mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-05 01:31:46 +03:00
merge
This commit is contained in:
commit
732bb9fa7a
@ -5,7 +5,6 @@ cuda_add_library(marian_lib
|
||||
cnpy/cnpy.cpp
|
||||
exception.cpp
|
||||
expression_graph.cu
|
||||
sgd.cu
|
||||
tensor.cu
|
||||
tensor_operators.cu
|
||||
expression_operators.cu
|
||||
|
@ -39,11 +39,12 @@ std::string Expr::Debug() const
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
ExpressionGraph::ExpressionGraph(int cudaDevice)
|
||||
: stack_(new ChainableStack)
|
||||
{
|
||||
std::srand (time(NULL));
|
||||
cudaSetDevice(0);
|
||||
}
|
||||
//ExpressionGraph::ExpressionGraph(int cudaDevice)
|
||||
//: stack_(new ChainableStack)
|
||||
//{
|
||||
// std::srand (time(NULL));
|
||||
// cudaSetDevice(0);
|
||||
//
|
||||
//}
|
||||
|
||||
}
|
||||
|
@ -38,9 +38,14 @@ class Expr {
|
||||
|
||||
class ExpressionGraph {
|
||||
public:
|
||||
ExpressionGraph(int cudaDevice);
|
||||
ExpressionGraph() : stack_(new ChainableStack) {}
|
||||
|
||||
void forward(size_t batchSize) {
|
||||
void backprop(int batchSize) {
|
||||
forward(batchSize);
|
||||
backward();
|
||||
}
|
||||
|
||||
void forward(int batchSize) {
|
||||
for(auto&& v : *stack_) {
|
||||
v->allocate(batchSize);
|
||||
}
|
||||
@ -48,6 +53,16 @@ class ExpressionGraph {
|
||||
v->forward();
|
||||
}
|
||||
|
||||
void backward() {
|
||||
for(auto&& v : *stack_)
|
||||
v->set_zero_adjoint();
|
||||
|
||||
typedef typename ChainableStack::reverse_iterator It;
|
||||
stack_->back()->init_dependent();
|
||||
for(It it = stack_->rbegin(); it != stack_->rend(); ++it)
|
||||
(*it)->backward();
|
||||
}
|
||||
|
||||
std::string graphviz() {
|
||||
std::stringstream ss;
|
||||
ss << "digraph ExpressionGraph {" << std::endl;
|
||||
@ -60,19 +75,13 @@ class ExpressionGraph {
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void backward() {
|
||||
for(auto&& v : *stack_)
|
||||
v->set_zero_adjoint();
|
||||
|
||||
typedef typename ChainableStack::reverse_iterator It;
|
||||
stack_->back()->init_dependent();
|
||||
for(It it = stack_->rbegin(); it != stack_->rend(); ++it)
|
||||
(*it)->backward();
|
||||
}
|
||||
/*********************************************************/
|
||||
|
||||
template <typename ...Args>
|
||||
inline Expr input(Args ...args) {
|
||||
return Expr(this, new InputNode(args...));
|
||||
Expr e(this, new InputNode(args...));
|
||||
inputs_.emplace_back(e);
|
||||
return e;
|
||||
}
|
||||
|
||||
template <typename ...Args>
|
||||
@ -117,14 +126,20 @@ class ExpressionGraph {
|
||||
named_.emplace(name, e);
|
||||
}
|
||||
|
||||
std::vector<Expr>& inputs() {
|
||||
return inputs_;
|
||||
}
|
||||
|
||||
std::vector<Expr>& params() {
|
||||
return params_;
|
||||
}
|
||||
|
||||
private:
|
||||
ChainableStackPtr stack_;
|
||||
|
||||
std::map<std::string, Expr> named_;
|
||||
std::vector<Expr> params_;
|
||||
std::vector<Expr> inputs_;
|
||||
};
|
||||
|
||||
}
|
||||
|
140
src/sgd.cu
140
src/sgd.cu
@ -1,140 +0,0 @@
|
||||
#include <ctime>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include "sgd.h"
|
||||
#include "thrust_functions.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace marian {
|
||||
SGD::SGD(ExpressionGraph& g, float eta,
|
||||
std::vector<float>& xData, size_t numFeatures,
|
||||
std::vector<float>& yData, size_t numClasses,
|
||||
size_t epochs, size_t batchSize)
|
||||
: graph_(g),
|
||||
eta_(eta),
|
||||
xData_(xData),
|
||||
numFeatures_(numFeatures),
|
||||
yData_(yData),
|
||||
