mirror of
https://github.com/marian-nmt/marian.git
synced 2024-11-05 09:40:15 +03:00
Merge branch 'master' of https://github.com/emjotde/Marian
This commit is contained in:
commit
f5f5e44486
@ -13,6 +13,7 @@ struct Chainable {
|
||||
virtual ~Chainable() { }
|
||||
virtual void forward() { }
|
||||
virtual void backward() { }
|
||||
virtual void check() { }
|
||||
virtual void init_dependent() { }
|
||||
virtual void set_zero_adjoint() { }
|
||||
|
||||
|
@ -40,7 +40,6 @@ ExpressionGraph build_graph(const std::vector<int>& dims) {
|
||||
biases.emplace_back(
|
||||
g.param(shape={1, out},
|
||||
init=normal()));
|
||||
|
||||
}
|
||||
|
||||
auto scores = named(dot(layers.back(), weights.back()) + biases.back(),
|
||||
|
@ -92,8 +92,7 @@ struct UnaryNodeOp : public Node {
|
||||
template <typename ...Args>
|
||||
UnaryNodeOp(ChainPtr a, Args ...args)
|
||||
: Node(keywords::shape=a->shape(), //@TODO: Check keywords?
|
||||
args...),
|
||||
a_(a) {}
|
||||
args...), a_(a) {}
|
||||
};
|
||||
|
||||
struct LogitNodeOp : public UnaryNodeOp {
|
||||
@ -111,6 +110,10 @@ struct LogitNodeOp : public UnaryNodeOp {
|
||||
a_->grad(), adj_, val_);
|
||||
}
|
||||
|
||||
void check() {
|
||||
|
||||
}
|
||||
|
||||
virtual std::string graphviz() {
|
||||
std::stringstream ss;
|
||||
ss << "\"" << this << "\" [shape=\"box\", label=\"logit\", style=\"filled\", fillcolor=\"yellow\"]" << std::endl;
|
||||
@ -167,10 +170,7 @@ struct SoftmaxNodeOp : public UnaryNodeOp {
|
||||
// Classification." ICML 2016.
|
||||
// http://jmlr.org/proceedings/papers/v48/martins16.pdf
|
||||
|
||||
Tensor result(adj_.shape());
|
||||
thrust::copy(adj_.begin(), adj_.end(), result.begin());
|
||||
SubtractMean(&result, val_);
|
||||
Element(_1 += _2 * _3, a_->grad(), val_, result);
|
||||
SoftmaxGrad(a_->grad(), adj_, val_);
|
||||
}
|
||||
|
||||
virtual std::string graphviz() {
|
||||
@ -179,7 +179,6 @@ struct SoftmaxNodeOp : public UnaryNodeOp {
|
||||
ss << "\"" << a_ << "\" -> \"" << this << "\"" << std::endl << std::endl;
|
||||
return ss.str();
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
struct ArgmaxNodeOp : public UnaryNodeOp {
|
||||
|
@ -12,20 +12,22 @@ static cublasHandle_t create_handle() {
|
||||
}
|
||||
cublasHandle_t cublasHandle = create_handle();
|
||||
|
||||
__global__ void gSubtractMean(float* out, float* weights,
|
||||
size_t rows, size_t cols) {
|
||||
__global__ void gSoftmaxGrad(float* grad, const float* adj, const float* val,
|
||||
const int rows, const int cols) {
|
||||
for(int bid = 0; bid < rows; bid += gridDim.x) {
|
||||
int j = bid + blockIdx.x;
|
||||
if(j < rows) {
|
||||
extern __shared__ float _share[];
|
||||
float* _sum = _share + blockDim.x;
|
||||
float* sp = out + j * cols;
|
||||
float* w = weights + j * cols;
|
||||
|
||||
float* gradRow = grad + j * cols;
|
||||
const float* adjRow = adj + j * cols;
|
||||
const float* valRow = val + j * cols;
|
||||
_sum[threadIdx.x] = 0.0;
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x) {
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols) {
|
||||
_sum[threadIdx.x] += w[id] * sp[id];
|
||||
_sum[threadIdx.x] += valRow[id] * adjRow[id];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
@ -41,25 +43,25 @@ __global__ void gSubtractMean(float* out, float* weights,
|
||||
for(int tid = 0; tid < cols; tid += blockDim.x){
|
||||
int id = tid + threadIdx.x;
|
||||
if(id < cols)
|
||||
sp[id] -= _sum[0];
|
||||
gradRow[id] += valRow[id] * (adjRow[id] - _sum[0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SubtractMean(Tensor* Out, Tensor &Weights) {
|
||||
// Out and Weights are both m-by-k matrices, passed as input.
|
||||
// A weighted average of each row of Out (according to the weights
|
||||
// specified in Weights) is computed and subtracted from Out.
|
||||
// Out is both input and output.
|
||||
size_t m = Out->shape()[0];
|
||||
size_t k = Out->shape()[1];
|
||||
void SoftmaxGrad(Tensor grad, Tensor adj, Tensor val) {
|
||||
// grad and val are both m-by-k matrices, passed as input.
|
||||
// A weighted average of each row of grad (according to the weights
|
||||
// specified in val) is computed and subtracted from Out.
