mirror of
https://github.com/marian-nmt/marian.git
synced 2024-12-03 03:54:56 +03:00
merge
This commit is contained in:
commit
ff7bb00756
31
README.md
31
README.md
@ -1,8 +1,10 @@
|
||||
|
||||
# AmuNMT
|
||||
[![Join the chat at https://gitter.im/amunmt/amunmt](https://badges.gitter.im/amunmt/amunmt.svg)](https://gitter.im/amunmt/amunmt?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
|
||||
[![CUDA build Status](http://37.247.57.181:8000/job/amunmt_compilation_cuda/badge/icon)](http://37.247.57.181:8000/job/amunmt_compilation_cuda/)
|
||||
[![CPU Build Status](http://37.247.57.181:8000/job/amunmt_compilation_cpu/badge/icon)](http://37.247.57.181:8000/job/amunmt_compilation_cpu/)
|
||||
|
||||
[![CUDABuild Status](http://vali.inf.ed.ac.uk/jenkins/buildStatus/icon?job=amunmt_compilation_cuda)](http://vali.inf.ed.ac.uk/jenkins/job/amunmt_compilation_cuda/)
|
||||
[![CPU Build Status](http://vali.inf.ed.ac.uk/jenkins/buildStatus/icon?job=amunmt_compilation_cpu)](http://vali.inf.ed.ac.uk/jenkins/job/amunmt_compilation_cpu/)
|
||||
|
||||
|
||||
A C++ inference engine for Neural Machine Translation (NMT) models trained with Theano-based scripts from
|
||||
Nematus (https://github.com/rsennrich/nematus) or DL4MT (https://github.com/nyu-dl/dl4mt-tutorial)
|
||||
@ -92,14 +94,35 @@ AmuNMT has integrated support for [BPE encoding](https://github.com/rsennrich/su
|
||||
bpe: bpe.codes
|
||||
debpe: true
|
||||
|
||||
## Python Bindings
|
||||
|
||||
Python bindings allow to run AmuNMT decoder in python scripts. The compilation of the bindings requires `python-dev` package. To compile the bindings run:
|
||||
```
|
||||
make python
|
||||
```
|
||||
|
||||
The Python bindings consist of 2 function: `init` and `translate`:
|
||||
|
||||
```python
|
||||
import libamunmt
|
||||
|
||||
libamunmt.init('-c config.yml')
|
||||
print libamunmt.translate(['this is a little test .'])
|
||||
```
|
||||
|
||||
The `init` function init the decoder and the syntax is the same as in command line. The `translate`
|
||||
function takes a list of sentences to translate. For real-world example, see the `scripts/amunmt_erver.py`
|
||||
script, which uses python bindings to run REST server.
|
||||
|
||||
|
||||
## Using GPU/CPU threads
|
||||
AmuNMT can use GPUs, CPUs, or both, to distribute translation of different sentences.
|
||||
AmuNMT can use GPUs, CPUs, or both, to distribute translation of different sentences. **However, it is unlikely that CPUs used together with GPUs yield any performance improvement. It is probably better to only use the GPU if one or more are available.**
|
||||
|
||||
cpu-threads: 8
|
||||
gpu-threads: 2
|
||||
devices: [0, 1]
|
||||
|
||||
The setting above uses 8 CPU threads and 4 GPU threads (2 GPUs x 2 threads). The `gpu-threads` and `devices` options are only available when AmuNMT has been compiled with CUDA support. Multiple GPU threads can be used to increase GPU saturation, but will likely not result in a large performance boost. By default, `gpu-threads` is set to `1` and `cpu-threads` to `0` if CUDA is available. Otherwise `cpu-threads` is set to `1`. To disable the GPU set `gpu-threads` to `0`. Setting both `gpu-threads` and `cpu-threads` to `0` will result in an exception.
