Made e-d use actual MT data instead of synthetic.

This commit is contained in:
Andre Martins 2016-09-16 18:27:54 +01:00
parent 1b27accaa0
commit c54eaf17d5

View File

@ -7,17 +7,20 @@
using namespace marian; using namespace marian;
using namespace keywords; using namespace keywords;
const int input_size = 10; ExpressionGraph build_graph(int cuda_device,
const int output_size = 15; int source_vocabulary_size,
const int embedding_size = 8; int target_vocabulary_size,
const int hidden_size = 5; int embedding_size,
const int batch_size = 25; int hidden_size,
const int num_inputs = 8; int num_source_tokens,
const int num_outputs = 6; int num_target_tokens) {
ExpressionGraph build_graph(int cuda_device) {
std::cerr << "Building computation graph..." << std::endl; std::cerr << "Building computation graph..." << std::endl;
int input_size = source_vocabulary_size;
int output_size = target_vocabulary_size;
int num_inputs = num_source_tokens;
int num_outputs = num_target_tokens;
ExpressionGraph g(cuda_device); ExpressionGraph g(cuda_device);
std::vector<Expr> X, Y, H, S; std::vector<Expr> X, Y, H, S;
@ -25,14 +28,14 @@ ExpressionGraph build_graph(int cuda_device) {
for (int t = 0; t <= num_inputs; ++t) { for (int t = 0; t <= num_inputs; ++t) {
std::stringstream ss; std::stringstream ss;
ss << "X" << t; ss << "X" << t;
X.emplace_back(named(g.input(shape={batch_size, input_size}), ss.str())); X.emplace_back(named(g.input(shape={whatevs, input_size}), ss.str()));
} }
// We're including the stop symbol here. // We're including the stop symbol here.
for (int t = 0; t <= num_outputs; ++t) { for (int t = 0; t <= num_outputs; ++t) {
std::stringstream ss; std::stringstream ss;
ss << "Y" << t; ss << "Y" << t;
Y.emplace_back(named(g.input(shape={batch_size, output_size}), ss.str())); Y.emplace_back(named(g.input(shape={whatevs, output_size}), ss.str()));
} }
// Source embeddings. // Source embeddings.
@ -96,30 +99,125 @@ ExpressionGraph build_graph(int cuda_device) {
int main(int argc, char** argv) { int main(int argc, char** argv) {
#if 1 #if 1
std::cerr << "Loading the data... "; std::cerr << "Loading the data... ";
Vocab sourceVocab, targetVocab; Vocab source_vocab, target_vocab;
// read parallel corpus from file // read parallel corpus from file
std::fstream sourceFile("../examples/mt/dev/newstest2013.de"); std::fstream source_file("../examples/mt/dev/newstest2013.de");
std::fstream targetFile("../examples/mt/dev/newstest2013.en"); std::fstream target_file("../examples/mt/dev/newstest2013.en");
// Right now we're only reading the first few sentence pairs, and defining
// that as the step size.
int batch_size = 64;
int num_source_tokens = -1;
int num_target_tokens = -1;
std::vector<std::vector<size_t> > source_sentences, target_sentences; std::vector<std::vector<size_t> > source_sentences, target_sentences;
std::string sourceLine, targetLine; std::string source_line, target_line;
while (getline(sourceFile, sourceLine)) { while (getline(source_file, source_line)) {
getline(targetFile, targetLine); getline(target_file, target_line);
std::vector<size_t> sourceIds = sourceVocab.ProcessSentence(sourceLine); std::vector<size_t> source_ids = source_vocab.ProcessSentence(source_line);
std::vector<size_t> targetIds = targetVocab.ProcessSentence(targetLine); source_ids.push_back(source_vocab.GetEOS()); // Append EOS token.
source_sentences.push_back(sourceIds); std::vector<size_t> target_ids = target_vocab.ProcessSentence(target_line);
target_sentences.push_back(targetIds); target_ids.push_back(target_vocab.GetEOS()); // Append EOS token.
source_sentences.push_back(source_ids);
target_sentences.push_back(target_ids);
if (num_source_tokens < 0 || source_ids.size() > num_source_tokens) {
num_source_tokens = source_ids.size();
}
if (num_target_tokens < 0 || target_ids.size() > num_target_tokens) {
num_target_tokens = target_ids.size();
}
if (source_sentences.size() == batch_size) break;
} }
std::cerr << "Done." << std::endl; std::cerr << "Done." << std::endl;
std::cerr << source_sentences.size() std::cerr << source_sentences.size()
<< " sentence pairs read." << std::endl; << " sentence pairs read." << std::endl;