|
||||
// adj is multiplied for each element to get backward step in autodiff
|
||||
int m = grad.shape()[0];
|
||||
int k = grad.shape()[1];
|
||||
|
||||
int blocks = std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = std::min(MAX_THREADS, (int) k);
|
||||
int blocks = std::min(MAX_BLOCKS, m);
|
||||
int threads = std::min(MAX_THREADS, k);
|
||||
int shared = sizeof(float) * threads * 2;
|
||||
gSubtractMean<<<blocks, threads, shared>>>(Out->data(), Weights.data(),
|
||||
m, k);
|
||||
gSoftmaxGrad<<<blocks, threads, shared>>>(grad.data(), adj.data(), val.data(),
|
||||
m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
@ -161,8 +163,9 @@ void Softmax(Tensor* Out) {
|
||||
gSoftMax<<<blocks, threads, shared>>>(Out->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
__global__ void gArgMax(float *out, const float *data, size_t rows, size_t cols) {
|
||||
__global__ void gArgmax(float *out, const float *data, size_t rows, size_t cols) {
|
||||
size_t row = blockIdx.x;
|
||||
size_t startInd = row * cols;
|
||||
float maxScore = -99999;
|
||||
@ -185,7 +188,7 @@ void Argmax(Tensor* Out, const Tensor* In) {
|
||||
int blocks = m; //std::min(MAX_BLOCKS, (int) m);
|
||||
int threads = k; //std::min(MAX_THREADS, (int) k);
|
||||
//int shared = sizeof(float) * threads * 2;
|
||||
gArgMax<<<blocks, threads>>>(Out->data(), In->data(), m, k);
|
||||
gArgmax<<<blocks, threads>>>(Out->data(), In->data(), m, k);
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
|
@ -142,20 +142,11 @@ void Element(Functor functor,
|
||||
cudaStreamSynchronize(0);
|
||||
}
|
||||
|
||||
__global__ void gSubtractMean(float* out, float* weights,
|
||||
size_t rows, size_t cols);
|
||||
|
||||
void SubtractMean(Tensor* Out, Tensor &Weights);
|
||||
|
||||
__global__ void gSubtractMax(float* out, size_t rows, size_t cols);
|
||||
|
||||
void SubtractMax(Tensor* Out);
|
||||
|
||||
__global__ void gSoftMax(float* softMaxP, size_t rows, size_t cols);
|
||||
|
||||
void Softmax(Tensor* Out);
|
||||
|
||||
__global__ void gArgMax(float *out, const float *data, size_t rows, size_t cols);
|
||||
void SoftmaxGrad(Tensor grad, Tensor adj, Tensor val);
|
||||
|
||||
void Argmax(Tensor* Out, const Tensor* In);
|
||||
|
||||
|
54
src/test.cu
54
src/test.cu
@ -17,33 +17,33 @@ string output(const std::vector<float> &vec)
|
||||
return strm.str();
|
||||
}
|
||||
|
||||
void testArgMax()
|
||||
{
|
||||
using namespace std;
|
||||
using namespace marian;
|
||||
|
||||
std::vector<float> hVec({29,19, 49,39, 79,99, 79,39});
|
||||
cerr << "hVec =" << output(hVec) << endl;
|
||||
|
||||
thrust::device_vector<float> dVec(8);
|
||||
thrust::copy(hVec.begin(), hVec.end(), dVec.begin());
|
||||
float *data = thrust::raw_pointer_cast(dVec.data());
|
||||
|
||||
thrust::device_vector<float> dLabel(4);
|
||||
float *labelPtr = thrust::raw_pointer_cast(dLabel.data());
|
||||
|
||||
gArgMax<<<4, 1, sizeof(float)>>>(labelPtr, data, 4, 2);
|
||||
|
||||
std::vector<float> hVec2(8);
|
||||
thrust::copy(dVec.begin(), dVec.end(), hVec2.begin());
|
||||
cerr << "hVec2=" << output(hVec2) << endl;
|
||||
|
||||
std::vector<float> hLabel(4);
|
||||
thrust::copy(dLabel.begin(), dLabel.end(), hLabel.begin());
|
||||
cerr << "hLabel=" << output(hLabel) << endl;
|
||||
|
||||
exit(0);
|
||||
}
|
||||
//void testArgMax()
|
||||
//{
|
||||
// using namespace std;
|
||||
// using namespace marian;
|
||||
//
|
||||
// std::vector<float> hVec({29,19, 49,39, 79,99, 79,39});
|
||||
// cerr << "hVec =" << output(hVec) << endl;
|
||||
//
|
||||
// thrust::device_vector<float> dVec(8);
|
||||
// thrust::copy(hVec.begin(), hVec.end(), dVec.begin());
|
||||
// float *data = thrust::raw_pointer_cast(dVec.data());
|
||||
//
|
||||
// thrust::device_vector<float> dLabel(4);
|
||||
// float *labelPtr = thrust::raw_pointer_cast(dLabel.data());
|
||||
//
|
||||
// gArgMax<<<4, 1, sizeof(float)>>>(labelPtr, data, 4, 2);
|
||||
//
|
||||
// std::vector<float> hVec2(8);
|
||||
// thrust::copy(dVec.begin(), dVec.end(), hVec2.begin());
|
||||
// cerr << "hVec2=" << output(hVec2) << endl;
|
||||
//
|
||||
// std::vector<float> hLabel(4);
|
||||
// thrust::copy(dLabel.begin(), dLabel.end(), hLabel.begin());
|
||||
// cerr << "hLabel=" << output(hLabel) << endl;
|
||||
//
|
||||
// exit(0);
|
||||
//}
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
int main(int argc, char** argv) {
|
||||
|
Loading…
Reference in New Issue
Block a user