Fast Neural Machine Translation in C++
Go to file
Qianqian Zhu 2a9c0bb377
Add graph documentations (#788)
* add API docs for expression_graph.h
* change API docs to doxygen-readable format
* add API docs for node_initializers
* update doxygen configure file
* add hyperlinks and remove layers section from graph documentation
* fixing typos and links on graph doc
2021-02-28 08:07:19 +00:00
.github Remove ::set-env from GitHub checks for Windows (#766) 2020-11-19 20:12:28 +00:00
cmake Merged PR 14402: Sync with public marian-dev master 1.9.31 2020-07-28 22:19:40 +00:00
contrib Update marian-backend (#786) 2021-02-22 13:26:55 +00:00
doc Add graph documentations (#788) 2021-02-28 08:07:19 +00:00
examples@c19b7814d7 Merged PR 11103: Clear cache for RNN object between batches 2020-01-11 20:29:43 +00:00
regression-tests@18c4e54806 increase version to 1.10.0 2021-02-06 15:35:16 -08:00
scripts Remove ::set-env from GitHub checks for Windows (#766) 2020-11-19 20:12:28 +00:00
src Add graph documentations (#788) 2021-02-28 08:07:19 +00:00
vs Merged PR 14437: minor fixes to make VS happy after latest changes 2020-07-29 18:00:59 +00:00
.clang-format Update clang-format 2018-10-19 13:40:42 +01:00
.gitattributes revisited fillBatches() and optimized it a little; 2018-10-08 13:29:16 -07:00
.gitignore Add option for printing CMake cached variables (#583) 2020-03-10 10:29:50 -07:00
.gitmodules Integrate intgemm into marian (#595) 2021-01-24 16:02:30 -08:00
azure-pipelines.yml Merged PR 16429: Use Boost 1.72 in Azure pipelines 2020-11-13 19:17:25 +00:00
CHANGELOG.md Add documentation platform based on Sphinx+Doxygen+Breathe+Exhale (#803) 2021-02-23 16:25:30 +00:00
CMakeLists.txt Fix intgemm merge (#793) 2021-01-25 12:09:34 +00:00
CMakeSettings.json Merged PR 14262: Update MSVC CMake build and instructions 2020-07-25 20:57:17 +00:00
CONTRIBUTING.md Add templates for GitHub issues and pull requests 2020-03-16 20:10:18 -07:00
Doxyfile.in Add graph documentations (#788) 2021-02-28 08:07:19 +00:00
LICENSE.md Update LICENSE.md 2017-02-27 01:16:42 +00:00
README.md Update README.md 2019-11-27 19:27:49 -08:00
VERSION Update VERSION 2021-02-22 13:01:38 +00:00

Marian

Build Status CUDA 9 Build Status CUDA 10 Build Status CPU Tests Status Latest release License: MIT Twitter

Marian is an efficient Neural Machine Translation framework written in pure C++ with minimal dependencies.

Named in honour of Marian Rejewski, a Polish mathematician and cryptologist.

Main features:

  • Efficient pure C++ implementation
  • Fast multi-GPU training and GPU/CPU translation
  • State-of-the-art NMT architectures: deep RNN and transformer
  • Permissive open source license (MIT)
  • more detail...

If you use this, please cite:

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, Alexandra Birch (2018). Marian: Fast Neural Machine Translation in C++ (http://www.aclweb.org/anthology/P18-4020)

@InProceedings{mariannmt,
    title     = {Marian: Fast Neural Machine Translation in {C++}},
    author    = {Junczys-Dowmunt, Marcin and Grundkiewicz, Roman and
                 Dwojak, Tomasz and Hoang, Hieu and Heafield, Kenneth and
                 Neckermann, Tom and Seide, Frank and Germann, Ulrich and
                 Fikri Aji, Alham and Bogoychev, Nikolay and
                 Martins, Andr\'{e} F. T. and Birch, Alexandra},
    booktitle = {Proceedings of ACL 2018, System Demonstrations},
    pages     = {116--121},
    publisher = {Association for Computational Linguistics},
    year      = {2018},
    month     = {July},
    address   = {Melbourne, Australia},
    url       = {http://www.aclweb.org/anthology/P18-4020}
}

Amun

The handwritten decoder for RNN models compatible with Marian and Nematus has been superseded by the Marian decoder. The code is available in a separate repository: https://github.com/marian-nmt/amun

Website

More information on https://marian-nmt.github.io

Acknowledgements

The development of Marian received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreements 688139 (SUMMA; 2016-2019), 645487 (Modern MT; 2015-2017), 644333 (TraMOOC; 2015-2017), 644402 (HiML; 2015-2017), 825303 (Bergamot; 2019-2021), the Amazon Academic Research Awards program, the World Intellectual Property Organization, and is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract #FA8650-17-C-9117.

This software contains source code provided by NVIDIA Corporation.