mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-04 14:04:24 +03:00
Merge branch 'master' of github.com:emjotde/Marian
This commit is contained in:
commit
adbc97f448
103
src/tensor.h
103
src/tensor.h
@ -1,6 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include <cudnn.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <thrust/device_vector.h>
|
||||
#include <thrust/functional.h>
|
||||
@ -13,27 +12,27 @@
|
||||
|
||||
namespace marian {
|
||||
|
||||
struct Handles {
|
||||
cudnnHandle_t cudnnHandle;
|
||||
cublasHandle_t cublasHandle;
|
||||
|
||||
cudnnOpTensorDescriptor_t add;
|
||||
|
||||
Handles() {
|
||||
cudnnCreate(&cudnnHandle);
|
||||
cublasCreate(&cublasHandle);
|
||||
cudnnCreateOpTensorDescriptor(&add);
|
||||
cudnnSetOpTensorDescriptor(add, CUDNN_OP_TENSOR_ADD, CUDNN_DATA_FLOAT, CUDNN_NOT_PROPAGATE_NAN);
|
||||
}
|
||||
|
||||
~Handles() {
|
||||
cudnnDestroy(cudnnHandle);
|
||||
cublasDestroy(cublasHandle);
|
||||
cudnnDestroyOpTensorDescriptor(add);
|
||||
}
|
||||
};
|
||||
|
||||
const Handles handles;
|
||||
//struct Handles {
|
||||
// //cudnnHandle_t cudnnHandle;
|
||||
// //cublasHandle_t cublasHandle;
|
||||
//
|
||||
// //cudnnOpTensorDescriptor_t add;
|
||||
//
|
||||
// Handles() {
|
||||
// cudnnCreate(&cudnnHandle);
|
||||
// cublasCreate(&cublasHandle);
|
||||
// cudnnCreateOpTensorDescriptor(&add);
|
||||
// cudnnSetOpTensorDescriptor(add, CUDNN_OP_TENSOR_ADD, CUDNN_DATA_FLOAT, CUDNN_NOT_PROPAGATE_NAN);
|
||||
// }
|
||||
//
|
||||
// ~Handles() {
|
||||
// cudnnDestroy(cudnnHandle);
|
||||
// cublasDestroy(cublasHandle);
|
||||
// cudnnDestroyOpTensorDescriptor(add);
|
||||
// }
|
||||
//};
|
||||
//
|
||||
//const Handles handles;
|
||||
|
||||
// typedef std::vector<int> Shape;
|
||||
|
||||
@ -60,17 +59,17 @@ class TensorImpl {
|
||||
private:
|
||||
Shape shape_;
|
||||
thrust::device_vector<Float> data_;
|
||||
cudnnTensorDescriptor_t desc_;
|
||||
//cudnnTensorDescriptor_t desc_;
|
||||
size_t tno_;
|
||||
static size_t tensorCounter;
|
||||
|
||||
cudnnDataType_t dataType() {
|
||||
switch(sizeof(Float)) {
|
||||
case 2: return CUDNN_DATA_HALF;
|
||||
case 8: return CUDNN_DATA_DOUBLE;
|
||||
default: return CUDNN_DATA_FLOAT;
|
||||
}
|
||||
}
|
||||
//cudnnDataType_t dataType() {
|
||||
// switch(sizeof(Float)) {
|
||||
// case 2: return CUDNN_DATA_HALF;
|
||||
// case 8: return CUDNN_DATA_DOUBLE;
|
||||
// default: return CUDNN_DATA_FLOAT;
|
||||
// }
|
||||
//}
|
||||
|
||||
public:
|
||||
typedef Float value_type;
|
||||
@ -90,28 +89,28 @@ class TensorImpl {
|
||||
|
||||
int size = GetTotalSize(shape_);
|
||||
data_.resize(size, value);
|
||||
cudnnCreateTensorDescriptor(&desc_);
|
||||
switch (shape_.size()) {
|
||||
case 1:
|
||||
cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
shape_[0], 1, 1, 1); break;
|
||||
case 2:
|
||||
cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
shape_[0], shape_[1], 1, 1); break;
|
||||
case 3:
|
||||
cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
shape_[0], shape_[1], shape_[2], 1); break;
|
||||
case 4:
|
||||
cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
shape_[0], shape_[1], shape_[2], shape_[3]); break;
|
||||
}
|
||||
//cudnnCreateTensorDescriptor(&desc_);
|
||||
//switch (shape_.size()) {
|
||||
// case 1:
|
||||
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
// shape_[0], 1, 1, 1); break;