numClasses_(numClasses),
|
||||
epochs_(epochs),
|
||||
maxBatchSize_(batchSize)
|
||||
{}
|
||||
|
||||
void SGD::Run()
|
||||
{
|
||||
size_t numExamples = xData_.size()/ numFeatures_;
|
||||
Tensor xt({(int)maxBatchSize_, (int)numExamples}, 0.0f);
|
||||
Tensor yt({(int)maxBatchSize_, (int)numClasses_}, 0.0f);
|
||||
|
||||
vector<size_t> shuffle = CreateShuffle(numExamples);
|
||||
//vector<size_t> shuffle;
|
||||
|
||||
for (size_t numEpoch = 0; numEpoch < epochs_; ++numEpoch) {
|
||||
std::cerr << "Starting epoch #" << numEpoch << std::endl;
|
||||
size_t startId = 0;
|
||||
|
||||
while (startId < numExamples) {
|
||||
size_t batchSize = std::min(maxBatchSize_, numExamples - startId);
|
||||
size_t endId = startId + batchSize;
|
||||
|
||||
PrepareBatch(startId, endId, batchSize, shuffle, xt, yt);
|
||||
graph_["x"] = xt;
|
||||
graph_["y"] = yt;
|
||||
|
||||
graph_.forward(maxBatchSize_);
|
||||
graph_.backward();
|
||||
|
||||
UpdateModel();
|
||||
|
||||
startId += maxBatchSize_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<size_t> SGD::CreateShuffle(size_t numExamples) const {
|
||||
vector<size_t> ret(numExamples);
|
||||
std::iota(ret.begin(), ret.end(), 0);
|
||||
std::random_shuffle ( ret.begin(), ret.end() );
|
||||
/*
|
||||
cerr << "shuffled" << endl;
|
||||
for (size_t i = 0; i < ret.size(); ++i) {
|
||||
cerr << ret[i] << " ";
|
||||
}
|
||||
*/
|
||||
return ret;
|
||||
}
|
||||
|
||||
void SGD::PrepareBatch(
|
||||
size_t startId,
|
||||
size_t endId,
|
||||
size_t batchSize,
|
||||
const std::vector<size_t> &shuffle,
|
||||
Tensor& xt,
|
||||
Tensor& yt) {
|
||||
/*
|
||||
std::vector<float> x(xData_.begin() + startId * numFeatures_,
|
||||
xData_.begin() + endId * numFeatures_);
|
||||
std::vector<float> y(yData_.begin() + startId * numClasses_,
|
||||
yData_.begin() + endId * numClasses_);
|
||||
*/
|
||||
std::vector<float> x(batchSize * numFeatures_);
|
||||
std::vector<float> y(batchSize * numClasses_);
|
||||
|
||||
//cerr << "batchSize=" << batchSize << endl;
|
||||
/*
|
||||
cerr << "startId=" << startId
|
||||
<< " " << endId
|
||||
<< " " << batchSize
|
||||
<< endl;
|
||||
cerr << "numExamples=" << shuffle.size() << endl;
|
||||
cerr << "numFeatures_=" << numFeatures_ << " " << numClasses_ << endl;
|
||||
cerr << "sizes=" << x.size()
|
||||
<< " " << y.size()
|
||||
<< " " << xData_.size()
|
||||
<< " " << yData_.size()
|
||||
<< endl;
|
||||
*/
|
||||
size_t startXId = 0;
|
||||
size_t startYId = 0;
|
||||
|
||||
for (size_t i = startId; i < endId; ++i) {
|
||||
size_t ind = shuffle[i];
|
||||
size_t startXDataId = ind * numFeatures_;
|
||||
size_t startYDataId = ind * numClasses_;
|
||||
|
||||
size_t endXDataId = startXDataId + numFeatures_;
|
||||
size_t endYDataId = startYDataId + numClasses_;
|
||||
/*
|
||||
cerr << "i=" << i
|
||||
<< " " << ind
|
||||
<< " " << startXDataId << "-" << endXDataId
|
||||
<< " " << startYDataId << "-" << endYDataId
|
||||
<< endl;
|
||||
*/
|
||||
|
||||
std::copy(xData_.begin() + startXDataId,
|
||||
xData_.begin() + endXDataId,
|
||||
x.begin() + startXId);
|
||||
|
||||
std::copy(yData_.begin() + startYDataId,
|
||||
yData_.begin() + endYDataId,
|
||||
y.begin() + startYId);
|
||||
|
||||
startXId += numFeatures_;
|
||||
startYId += numClasses_;
|
||||
}
|
||||
|
||||
xt.set(x);
|
||||
yt.set(y);
|
||||
}
|
||||
|
||||
void SGD::UpdateModel() {
|
||||
for (auto& param : graph_.params()) {
|
||||
using namespace thrust::placeholders;
|
||||