|
||||
The setting above uses 8 CPU threads and 4 GPU threads (2 GPUs x 2 threads). The `gpu-threads` and `devices` options are only available when AmuNMT has been compiled with CUDA support. Multiple GPU threads can be used to increase GPU saturation, but will likely not result in a large performance boost. By default, `gpu-threads` is set to `1` and `cpu-threads` to `0` if CUDA is available. Otherwise `cpu-threads` is set to `1`. To disable the GPU set `gpu-threads` to `0`. Setting both `gpu-threads` and `cpu-threads` to `0` will result in an exception.
|
||||
|
||||
## Example usage
|
||||
|
||||
|
@ -64,7 +64,7 @@ cuda_add_executable(
|
||||
)
|
||||
|
||||
if(PYTHONLIBS_FOUND)
|
||||
cuda_add_library(amunmt SHARED
|
||||
cuda_add_library(python SHARED
|
||||
python/amunmt.cpp
|
||||
# gpu/decoder/ape_penalty.cu
|
||||
gpu/decoder/encoder_decoder.cu
|
||||
@ -80,7 +80,9 @@ cuda_add_library(amunmt SHARED
|
||||
$<TARGET_OBJECTS:cpumode>
|
||||
$<TARGET_OBJECTS:libyaml-cpp>
|
||||
)
|
||||
set_target_properties("amunmt" PROPERTIES EXCLUDE_FROM_ALL 1)
|
||||
set_target_properties("python" PROPERTIES EXCLUDE_FROM_ALL 1)
|
||||
set_target_properties("python" PROPERTIES OUTPUT_NAME "amunmt")
|
||||
|
||||
endif(PYTHONLIBS_FOUND)
|
||||
|
||||
cuda_add_library(mosesplugin STATIC
|
||||
@ -116,7 +118,7 @@ add_executable(
|
||||
)
|
||||
|
||||
if(PYTHONLIBS_FOUND)
|
||||
add_library(amunmt SHARED
|
||||
add_library(python SHARED
|
||||
python/amunmt.cpp
|
||||
common/loader_factory.cpp
|
||||
$<TARGET_OBJECTS:libcnpy>
|
||||
@ -124,14 +126,15 @@ add_library(amunmt SHARED
|
||||
$<TARGET_OBJECTS:libcommon>
|
||||
$<TARGET_OBJECTS:libyaml-cpp>
|
||||
)
|
||||
set_target_properties("amunmt" PROPERTIES EXCLUDE_FROM_ALL 1)
|
||||
set_target_properties("python" PROPERTIES EXCLUDE_FROM_ALL 1)
|
||||
set_target_properties("python" PROPERTIES OUTPUT_NAME "amunmt")
|
||||
endif(PYTHONLIBS_FOUND)
|
||||
endif(CUDA_FOUND)
|
||||
|
||||
SET(EXES "amun")
|
||||
|
||||
if(PYTHONLIBS_FOUND)
|
||||
SET(EXES ${EXES} "amunmt")
|
||||
SET(EXES ${EXES} "python")
|
||||
endif(PYTHONLIBS_FOUND)
|
||||
|
||||
foreach(exec ${EXES})
|
||||
|
@ -22,20 +22,22 @@ using namespace std;
|
||||
namespace amunmt {
|
||||
|
||||
God::God()
|
||||
:threadIncr_(0)
|
||||
: threadIncr_(0)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
God::~God() {}
|
||||
God::~God()
|
||||
{
|
||||
}
|
||||
|
||||
God& God::Init(const std::string& options) {
|
||||
std::vector<std::string> args = boost::program_options::split_unix(options);
|
||||
int argc = args.size() + 1;
|
||||
char* argv[argc];
|
||||
argv[0] = const_cast<char*>("bogus");
|
||||
for(int i = 1; i < argc; i++)
|
||||
for (int i = 1; i < argc; ++i) {
|
||||
argv[i] = const_cast<char*>(args[i-1].c_str());
|
||||
}
|
||||
return Init(argc, argv);
|
||||
}
|
||||
|
||||
@ -49,35 +51,35 @@ God& God::Init(int argc, char** argv) {
|
||||
config_.AddOptions(argc, argv);
|
||||
config_.LogOptions();
|
||||
|
||||
if(Get("source-vocab").IsSequence()) {
|
||||
for(auto sourceVocabPath : Get<std::vector<std::string>>("source-vocab"))