|
||||
// case 2:
|
||||
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
// shape_[0], shape_[1], 1, 1); break;
|
||||
// case 3:
|
||||
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
// shape_[0], shape_[1], shape_[2], 1); break;
|
||||
// case 4:
|
||||
// cudnnSetTensor4dDescriptor(desc_, CUDNN_TENSOR_NCHW, dataType(),
|
||||
// shape_[0], shape_[1], shape_[2], shape_[3]); break;
|
||||
//}
|
||||
}
|
||||
|
||||
TensorImpl(const TensorImpl&) = delete;
|
||||
TensorImpl(TensorImpl&&) = delete;
|
||||
|
||||
~TensorImpl() {
|
||||
cudnnDestroyTensorDescriptor(desc_);
|
||||
//cudnnDestroyTensorDescriptor(desc_);
|
||||
}
|
||||
|
||||
value_type operator[](size_t i) const {
|
||||
@ -146,9 +145,9 @@ class TensorImpl {
|
||||
return thrust::raw_pointer_cast(data_.data());
|
||||
}
|
||||
|
||||
cudnnTensorDescriptor_t desc() const {
|
||||
return desc_;
|
||||
}
|
||||
//cudnnTensorDescriptor_t desc() const {
|
||||
// return desc_;
|
||||
//}
|
||||
|
||||
size_t id() const {
|
||||
return tno_;
|
||||
@ -246,9 +245,9 @@ class Tensor {
|
||||
return pimpl_->shape();
|
||||
}
|
||||
|
||||
cudnnTensorDescriptor_t desc() const {
|
||||
return pimpl_->desc();
|
||||
}
|
||||
//cudnnTensorDescriptor_t desc() const {
|
||||
// return pimpl_->desc();
|
||||
//}
|
||||
|
||||
void set(value_type value) {
|
||||
pimpl_->set(value);
|
||||
|
@ -130,7 +130,11 @@ Tensor Prod(cublasHandle_t handle, Tensor C, const Tensor A, const Tensor B,
|
||||
Tensor Prod(Tensor C, const Tensor A, const Tensor B,
|
||||
bool transA, bool transB, Float beta) {
|
||||
|
||||
return Prod(handles.cublasHandle, C, A, B, transA, transB, beta);
|
||||
cublasHandle_t cublasHandle;
|
||||
cublasCreate(&cublasHandle);
|
||||
Tensor temp = Prod(cublasHandle, C, A, B, transA, transB, beta);
|
||||
cublasDestroy(cublasHandle);
|
||||
return temp;
|
||||
}
|
||||
|
||||
}
|
196
src/test.cu
196
src/test.cu
@ -2,9 +2,9 @@
|
||||
#include "marian.h"
|
||||
#include "mnist.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
cudaSetDevice(0);
|
||||
|
||||
/*int numImg = 0;*/
|
||||
/*auto images = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numImg);*/
|
||||
/*auto labels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numImg);*/
|
||||
@ -12,118 +12,104 @@ int main(int argc, char** argv) {
|
||||
using namespace marian;
|
||||
using namespace keywords;
|
||||
|
||||
const size_t BATCH_SIZE = 500;
|
||||
const size_t IMAGE_SIZE = 784;
|
||||
const size_t LABEL_SIZE = 10;
|
||||
Expr x = input(shape={1, 2});
|
||||
Expr y = input(shape={1, 2});
|
||||
|
||||
Expr x = input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
Expr y = input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
Expr w = param(shape={2, 2}, name="W0");
|
||||
//Expr b = param(shape={1, 2}, name="b0");
|
||||
|
||||
Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0");
|
||||
// Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0", init=randreal);
|
||||
Expr b = param(shape={1, LABEL_SIZE}, name="b0");
|
||||
std::cerr << "Building model...";
|
||||
auto predict = softmax(dot(x, w),
|
||||
axis=1, name="pred");
|
||||
auto graph = -mean(sum(y * log(predict), axis=1),
|
||||
axis=0, name="cost");
|
||||
|
||||
Expr z = dot(x, w) + b;
|
||||
Expr lr = softmax(z, axis=1, name="pred");
|
||||
Expr graph = -mean(sum(y * log(lr), axis=1), axis=0, name="cost");