Element(_1 -= eta_ * _2, param.val(), param.grad());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
67
src/sgd.h
67
src/sgd.h
@ -1,43 +1,48 @@
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <iostream>
|
||||
|
||||
#include "expression_graph.h"
|
||||
#include "thrust_functions.h"
|
||||
#include <map>
|
||||
#include <boost/any.hpp>
|
||||
#include "tensor_operators.h"
|
||||
|
||||
namespace marian {
|
||||
|
||||
class SGD {
|
||||
class Sgd {
|
||||
public:
|
||||
SGD(ExpressionGraph& g, float eta,
|
||||
std::vector<float>& xData, size_t numFeatures,
|
||||
std::vector<float>& yData, size_t numClasses,
|
||||
size_t epochs, size_t batchSize);
|
||||
Sgd(float eta=0.1) : eta_(eta) {}
|
||||
|
||||
void Run();
|
||||
void operator()(ExpressionGraph& graph, int batchSize) {
|
||||
graph.backprop(batchSize);
|
||||
|
||||
for(auto& param : graph.params())
|
||||
Element(_1 -= eta_ * _2, param.val(), param.grad());
|
||||
}
|
||||
|
||||
private:
|
||||
ExpressionGraph& graph_;
|
||||
const float eta_;
|
||||
std::vector<float>& xData_;
|
||||
const size_t numFeatures_;
|
||||
std::vector<float>& yData_;
|
||||
const size_t numClasses_;
|
||||
const size_t epochs_;
|
||||
const size_t maxBatchSize_;
|
||||
|
||||
std::vector<size_t> CreateShuffle(size_t numExamples) const;
|
||||
void PrepareBatch(
|
||||
size_t startId,
|
||||
size_t endId,
|
||||
size_t batchSize,
|
||||
const std::vector<size_t> &shuffle,
|
||||
Tensor& xt,
|
||||
Tensor& yt);
|
||||
|
||||
void UpdateModel();
|
||||
float eta_;
|
||||
};
|
||||
|
||||
} // namespace marian
|
||||
class Adagrad {
|
||||
public:
|
||||
Adagrad(float eta=0.1) : eta_(eta) {}
|
||||
|
||||
void operator()(ExpressionGraph& graph, int batchSize) {
|
||||
if(history_.size() < graph.params().size())
|
||||
for(auto& param : graph.params())
|
||||
history_.emplace_back(Tensor(param.grad().shape(), 0));
|
||||
|
||||
graph.backprop(batchSize);
|
||||
|
||||
auto it = history_.begin();
|
||||
for(auto& param : graph.params()) {
|
||||
Element(_1 -= eta_ / Sqrt(_2) * _3, param.val(), *it, param.grad());
|
||||
Element(_1 += _2 * _2, *it, param.grad());
|
||||
it++;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
float eta_;
|
||||
std::vector<Tensor> history_;
|
||||
};
|
||||
|
||||
}
|
@ -1,8 +1,6 @@
|
||||
#include <fstream>
|
||||
#include "tensor.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace marian {
|
||||
|
||||
void Tensor::set(const std::vector<float>& data)
|
||||
|
@ -65,7 +65,7 @@ int main(int argc, char** argv) {
|
||||
std::vector<Expr> Y;
|
||||
std::vector<Expr> H;
|
||||
|
||||
ExpressionGraph g(0);
|
||||
ExpressionGraph g;
|
||||
|
||||
for (int t = 0; t < num_inputs; ++t) {
|
||||
X.emplace_back(g.input(shape={batch_size, input_size}));
|
||||
@ -84,7 +84,6 @@ int main(int argc, char** argv) {
|
||||
string sourceLine, targetLine;
|
||||
while (getline(sourceFile, sourceLine)) {
|
||||
getline(targetFile, targetLine);
|
||||
|
||||
std::vector<size_t> sourceIds = sourceVocab.ProcessSentence(sourceLine);
|
||||
std::vector<size_t> targetIds = sourceVocab.ProcessSentence(targetLine);
|
||||
}
|
||||
|
@ -85,6 +85,19 @@ namespace thrust
|
||||
return compose(unary_operator<unary_tanh>(), _1);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
struct unary_sqrt : public thrust::unary_function<T,T> {
|
||||
__host__ __device__
|
||||
T operator()(const T &x) const { return sqrtf(x); }
|
||||
};
|
||||
|
||||
template<typename Eval>
|
||||
__host__ __device__
|
||||
actor<composite<unary_operator<unary_sqrt>, actor<Eval>>>
