mosesdecoder/mert/SentenceLevelScorer.cpp

152 lines
5.0 KiB
C++
Raw Normal View History

//
// SentenceLevelScorer.cpp
// mert_lib
//
// Created by Hieu Hoang on 22/06/2012.
// Copyright 2012 __MyCompanyName__. All rights reserved.
//
#include "SentenceLevelScorer.h"
#include <iostream>
#include <boost/spirit/home/support/detail/lexer/runtime_error.hpp>
using namespace std;
namespace MosesTuning
{
SentenceLevelScorer::SentenceLevelScorer(const string& name, const string& config)
: Scorer(name, config),
m_regularisationStrategy(REG_NONE),
m_regularisationWindow(0) {
Init();
}
SentenceLevelScorer::~SentenceLevelScorer() {}
void SentenceLevelScorer::Init() {
// Configure regularisation.
static string KEY_TYPE = "regtype";
static string KEY_WINDOW = "regwin";
static string KEY_CASE = "case";
static string TYPE_NONE = "none";
static string TYPE_AVERAGE = "average";
static string TYPE_MINIMUM = "min";
static string TRUE = "true";
static string FALSE = "false";
const string type = getConfig(KEY_TYPE, TYPE_NONE);
if (type == TYPE_NONE) {
m_regularisationStrategy = REG_NONE;
} else if (type == TYPE_AVERAGE) {
m_regularisationStrategy = REG_AVERAGE;
} else if (type == TYPE_MINIMUM) {
m_regularisationStrategy = REG_MINIMUM;
} else {
throw boost::lexer::runtime_error("Unknown scorer regularisation strategy: " + type);
}
cerr << "Using scorer regularisation strategy: " << type << endl;
const string window = getConfig(KEY_WINDOW, "0");
m_regularisationWindow = atoi(window.c_str());
cerr << "Using scorer regularisation window: " << m_regularisationWindow << endl;
const string preservecase = getConfig(KEY_CASE, TRUE);
if (preservecase == TRUE) {
m_enable_preserve_case = true;
} else if (preservecase == FALSE) {
m_enable_preserve_case = false;
}
cerr << "Using case preservation: " << m_enable_preserve_case << endl;
}
void SentenceLevelScorer::score(const candidates_t& candidates, const diffs_t& diffs,
statscores_t& scores)
{
//cout << "*******SentenceLevelScorer::score" << endl;
if (!m_score_data) {
throw runtime_error("Score data not loaded");
}
//calculate the score for the candidates
if (m_score_data->size() == 0) {
throw runtime_error("Score data is empty");
}
if (candidates.size() == 0) {
throw runtime_error("No candidates supplied");
}
const int numCounts = m_score_data->get(0,candidates[0]).size();
vector<float> totals(numCounts);
for (size_t i = 0; i < candidates.size(); ++i) {
//cout << " i " << i << " candi " << candidates[i] ;
ScoreStats stats = m_score_data->get(i,candidates[i]);
if (stats.size() != totals.size()) {
stringstream msg;
msg << "Statistics for (" << "," << candidates[i] << ") have incorrect "
<< "number of fields. Found: " << stats.size() << " Expected: "
<< totals.size();
throw runtime_error(msg.str());
}
//Add up scores for all sentences, would normally be just one score
for (size_t k = 0; k < totals.size(); ++k) {
totals[k] += stats.get(k);
//cout << " stats " << stats.get(k) ;
}
//cout << endl;
}
//take average
for (size_t k = 0; k < totals.size(); ++k) {
//cout << "totals = " << totals[k] << endl;
//cout << "cand = " << candidates.size() << endl;
totals[k] /= candidates.size();
//cout << "finaltotals = " << totals[k] << endl;
}
scores.push_back(calculateScore(totals));
candidates_t last_candidates(candidates);
//apply each of the diffs, and get new scores
for (size_t i = 0; i < diffs.size(); ++i) {
for (size_t j = 0; j < diffs[i].size(); ++j) {
const size_t sid = diffs[i][j].first;
const size_t nid = diffs[i][j].second;
//cout << "sid = " << sid << endl;
//cout << "nid = " << nid << endl;
const size_t last_nid = last_candidates[sid];
for (size_t k = 0; k < totals.size(); ++k) {
const float diff = m_score_data->get(sid,nid).get(k)
- m_score_data->get(sid,last_nid).get(k);
//cout << "diff = " << diff << endl;
totals[k] += diff/candidates.size();
//cout << "totals = " << totals[k] << endl;
}
last_candidates[sid] = nid;
}
scores.push_back(calculateScore(totals));
}
//regularisation. This can either be none, or the min or average as described in
//Cer, Jurafsky and Manning at WMT08
if (m_regularisationStrategy == REG_NONE || m_regularisationWindow <= 0) {
//no regularisation
return;
}
//window size specifies the +/- in each direction
statscores_t raw_scores(scores);//copy scores
for (size_t i = 0; i < scores.size(); ++i) {
size_t start = 0;
if (i >= m_regularisationWindow) {
start = i - m_regularisationWindow;
}
const size_t end = min(scores.size(), i + m_regularisationWindow+1);
if (m_regularisationStrategy == REG_AVERAGE) {
scores[i] = score_average(raw_scores, start, end);
} else {
scores[i] = score_min(raw_scores, start, end);
}
}
}
}