|
||||
//cerr << "x=" << Debug(lr.val().shape()) << endl;
|
||||
Tensor x1t({1, 2});
|
||||
std::vector<float> xv = { 0.6, 0.1 };
|
||||
thrust::copy(xv.begin(), xv.end(), x1t.begin());
|
||||
|
||||
int numofdata;
|
||||
//vector<float> images = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
//vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
vector<float> images = datasets::mnist::ReadImages("../examples/mnist/train-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/train-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
cerr << "images=" << images.size() << " labels=" << labels.size() << endl;
|
||||
cerr << "numofdata=" << numofdata << endl;
|
||||
Tensor x2t({1, 2});
|
||||
std::vector<float> yv = { 0, 1 };
|
||||
thrust::copy(yv.begin(), yv.end(), x2t.begin());
|
||||
|
||||
size_t startInd = 0;
|
||||
size_t startIndData = 0;
|
||||
while (startInd < numofdata) {
|
||||
size_t batchSize = (startInd + BATCH_SIZE < numofdata) ? BATCH_SIZE : numofdata - startInd;
|
||||
cerr << "startInd=" << startInd
|
||||
<< " startIndData=" << startIndData
|
||||
<< " batchSize=" << batchSize << endl;
|
||||
|
||||
Tensor tx({numofdata, IMAGE_SIZE}, 1);
|
||||
Tensor ty({numofdata, LABEL_SIZE}, 1);
|
||||
|
||||
tx.Load(images.begin() + startIndData, images.begin() + startIndData + batchSize * IMAGE_SIZE);
|
||||
ty.Load(labels.begin() + startInd, labels.begin() + startInd + batchSize);
|
||||
|
||||
//cerr << "tx=" << Debug(tx.shape()) << endl;
|
||||
//cerr << "ty=" << Debug(ty.shape()) << endl;
|
||||
|
||||
x = tx;
|
||||
y = ty;
|
||||
|
||||
cerr << "x=" << Debug(x.val().shape()) << endl;
|
||||
cerr << "y=" << Debug(y.val().shape()) << endl;
|
||||
|
||||
|
||||
graph.forward(batchSize);
|
||||
|
||||
cerr << "w=" << Debug(w.val().shape()) << endl;
|
||||
cerr << "b=" << Debug(b.val().shape()) << endl;
|
||||
std::cerr << "z: " << Debug(z.val().shape()) << endl;
|
||||
std::cerr << "lr: " << Debug(lr.val().shape()) << endl;
|
||||
std::cerr << "Log-likelihood: " << Debug(graph.val().shape()) << endl ;
|
||||
|
||||
//std::cerr << "scores=" << scores.val().Debug() << endl;
|
||||
//std::cerr << "lr=" << lr.val().Debug() << endl;
|
||||
x = x1t;
|
||||
y = x2t;
|
||||
|
||||
graph.forward(1);
|
||||
graph.backward();
|
||||
|
||||
//std::cerr << graph["pred"].val()[0] << std::endl;
|
||||
std::cerr << graph.val().Debug() << std::endl;
|
||||
std::cerr << w.grad().Debug() << std::endl;
|
||||
//std::cerr << b.grad().Debug() << std::endl;
|
||||
|
||||
startInd += batchSize;
|
||||
startIndData += batchSize * IMAGE_SIZE;
|
||||
}
|
||||
// using namespace marian;
|
||||
// using namespace keywords;
|
||||
//
|
||||
// const size_t BATCH_SIZE = 500;
|
||||
// const size_t IMAGE_SIZE = 784;
|
||||
// const size_t LABEL_SIZE = 10;
|
||||
//
|
||||
// Expr x = input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
// Expr y = input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
//
|
||||
// Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0");
|
||||
// Expr b = param(shape={1, LABEL_SIZE}, name="b0");
|
||||
//
|
||||
// Expr z = dot(x, w) + b;
|
||||
// Expr lr = softmax(z, axis=1, name="pred");
|
||||
// Expr graph = -mean(sum(y * log(lr), axis=1), axis=0, name="cost");
|
||||
// //cerr << "x=" << Debug(lr.val().shape()) << endl;
|
||||
//
|
||||
// int numofdata;
|
||||