|
||||
sourceVocabs_.emplace_back(new Vocab(sourceVocabPath));
|
||||
}
|
||||
else {
|
||||
sourceVocabs_.emplace_back(new Vocab(Get<std::string>("source-vocab")));
|
||||
if (Get("source-vocab").IsSequence()) {
|
||||
for (auto sourceVocabPath : Get<std::vector<std::string>>("source-vocab")) {
|
||||
sourceVocabs_.emplace_back(new Vocab(sourceVocabPath));
|
||||
}
|
||||
} else {
|
||||
sourceVocabs_.emplace_back(new Vocab(Get<std::string>("source-vocab")));
|
||||
}
|
||||
targetVocab_.reset(new Vocab(Get<std::string>("target-vocab")));
|
||||
|
||||
weights_ = Get<std::map<std::string, float>>("weights");
|
||||
|
||||
if(Get<bool>("show-weights")) {
|
||||
LOG(info) << "Outputting weights and exiting";
|
||||
for(auto && pair : weights_) {
|
||||
std::cout << pair.first << "= " << pair.second << std::endl;
|
||||
}
|
||||
exit(0);
|
||||
LOG(info) << "Outputting weights and exiting";
|
||||
for(auto && pair : weights_) {
|
||||
std::cout << pair.first << "= " << pair.second << std::endl;
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
|
||||
LoadScorers();
|
||||
LoadFiltering();
|
||||
|
||||
if (Has("input-file")) {
|
||||
LOG(info) << "Reading from " << Get<std::string>("input-file");
|
||||
inputStream_.reset(new InputFileStream(Get<std::string>("input-file")));
|
||||
LOG(info) << "Reading from " << Get<std::string>("input-file");
|
||||
inputStream_.reset(new InputFileStream(Get<std::string>("input-file")));
|
||||
}
|
||||
else {
|
||||
LOG(info) << "Reading from stdin";
|
||||
inputStream_.reset(new InputFileStream(std::cin));
|
||||
LOG(info) << "Reading from stdin";
|
||||
inputStream_.reset(new InputFileStream(std::cin));
|
||||
}
|
||||
|
||||
LoadPrePostProcessing();
|
||||
@ -184,11 +186,9 @@ std::vector<ScorerPtr> God::GetScorers(const DeviceInfo &deviceInfo) const {
|
||||
std::vector<ScorerPtr> scorers;
|
||||
|
||||
if (deviceInfo.deviceType == CPUDevice) {
|
||||
//cerr << "CPU GetScorers" << endl;
|
||||
for (auto&& loader : cpuLoaders_ | boost::adaptors::map_values)
|
||||
scorers.emplace_back(loader->NewScorer(*this, deviceInfo));
|
||||
} else {
|
||||
//cerr << "GPU GetScorers" << endl;
|
||||
for (auto&& loader : gpuLoaders_ | boost::adaptors::map_values)
|
||||
scorers.emplace_back(loader->NewScorer(*this, deviceInfo));
|
||||
}
|
||||
@ -233,14 +233,12 @@ std::vector<std::string> God::Postprocess(const std::vector<std::string>& input)
|
||||
}
|
||||
return processed;
|
||||
}
|
||||
// clean up cuda vectors before cuda context goes out of scope
|
||||
|
||||
void God::CleanUp() {
|
||||
for (Loaders::value_type& loader : cpuLoaders_) {
|
||||
//cerr << "cpu loader=" << loader.first << endl;
|
||||
loader.second.reset(nullptr);
|
||||
}
|
||||
for (Loaders::value_type& loader : gpuLoaders_) {
|
||||
//cerr << "gpu loader=" << loader.first << endl;
|
||||
loader.second.reset(nullptr);
|
||||
}
|
||||
}
|
||||
@ -274,7 +272,6 @@ DeviceInfo God::GetNextDevice() const
|
||||
|
||||
++threadIncr_;
|
||||
|
||||
//cerr << "GetNextDevice=" << ret << endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user