mosesdecoder/mert/Scorer.h

175 lines
4.1 KiB
C
Raw Normal View History

#ifndef MERT_SCORER_H_
#define MERT_SCORER_H_
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
#include "Types.h"
#include "ScoreData.h"
using namespace std;
class ScoreStats;
/**
* Superclass of all scorers and dummy implementation.
*
* In order to add a new scorer it should be sufficient to override the members
* prepareStats(), setReferenceFiles() and score() (or calculateScore()).
*/
class Scorer
{
public:
Scorer(const string& name, const string& config);
virtual ~Scorer();
/**
* Return the number of statistics needed for the computation of the score.
*/
virtual size_t NumberOfScores() const {
cerr << "Scorer: 0" << endl;
return 0;
}
/**
* Set the reference files. This must be called before prepareStats().
*/
virtual void setReferenceFiles(const vector<string>& referenceFiles) {
2012-02-01 16:26:47 +04:00
// do nothing
}
/**
* Process the given guessed text, corresponding to the given reference sindex
* and add the appropriate statistics to the entry.
*/
2012-02-01 16:26:47 +04:00
virtual void prepareStats(size_t sindex, const string& text, ScoreStats& entry) {
// do nothing.
}
virtual void prepareStats(const string& sindex, const string& text, ScoreStats& entry) {
2012-02-01 13:13:00 +04:00
this->prepareStats(static_cast<size_t>(atoi(sindex.c_str())), text, entry);
}
/**
* Score using each of the candidate index, then go through the diffs
* applying each in turn, and calculating a new score each time.
*/
virtual void score(const candidates_t& candidates, const diffs_t& diffs,
statscores_t& scores) const {
//dummy impl
if (!m_score_data) {
throw runtime_error("score data not loaded");
}
scores.push_back(0);
for (size_t i = 0; i < diffs.size(); ++i) {
scores.push_back(0);
}
}
/**
* Calculate the score of the sentences corresponding to the list of candidate
* indices. Each index indicates the 1-best choice from the n-best list.
*/
float score(const candidates_t& candidates) const {
diffs_t diffs;
statscores_t scores;
score(candidates, diffs, scores);
return scores[0];
}
const string& getName() const {
return m_name;
}
size_t getReferenceSize() const {
if (m_score_data) {
return m_score_data->size();
}
return 0;
}
/**
* Set the score data, prior to scoring.
*/
void setScoreData(ScoreData* data) {
m_score_data = data;
}
private:
class Encoder {
public:
Encoder();
virtual ~Encoder();
int Encode(const std::string& token);
void Clear() { m_vocab.clear(); }
private:
std::map<std::string, int> m_vocab;
};
2012-02-01 16:26:47 +04:00
void InitConfig(const string& config);
string m_name;
Encoder* m_encoder;
map<string, string> m_config;
protected:
ScoreData* m_score_data;
bool m_enable_preserve_case;
/**
* Get value of config variable. If not provided, return default.
*/
string getConfig(const string& key, const string& def="") const {
map<string,string>::const_iterator i = m_config.find(key);
if (i == m_config.end()) {
return def;
} else {
return i->second;
}
}
/**
* Tokenise line and encode.
* Note: We assume that all tokens are separated by single spaces.
*/
void TokenizeAndEncode(const string& line, vector<int>& encoded);
void ClearEncoder() { m_encoder->Clear(); }
};
/**
* Abstract base class for Scorers that work by adding statistics across all
* outout sentences, then apply some formula, e.g., BLEU, PER.
*/
class StatisticsBasedScorer : public Scorer
{
public:
StatisticsBasedScorer(const string& name, const string& config);
virtual ~StatisticsBasedScorer() {}
virtual void score(const candidates_t& candidates, const diffs_t& diffs,
statscores_t& scores) const;
protected:
enum RegularisationType {
NONE,
AVERAGE,
MINIMUM,
};
/**
* Calculate the actual score.
*/
2011-11-12 05:40:54 +04:00
virtual statscore_t calculateScore(const vector<int>& totals) const = 0;
// regularisation
RegularisationType m_regularization_type;
size_t m_regularization_window;
};
#endif // MERT_SCORER_H_