Fast Neural Machine Translation in C++
Go to file
Marcin Junczys-Dowmunt adba021a5e bump version
2020-03-12 20:49:31 -07:00
cmake Add option for printing CMake cached variables (#583) 2020-03-10 10:29:50 -07:00
contrib weird mode change back 2019-04-29 19:01:29 -07:00
doc Added more references 2016-10-06 10:25:53 -05:00
examples@c19b7814d7 Merged PR 11103: Clear cache for RNN object between batches 2020-01-11 20:29:43 +00:00
regression-tests@6a08849b23 bump version 2020-03-06 20:46:11 -08:00
scripts Update script exporting embeddings to support tied embeddings (#569) 2020-01-29 13:19:21 -08:00
src Merged PR 11998: Lazy init for cuda handles (cusparse and cublas) 2020-03-13 03:22:40 +00:00
vs Merged PR 10266: FBGEMM based Int8 model 2019-12-03 19:14:18 +00:00
.clang-format Update clang-format 2018-10-19 13:40:42 +01:00
.gitattributes revisited fillBatches() and optimized it a little; 2018-10-08 13:29:16 -07:00
.gitignore Add option for printing CMake cached variables (#583) 2020-03-10 10:29:50 -07:00
.gitmodules Move fbgemm url under marian-nmt 2019-07-08 10:13:02 -07:00
CHANGELOG.md bump version 2020-03-12 20:49:31 -07:00
CMakeLists.txt Add option for printing CMake cached variables (#583) 2020-03-10 10:29:50 -07:00
CMakeSettings.json Keep only Release and Debug targets with Ninja 2018-09-19 14:58:10 +02:00
CONTRIBUTING.md Update CONTRIBUTING 2017-11-13 12:29:53 +00:00
Doxyfile.in Fix latex generation in doxygen. 2019-02-16 22:48:10 +00:00
LICENSE.md Update LICENSE.md 2017-02-27 01:16:42 +00:00
README.md Update README.md 2019-11-27 19:27:49 -08:00
VERSION bump version 2020-03-12 20:49:31 -07:00

Marian

Build Status CUDA 9 Build Status CUDA 10 Build Status CPU Tests Status Latest release License: MIT Twitter

Marian is an efficient Neural Machine Translation framework written in pure C++ with minimal dependencies.

Named in honour of Marian Rejewski, a Polish mathematician and cryptologist.

Main features:

  • Efficient pure C++ implementation
  • Fast multi-GPU training and GPU/CPU translation
  • State-of-the-art NMT architectures: deep RNN and transformer
  • Permissive open source license (MIT)
  • more detail...

If you use this, please cite:

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, Alexandra Birch (2018). Marian: Fast Neural Machine Translation in C++ (http://www.aclweb.org/anthology/P18-4020)

@InProceedings{mariannmt,
    title     = {Marian: Fast Neural Machine Translation in {C++}},
    author    = {Junczys-Dowmunt, Marcin and Grundkiewicz, Roman and
                 Dwojak, Tomasz and Hoang, Hieu and Heafield, Kenneth and
                 Neckermann, Tom and Seide, Frank and Germann, Ulrich and
                 Fikri Aji, Alham and Bogoychev, Nikolay and
                 Martins, Andr\'{e} F. T. and Birch, Alexandra},
    booktitle = {Proceedings of ACL 2018, System Demonstrations},
    pages     = {116--121},
    publisher = {Association for Computational Linguistics},
    year      = {2018},
    month     = {July},
    address   = {Melbourne, Australia},
    url       = {http://www.aclweb.org/anthology/P18-4020}
}

Amun

The handwritten decoder for RNN models compatible with Marian and Nematus has been superseded by the Marian decoder. The code is available in a separate repository: https://github.com/marian-nmt/amun

Website

More information on https://marian-nmt.github.io

Acknowledgements

The development of Marian received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreements 688139 (SUMMA; 2016-2019), 645487 (Modern MT; 2015-2017), 644333 (TraMOOC; 2015-2017), 644402 (HiML; 2015-2017), 825303 (Bergamot; 2019-2021), the Amazon Academic Research Awards program, the World Intellectual Property Organization, and is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract #FA8650-17-C-9117.

This software contains source code provided by NVIDIA Corporation.