// //vector<float> images = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
// //vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
// vector<float> images = datasets::mnist::ReadImages("../examples/mnist/train-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
// vector<float> labels = datasets::mnist::ReadLabels("../examples/mnist/train-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
// cerr << "images=" << images.size() << " labels=" << labels.size() << endl;
|
||||
// cerr << "numofdata=" << numofdata << endl;
|
||||
//
|
||||
// size_t startInd = 0;
|
||||
// size_t startIndData = 0;
|
||||
// while (startInd < numofdata) {
|
||||
// size_t batchSize = (startInd + BATCH_SIZE < numofdata) ? BATCH_SIZE : numofdata - startInd;
|
||||
// cerr << "startInd=" << startInd
|
||||
// << " startIndData=" << startIndData
|
||||
// << " batchSize=" << batchSize << endl;
|
||||
//
|
||||
// Tensor tx({numofdata, IMAGE_SIZE}, 1);
|
||||
// Tensor ty({numofdata, LABEL_SIZE}, 1);
|
||||
//
|
||||
// tx.Load(images.begin() + startIndData, images.begin() + startIndData + batchSize * IMAGE_SIZE);
|
||||
// ty.Load(labels.begin() + startInd, labels.begin() + startInd + batchSize);
|
||||
//
|
||||
// //cerr << "tx=" << Debug(tx.shape()) << endl;
|
||||
// //cerr << "ty=" << Debug(ty.shape()) << endl;
|
||||
//
|
||||
// x = tx;
|
||||
// y = ty;
|
||||
//
|
||||
// cerr << "x=" << Debug(x.val().shape()) << endl;
|
||||
// cerr << "y=" << Debug(y.val().shape()) << endl;
|
||||
//
|
||||
//
|
||||
// graph.forward(batchSize);
|
||||
//
|
||||
// cerr << "w=" << Debug(w.val().shape()) << endl;
|
||||
// cerr << "b=" << Debug(b.val().shape()) << endl;
|
||||
// std::cerr << "z: " << Debug(z.val().shape()) << endl;
|
||||
// std::cerr << "lr: " << Debug(lr.val().shape()) << endl;
|
||||
// std::cerr << "Log-likelihood: " << Debug(graph.val().shape()) << endl ;
|
||||
//
|
||||
// //std::cerr << "scores=" << scores.val().Debug() << endl;
|
||||
// //std::cerr << "lr=" << lr.val().Debug() << endl;
|
||||
//
|
||||
// //graph.backward();
|
||||
//
|
||||
// //std::cerr << graph["pred"].val()[0] << std::endl;
|
||||
//
|
||||
// startInd += batchSize;
|
||||
// startIndData += batchSize * IMAGE_SIZE;
|
||||
// }
|
||||
|
||||
|
||||
// XOR
|
||||
/*
|
||||
Expr x = input(shape={whatevs, 2}, name="X");
|
||||
Expr y = input(shape={whatevs, 2}, name="Y");
|
||||
|
||||
Expr w = param(shape={2, 1}, name="W0");
|
||||
Expr b = param(shape={1, 1}, name="b0");
|
||||
|
||||
Expr n5 = dot(x, w);
|
||||
Expr n6 = n5 + b;
|
||||
Expr lr = softmax(n6, axis=1, name="pred");
|
||||
cerr << "lr=" << lr.Debug() << endl;
|
||||
|
||||
Expr graph = -mean(sum(y * log(lr), axis=1), axis=0, name="cost");
|
||||
|
||||
Tensor tx({4, 2}, 1);
|
||||
Tensor ty({4, 1}, 1);
|
||||
cerr << "tx=" << tx.Debug() << endl;
|
||||
cerr << "ty=" << ty.Debug() << endl;
|
||||
|
||||
tx.Load("../examples/xor/train.txt");
|
||||
ty.Load("../examples/xor/label.txt");
|
||||
*/
|
||||
|
||||
#if 0
|
||||
hook0(graph);
|
||||
graph.autodiff();
|
||||
std::cerr << graph["cost"].val()[0] << std::endl;
|
||||
//hook1(graph);
|
||||
for(auto p : graph.params()) {
|
||||
auto update = _1 = _1 - alpha * _2;
|
||||
Element(update, p.val(), p.grad());
|
||||
}
|
||||
hook2(graph);
|
||||
|
||||
auto opt = adadelta(cost_function=cost,
|
||||
eta=0.9, gamma=0.1,
|
||||
set_batch=set,
|
||||
before_update=before,