|
||||
Sqrt(const actor<Eval> &_1) {
|
||||
return compose(unary_operator<unary_sqrt>(), _1);
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
__host__ __device__
|
||||
actor<composite<binary_operator<thrust::maximum>, actor<T1>, actor<T2>>>
|
||||
|
@ -16,7 +16,7 @@ int main(int argc, char** argv) {
|
||||
using namespace marian;
|
||||
using namespace keywords;
|
||||
|
||||
ExpressionGraph g(0);
|
||||
ExpressionGraph g;
|
||||
|
||||
Expr x = named(g.input(shape={whatevs, IMAGE_SIZE}), "x");
|
||||
Expr y = named(g.input(shape={whatevs, LABEL_SIZE}), "y");
|
||||
@ -24,16 +24,13 @@ int main(int argc, char** argv) {
|
||||
Expr w = named(g.param(shape={IMAGE_SIZE, LABEL_SIZE}), "w");
|
||||
Expr b = named(g.param(shape={1, LABEL_SIZE}), "b");
|
||||
|
||||
std::vector<Expr*> params;
|
||||
params.push_back(&w);
|
||||
params.push_back(&b);
|
||||
|
||||
auto scores = dot(x, w) + b;
|
||||
auto lr = softmax_fast(scores);
|
||||
auto cost = named(-mean(sum(y * log(lr), axis=1), axis=0), "cost");
|
||||
cerr << "lr=" << lr.Debug() << endl;
|
||||
|
||||
SGD opt(g, 0.9, trainImages, IMAGE_SIZE, trainLabels, LABEL_SIZE, 3, 24);
|
||||
opt.Run();
|
||||
Adagrad opt;
|
||||
opt(g, 300);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -15,10 +15,10 @@ const int batch_size = 25;
|
||||
const int num_inputs = 8;
|
||||
const int num_outputs = 6;
|
||||
|
||||
ExpressionGraph build_graph(int cuda_device) {
|
||||
ExpressionGraph build_graph() {
|
||||
std::cerr << "Building computation graph..." << std::endl;
|
||||
|
||||
ExpressionGraph g(cuda_device);
|
||||
ExpressionGraph g;
|
||||
std::vector<Expr> X, Y, H, S;
|
||||
|
||||
// We're including the stop symbol here.
|
||||
@ -119,7 +119,7 @@ int main(int argc, char** argv) {
|
||||
#endif
|
||||
|
||||
// Build the encoder-decoder computation graph.
|
||||
ExpressionGraph g = build_graph(0);
|
||||
ExpressionGraph g = build_graph();
|
||||
|
||||
// Generate input data (include the stop symbol).
|
||||
for (int t = 0; t <= num_inputs; ++t) {
|
||||
|
@ -10,7 +10,7 @@ const size_t IMAGE_SIZE = 784;
|
||||
const size_t LABEL_SIZE = 10;
|
||||
int BATCH_SIZE = 10000;
|
||||
|
||||
ExpressionGraph build_graph(int cudaDevice) {
|
||||
ExpressionGraph build_graph() {
|
||||
std::cerr << "Loading model params...";
|
||||
NpzConverter converter("../scripts/test_model_single/model.npz");
|
||||
|
||||
@ -22,7 +22,7 @@ ExpressionGraph build_graph(int cudaDevice) {
|
||||
|
||||
std::cerr << "Building model...";
|
||||
|
||||
ExpressionGraph g(cudaDevice);
|
||||
ExpressionGraph g;
|
||||
auto x = named(g.input(shape={whatevs, IMAGE_SIZE}), "x");
|
||||
auto y = named(g.input(shape={whatevs, LABEL_SIZE}), "y");
|
||||
|
||||
@ -52,7 +52,7 @@ int main(int argc, char** argv) {
|
||||
std::vector<float> testLabels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", BATCH_SIZE, LABEL_SIZE);
|
||||
std::cerr << "Done." << std::endl;
|
||||
|
||||
ExpressionGraph g = build_graph(0);
|
||||
ExpressionGraph g = build_graph();
|
||||
|
||||
Tensor xt({BATCH_SIZE, IMAGE_SIZE});
|
||||
Tensor yt({BATCH_SIZE, LABEL_SIZE});
|
||||
|
@ -56,8 +56,7 @@ int main(int argc, char** argv) {
|
||||
|
||||
std::cerr << "\tDone." << std::endl;
|
||||
|
||||
|
||||
ExpressionGraph g(0);
|
||||
ExpressionGraph g;
|
||||
|
||||
auto x = g.input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
auto y = g.input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
|
Loading…
Reference in New Issue
Block a user