std::cerr << "Source vocabulary size: " << sourceVocab.Size() << std::endl; std::cerr << "Source vocabulary size: " << source_vocab.Size() << std::endl;
std::cerr << "Target vocabulary size: " << targetVocab.Size() << std::endl; std::cerr << "Target vocabulary size: " << target_vocab.Size() << std::endl;
#endif std::cerr << "Max source tokens: " << num_source_tokens << std::endl;
std::cerr << "Max target tokens: " << num_target_tokens << std::endl;
// Padding the source and target sentences.
for (auto &sentence : source_sentences) {
for (int i = sentence.size(); i < num_source_tokens; ++i) {
sentence.push_back(source_vocab.GetPAD());
}
}
for (auto &sentence : target_sentences) {
for (int i = sentence.size(); i < num_target_tokens; ++i) {
sentence.push_back(target_vocab.GetPAD());
}
}
std::cerr << "Building the encoder-decoder computation graph..." << std::endl;
// Build the encoder-decoder computation graph. // Build the encoder-decoder computation graph.
ExpressionGraph g = build_graph(0); int embedding_size = 50;
int hidden_size = 100;
ExpressionGraph g = build_graph(0, // cuda device.
source_vocab.Size(),
target_vocab.Size(),
embedding_size,
hidden_size,
num_source_tokens-1,
num_target_tokens-1);
std::cerr << "Attaching the data to the computation graph..." << std::endl;
// Convert the data to dense one-hot vectors.
// TODO: make the graph handle sparse indices with a proper lookup layer.
for (int t = 0; t < num_source_tokens; ++t) {
Tensor Xt({batch_size, static_cast<int>(source_vocab.Size())});
std::vector<float> values(batch_size * source_vocab.Size(), 0.0);
int k = 0;
for (int i = 0; i < batch_size; ++i) {
values[k + source_sentences[i][t]] = 1.0;
k += source_vocab.Size();
}
thrust::copy(values.begin(), values.end(), Xt.begin());
// Attach this slice to the graph.
std::stringstream ss;
ss << "X" << t;
g[ss.str()] = Xt;
}
for (int t = 0; t < num_target_tokens; ++t) {
Tensor Yt({batch_size, static_cast<int>(target_vocab.Size())});
std::vector<float> values(batch_size * target_vocab.Size(), 0.0);
int k = 0;
for (int i = 0; i < batch_size; ++i) {
values[k + target_sentences[i][t]] = 1.0;
k += target_vocab.Size();
}
thrust::copy(values.begin(), values.end(), Yt.begin());
// Attach this slice to the graph.
std::stringstream ss;
ss << "Y" << t;
g[ss.str()] = Yt;
}
#else
int source_vocabulary_size = 10;
int target_vocabulary_size = 15;
int embedding_size = 8;
int hidden_size = 5;
int batch_size = 25;
int num_source_tokens = 8;
int num_target_tokens = 6;
// Build the encoder-decoder computation graph.
ExpressionGraph g = build_graph(0, // cuda device.
source_vocabulary_size,
target_vocabulary_size,
embedding_size,
hidden_size,
num_source_tokens,
num_target_tokens);
int input_size = source_vocabulary_size;
int output_size = target_vocabulary_size;
int num_inputs = num_source_tokens;
int num_outputs = num_target_tokens;
// Generate input data (include the stop symbol). // Generate input data (include the stop symbol).
for (int t = 0; t <= num_inputs; ++t) { for (int t = 0; t <= num_inputs; ++t) {
@ -155,6 +253,8 @@ int main(int argc, char** argv) {
ss << "Y" << t; ss << "Y" << t;
g[ss.str()] = Yt; g[ss.str()] = Yt;
} }
#endif
std::cerr << "Printing the computation graph..." << std::endl; std::cerr << "Printing the computation graph..." << std::endl;
std::cout << g.graphviz() << std::endl; std::cout << g.graphviz() << std::endl;
@ -167,6 +267,7 @@ int main(int argc, char** argv) {
std::cerr << g["cost"].val().Debug() << std::endl; std::cerr << g["cost"].val().Debug() << std::endl;
#if 0
std::cerr << g["X0"].val().Debug() << std::endl; std::cerr << g["X0"].val().Debug() << std::endl;
std::cerr << g["Y0"].val().Debug() << std::endl; std::cerr << g["Y0"].val().Debug() << std::endl;
std::cerr << g["Whh"].grad().Debug() << std::endl; std::cerr << g["Whh"].grad().Debug() << std::endl;
@ -175,6 +276,7 @@ int main(int argc, char** argv) {
std::cerr << g["by"].grad().Debug() << std::endl; std::cerr << g["by"].grad().Debug() << std::endl;
std::cerr << g["Wxh"].grad().Debug() << std::endl; std::cerr << g["Wxh"].grad().Debug() << std::endl;
std::cerr << g["h0"].grad().Debug() << std::endl; std::cerr << g["h0"].grad().Debug() << std::endl;
#endif
return 0; return 0;
} }