndData += batchSize * IMAGE_SIZE;
|
||||
}
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -9,7 +9,7 @@ using namespace keywords;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
cudaSetDevice(0);
|
||||
cudaSetDevice(1);
|
||||
|
||||
const size_t IMAGE_SIZE = 784;
|
||||
const size_t LABEL_SIZE = 10;
|
||||
@ -20,7 +20,6 @@ int main(int argc, char** argv) {
|
||||
std::vector<float> testLabels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", BATCH_SIZE, LABEL_SIZE);
|
||||
std::cerr << "Done." << std::endl;
|
||||
|
||||
|
||||
std::cerr << "Loading model params...";
|
||||
NpzConverter converter("../scripts/test_model_single/model.npz");
|
||||
|
||||
@ -36,11 +35,11 @@ int main(int argc, char** argv) {
|
||||
auto y = input(shape={whatevs, LABEL_SIZE});
|
||||
|
||||
auto w = param(shape={IMAGE_SIZE, LABEL_SIZE},
|
||||
init=[wData](Tensor t) { t.set(wData); });
|
||||
init=from_vector(wData));
|
||||
auto b = param(shape={1, LABEL_SIZE},
|
||||
init=[bData](Tensor t) { t.set(bData); });
|
||||
init=from_vector(bData));
|
||||
|
||||
auto probs = softmax(dot(x, w) + b, axis=1);
|
||||
auto probs = softmax_fast(dot(x, w) + b, axis=1);
|
||||
auto cost = -mean(sum(y * log(probs), axis=1), axis=0);
|
||||
|
||||
std::cerr << "Done." << std::endl;
|
||||
|
@ -21,22 +21,42 @@ int main(int argc, char** argv) {
|
||||
std::cerr << "\tDone." << std::endl;
|
||||
|
||||
std::cerr << "Loading model params...";
|
||||
<<<<<<< HEAD
|
||||
NpzConverter converter("../scripts/test_model_single/model.npz");
|
||||
=======
|
||||
NpzConverter converter("../scripts/test_model_multi/model.npz");
|
||||
>>>>>>> eba5b462257a9949fd124378c53e9bf7b357b1d3
|
||||
|
||||
std::vector<float> wData;
|
||||
Shape wShape;
|
||||
converter.Load("weights", wData, wShape);
|
||||
std::vector<float> wData1;
|
||||
Shape wShape1;
|
||||
converter.Load("weights1", wData1, wShape1);
|
||||
|
||||
std::vector<float> bData;
|
||||
Shape bShape;
|
||||
converter.Load("bias", bData, bShape);
|
||||
std::vector<float> bData1;
|
||||
Shape bShape1;
|
||||
converter.Load("bias1", bData1, bShape1);
|
||||
|
||||
auto initW = [wData](Tensor t) {
|
||||
t.set(wData);
|
||||
std::vector<float> wData2;
|
||||
Shape wShape2;
|
||||
converter.Load("weights2", wData2, wShape2);
|
||||
|
||||
std::vector<float> bData2;
|
||||
Shape bShape2;
|
||||
converter.Load("bias2", bData2, bShape2);
|
||||
|
||||
auto initW1 = [wData1](Tensor t) {
|
||||
t.set(wData1);
|
||||
};
|
||||
|
||||
auto initB = [bData](Tensor t) {
|
||||
t.set(bData);
|
||||
auto initB1 = [bData1](Tensor t) {
|
||||
t.set(bData1);
|
||||
};
|
||||
|
||||
auto initW2 = [wData2](Tensor t) {
|
||||
t.set(wData2);
|
||||
};
|
||||
|
||||
auto initB2 = [bData2](Tensor t) {
|
||||
t.set(bData2);
|
||||
};
|
||||
|
||||
std::cerr << "\tDone." << std::endl;
|
||||
@ -45,11 +65,15 @@ int main(int argc, char** argv) {
|
||||
auto x = input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
auto y = input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
|
||||
auto w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0", init=initW);
|
||||
auto b = param(shape={1, LABEL_SIZE}, name="b0", init=initB);
|
||||
auto w1 = param(shape={IMAGE_SIZE, 100}, name="W0", init=initW1);
|
||||
auto b1 = param(shape={1, 100}, name="b0", init=initB1);
|
||||
auto w2 = param(shape={100, LABEL_SIZE}, name="W1", init=initW2);
|
||||
auto b2 = param(shape={1, LABEL_SIZE}, name="b1", init=initB2);
|
||||
|
||||
std::cerr << "Building model...";
|
||||
auto predict = softmax(dot(x, w) + b, axis=1, name="pred");
|
||||
auto layer1 = tanh(dot(x, w1) + b1);
|
||||
auto layer2 = softmax(dot(layer1, w2) + b2, axis=1, name="layer2");
|
||||
auto predict = layer2;
|
||||
|
||||
std::cerr << "Done." << std::endl;
|
||||
|
||||
@ -77,6 +101,7 @@ int main(int argc, char** argv) {
|
||||
if (testLabels[startId * LABEL_SIZE + i + j]) correct = j;
|
||||
if (results[i + j] > results[i + predicted]) predicted = j;
|
||||
}
|
||||
/*std::cerr << "CORRECT: " << correct << " PREDICTED: " << predicted << std::endl;*/
|
||||
acc += (correct == predicted);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user