|
||||
after_update=after,
|
||||
set_valid=valid,
|
||||
validation_freq=100,
|
||||
verbose=1, epochs=3, early_stopping=10);
|
||||
opt.run();
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
@ -7,13 +7,16 @@ using namespace marian;
|
||||
using namespace keywords;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
cudaSetDevice(0);
|
||||
|
||||
const size_t IMAGE_SIZE = 784;
|
||||
const size_t LABEL_SIZE = 10;
|
||||
int numofdata;
|
||||
|
||||
std::cerr << "Loading test set...";
|
||||
std::vector<float> testImages = datasets::mnist::ReadImages("../examples/mnist/t10k-images-idx3-ubyte", numofdata, IMAGE_SIZE);
|
||||
std::vector<float>testLabels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
std::vector<float> testLabels = datasets::mnist::ReadLabels("../examples/mnist/t10k-labels-idx1-ubyte", numofdata, LABEL_SIZE);
|
||||
std::cerr << "\tDone." << std::endl;
|
||||
|
||||
std::cerr << "Loading model params...";
|
||||
@ -27,11 +30,11 @@ int main(int argc, char** argv) {
|
||||
Shape bShape;
|
||||
converter.Load("bias", bData, bShape);
|
||||
|
||||
auto initW = [&wData](Tensor t) {
|
||||
auto initW = [wData](Tensor t) {
|
||||
thrust::copy(wData.begin(), wData.end(), t.begin());
|
||||
};
|
||||
|
||||
auto initB = [&bData](Tensor t) {
|
||||
auto initB = [bData](Tensor t) {
|
||||
thrust::copy(bData.begin(), bData.end(), t.begin());
|
||||
};
|
||||
|
||||
@ -39,24 +42,35 @@ int main(int argc, char** argv) {
|
||||
|
||||
|
||||
Expr x = input(shape={whatevs, IMAGE_SIZE}, name="X");
|
||||
Expr y = input(shape={whatevs, LABEL_SIZE}, name="Y");
|
||||
|
||||
Expr w = param(shape={IMAGE_SIZE, LABEL_SIZE}, name="W0", init=initW);
|
||||
Expr b = param(shape={1, LABEL_SIZE}, name="b0", init=initB);
|
||||
|
||||
std::cerr << "Building model...";
|
||||
auto scores = dot(x, w) + b;
|
||||
auto predict = softmax(scores, axis=1, name="pred");
|
||||
auto predict = softmax(dot(x, w) + b,
|
||||
axis=1, name="pred");
|
||||
auto graph = -mean(sum(y * log(predict), axis=1),
|
||||
axis=0, name="cost");
|
||||
|
||||
std::cerr << "\tDone." << std::endl;
|
||||
|
||||
Tensor xt({numofdata, IMAGE_SIZE});
|
||||
xt.Load(testImages);
|
||||
|
||||
predict.forward(numofdata);
|
||||
Tensor yt({numofdata, LABEL_SIZE});
|
||||
yt.Load(testLabels);
|
||||
|
||||
x = xt;
|
||||
y = yt;
|
||||
|
||||
graph.forward(numofdata);
|
||||
auto results = predict.val();
|
||||
graph.backward();
|
||||
|
||||
std::cerr << b.grad().Debug() << std::endl;
|
||||
|
||||
size_t acc = 0;
|
||||
|
||||
for (size_t i = 0; i < testLabels.size(); i += LABEL_SIZE) {
|
||||
size_t correct = 0;
|
||||
size_t predicted = 0;
|
||||
@ -65,11 +79,11 @@ int main(int argc, char** argv) {
|
||||
if (results[i + j] > results[i + predicted]) predicted = j;
|
||||
}
|
||||
acc += (correct == predicted);
|
||||
std::cerr << "corect: " << correct << " | " << predicted << "(";
|
||||
for (size_t j = 0; j < LABEL_SIZE; ++j) {
|
||||
std::cerr << results[i+j] << " ";
|
||||
}
|
||||
std::cerr << std::endl;
|
||||
//std::cerr << "corect: " << correct << " | " << predicted << "(";
|
||||
//for (size_t j = 0; j < LABEL_SIZE; ++j) {
|
||||
// std::cerr << results[i+j] << " ";
|
||||
//}
|
||||
//std::cerr << std::endl;
|
||||
}
|
||||
std::cerr << "ACC: " << float(acc)/numofdata << std::endl;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user